Motivation

Goal — investigate whether algorithm selection can be improved it we utilize
algorithm features along with instance features

This iteration of the project uses static algorithm (software) features collected
automatically

Advantage — the number of performance models is constant no matter how many
algorithms are used in scenario

Setup

Performed experiments on seven ASlib scenarios (SAT11-INDU, OPENML-
WEKA-2017, etc) as well as scenarios not currently in ASlib (SAT-2018)

Created SAT18-EXP scenario using main track results with 400 benchmark in-
stances from SAT 2018 competition. Converted data into ASlib format using
scripts from COSEAL's aslib-spec repository

SAT18-EXP has all solvers that participated in the competition, except for varisat
since it was written in Rust (software metrics tool does not work)

Obtained SAT18-EXP’s instance features with SATzilla’s feature collection tooll

Modified scenarios due to lack of source code, ambiguity in solvers, lack of ability
to take into the account parameter settings, and repeated runs

Automatically collected algorithmic features for solvers written in C++4 and Java
such as cyclomatic complexity (average and total), maxindent complexity (aver-
age and total), lines of code (average and total), size in bytes (average and total),
and number of files?

Collected algorithmic features by selecting more relevant pieces of code (e.g.,
ignored code responsible for parallelism and certificate generation whenever pos-

sible)

Setup (cont.)

e Trained all models on Teton High-Performance Computing clusters

e Combined software and instance features by constructing n X m dataframe, where n is the
number of instances times number of solvers, and m is the number of instance and software
features

e Utilized server scripts from aslib-r# for tuning hyperparameters for individual models. Tuning
for combined models was done similarly (e.g., nested cross-validation and so on).

Results

e Combined model is a Random Forest regression model that utilizes both instance and software
features

e Individual model is the standard model that uses instance features only

e Models with pair regression method available in LLAMA® were also used to see if combined
regression model performs better than a slightly modified individual model

e mcp and parl0 gaps show the normalized fraction of the gap closed by different methods

e A value of 0 corresponds to the single best solver and a value of 1 to the virtual best. Negative
values indicate performance worse than the single best solver

e OPENML was grayed out for parl0 table since this metric does not make sense for the scenario

mcp gap parl0 gap
A - A -
-1.0 -05 0.0 05 1.0 -1.0 -0.5 0.0 05 1.0

TSP-LION2015

TSP-LION2015 0) .—0.22

SAT18-EXP |1 0.29 | 0.29 0.32

SAT18-EXP

SAT11-RAND SAT11-RAND |0.46 0.49 | 0.48

SAT11-INDU | 0.13 0.12 0.05

SAT11-HAND |0.24 1 0.28 0.28

SAT11-INDU | 0.41

SAT11-HAND

0.13 0.13|0.12

SAT03-16_INDU SAT03-16_INDU

OPENML-WEKA-2017 OPENML-WEKA-2017

GRAPHS-2015 1 0.12 0.19|0.15

1]

2]

Bl

4]

)

Summary

e Building algorithm selection models with current static features produces
mixed and inconsistent results

e Some scenarios (OPENML) are improved, some stay about same (SATO1-
16_INDU), and others worsen (SAT11-RAND)

e Performing pair regression with instance features gives a much larger im-
provement on some scenarios compared to combined regression model

Future Work l

e Build pair regression models that use both software and instance features to
see if they perform any better (currently running experiments)

e Perform feature selection (forward and backward) to find out which software
features will be filtered out

e Investigate better static algorithmic features (a lot of minisat hacked solvers
have very similar values).

e Take into the account data structures and Object-Oriented properties

e Collect dynamic algorithmic features that characterize only the parts of soft-
ware that were executed during runtime (stack trace)

e ind a way to automatically analyze more relevant pieces of source code
related to computation (e.g., ignore code used for GUIs and so on)

e Add feature costs for algorithm properties

References

L Xu et al. “SATzilla2012: Improved algorithm selection based on cost-sensitive classification
models”. In: Proceedings of SAT Challenge 2012: Solver and Benchmark Descriptions (Jan.
2012), pp. 55-58.

Metrix++ 1s a tool to collect and analyse code metrics. URL: https : / /
metrixplusplus.github.io/home.html.

Advanced Research Computing Center (2018) Teton Computing Environment, Intel
186_64 cluster. University of Wyoming, Laramie, WY. URL: https://doi.org/10.
15786 /M2FYA4T.

Bernd Bischl et al. “ASlib: A benchmark library for algorithm selection”. In: Artif. Intell.
237 (2016), pp. 41-58. DOI: 10.1016/j.artint.2016.04.003. URL: https://doi.org/
10.1016/j.artint.2016.04.003.

Lars Kotthoft. LLAMA: Leveraging Learning to Automatically Manage Algorithms. Tech.
rep. arXiv:1306.1031. arXiv, June 2013. URL: http://arxiv.org/abs/1306.1031.

