

Motivation

- Goal investigate whether algorithm selection can be improved if we utilize algorithm features along with instance features
- This iteration of the project uses static algorithm (software) features collected automatically
- Advantage the number of performance models is constant no matter how many algorithms are used in scenario

- Performed experiments on seven ASlib scenarios (SAT11-INDU, OPENML-WEKA-2017, etc) as well as scenarios not currently in ASlib (SAT-2018)
- Created SAT18-EXP scenario using main track results with 400 benchmark instances from SAT 2018 competition. Converted data into ASlib format using scripts from COSEAL's aslib-spec repository
- SAT18-EXP has all solvers that participated in the competition, except for varisat since it was written in Rust (software metrics tool does not work)
- Obtained SAT18-EXP's instance features with SATzilla's feature collection tool¹
- Modified scenarios due to lack of source code, ambiguity in solvers, lack of ability to take into the account parameter settings, and repeated runs
- Automatically collected algorithmic features for solvers written in C++ and Java such as cyclomatic complexity (average and total), maxindent complexity (average and total), lines of code (average and total), size in bytes (average and total), and number of files²
- Collected algorithmic features by selecting more relevant pieces of code (e.g., ignored code responsible for parallelism and certificate generation whenever possible)

UTILIZING SOFTWARE FEATURES FOR ALGORITHM SELECTION

Damir Pulatov, Lars Kotthoff

Department of Computer Science, University of Wyoming dpulatov@uwyo.edu,larsko@uwyo.edu

Setup (cont.) • Trained all models on Teton High-Performance Computing cluster³ • Combined software and instance features by constructing $n \times m$ datafi number of instances times number of solvers, and m is the number of in features • Utilized server scripts from a slib- r^4 for tuning hyperparameters for individent for combined models was done similarly (e.g., nested cross-validation and Results • Combined model is a Random Forest regression model that utilizes both features • Individual model is the standard model that uses instance features only • Models with pair regression method available in $LLAMA^5$ were also use regression model performs better than a slightly modified individual mod • mcp and par10 gaps show the normalized fraction of the gap closed by • A value of 0 corresponds to the single best solver and a value of 1 to the v values indicate performance worse than the single best solver • OPENML was grayed out for par10 table since this metric does not make a mcp gap pa -1.0 -0.5 0.0 0.5 1.0 -1.0 -0 TSP-LION2015 **0** -0.17 -0.11 TSP-LION2015 SAT18-EXP 0.29 0.29 0.32 SAT18-EXP 0.59 0.6 0.61 SAT11-RAND 0.88 0.92 0.91 SAT11-RAND 0.46 0.49 0.48 SAT11–INDU **0.41** 0.39 0.31 SAT11–INDU **0.13** 0.12 0.05 SAT11-HAND 0.58 0.67 0.64 SAT11-HAND 0.24 0.28 0.28 SAT03–16_INDU 0.46 0.5 0.44 SAT03–16_INDU **0.13 0.13** 0.12 OPENML-WEKA-2017 -0.42 0.22 -0.51 OPENML-WEKA-2017 GRAPHS-2015 0.12 0.19 0.15 GRAPHS-2015 0.45 0.62 0.56

	Summary
frame, where n is the instance and software vidual models. Tuning nd so on).	 Building algorithm selection models with current stamixed and inconsistent results Some scenarios (OPENML) are improved, some stay 16_INDU), and others worsen (SAT11-RAND) Performing pair regression with instance features give provement on some scenarios compared to combined results
	Future Work
instance and software	• Build pair regression models that use both software an see if they perform any better (currently running expe
7	• Perform feature selection (forward and backward) to fin features will be filtered out
sed to see if combined odel	• Investigate better static algorithmic features (a lot of nature very similar values).
y different methods	• Take into the account data structures and Object-Orie
virtual best. Negative	• Collect dynamic algorithmic features that characterize ware that were executed during runtime (stack trace)
e sense for the scenario	• Find a way to automatically analyze more relevant related to computation (e.g., ignore code used for GUI
ar10 gap	• Add feature costs for algorithm properties
-0.5 0.0 0.5 1.0 -0.42 -0.22	References

- [1] L Xu et al. "SATzilla2012: Improved algorithm selection based on cost-sensitive classification models". In: Proceedings of SAT Challenge 2012: Solver and Benchmark Descriptions (Jan. 2012), pp. 55–58.
- [2] Metrix++ is a tool to collect and analyse code metrics. URL: https:// metrixplusplus.github.io/home.html
- [3] Advanced Research Computing Center (2018) Teton Computing Environment, Intel x86_64 cluster. University of Wyoming, Laramie, WY. URL: https://doi.org/10. 15786/M2FY47.
- [4] Bernd Bischl et al. "ASlib: A benchmark library for algorithm selection". In: Artif. Intell. 237 (2016), pp. 41-58. DOI: 10.1016/j.artint.2016.04.003. URL: https://doi.org/ 10.1016/j.artint.2016.04.003.
- [5] Lars Kotthoff. LLAMA: Leveraging Learning to Automatically Manage Algorithms. Tech. rep. arXiv:1306.1031. arXiv, June 2013. URL: http://arxiv.org/abs/1306.1031.

- tatic features produces
- v about same (SAT01-
- ives a much larger imregression model
- and instance features to periments)
- find out which software
- minisat hacked solvers
- riented properties
- e only the parts of soft-
- pieces of source code Is and so on)