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Big Picture

D> advance the state of the art through meta-algorithmic
techniques

D> rather than inventing new things, use existing things more
intelligently — automatically

> invent new things through combinations of existing things



Motivation — What Difference
Does It Make?



Prominent Application

Fréchette, Alexandre, Neil Newman, Kevin Leyton-Brown. “Solving the
Station Packing Problem.” In Association for the Advancement of Artificial
Intelligence (AAAL), 2016.



Performance Differences
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Hurley, Barry, Lars Kotthoff, Yuri Malitsky, and Barry O’Sullivan. “Proteus:
A Hierarchical Portfolio of Solvers and Transformations.” In CPAIOR, 2014.



Performance Improvements
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Hutter, Frank, Domagoj Babic, Holger H. Hoos, and Alan J. Hu.
“Boosting Verification by Automatic Tuning of Decision Procedures.” In
FMCAD '07: Proceedings of the Formal Methods in Computer Aided Design,
27-34. Washington, DC, USA: IEEE Computer Society, 2007.



Common Theme

Performance models of black-box processes
B> also called surrogate models

D> substitute expensive underlying process with cheap
approximate model

> build approximate model using machine learning techniques
based on results of evaluations of the underlying process

> no knowledge of what the underlying process is required (but
can be helpful)

B> may facilitate better understanding of the underlying process
through interrogation of the model



Choosing Algorithms



Algorithm Selection

Given a problem, choose the best algorithm to solve it.

Rice, John R. “The Algorithm Selection Problem.” Advances in Computers
15 (1976): 65-118.
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Algorithm Selection

Portfolio Training Instances

Algorithm 1 ‘ ‘ Algorithm 2 ‘ ‘ Algorithm 3 ‘ ‘ Instance 1 ‘ ‘ Instance 2 ‘ ‘ Instance 3

Feature Extraction

Algorithm Selection

Instance 4

erformance Mode| Feature Instance 6

Extraction

Instance 4: Algorithm 2
Instance 5: Algorithm 3
Instance 6: Algorithm 3
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Algorithm Portfolios

D> instead of a single algorithm, use several complementary
algorithms

> idea from Economics — minimise risk by spreading it out
across several securities

D> same for computational problems — minimise risk of algorithm
performing poorly

D> in practice often constructed from competition winners or
other algorithms known to have good performance

Huberman, Bernardo A., Rajan M. Lukose, and Tad Hogg. “An Economics
Approach to Hard Computational Problems.” Science 275, no. 5296 (1997):
51-54. doi:10.1126/science.275.5296.51.
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Algorithms

“algorithm” used in a very loose sense
> algorithms
heuristics
machine learning models

>
>
> software systems
> machines

>



Parallel Portfolios

Why not simply run all algorithms in parallel?
> not enough resources may be available/waste of resources
D> algorithms may be parallelized themselves

> memory/cache contention
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Building an Algorithm Selection System

v

requires algorithms with complementary performance
most approaches rely on machine learning

train with representative data, i.e. performance of all
algorithms in portfolio on a number of instances

evaluate performance on separate set of instances

potentially large amount of prep work
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Key Components of an Algorithm Selection System

> feature extraction

> performance model

> prediction-based selector/scheduler
optional:

> presolver

> secondary/hierarchical models and predictors (e.g. for feature
extraction time)
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Types of Performance Models

Classification Model
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Tuning Algorithms



Algorithm Configuration

Given a (set of) problem(s), find the best parameter configuration.
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Parameters?

B> anything you can change that makes sense to change

D> e.g. search heuristic, optimization level, computational
resolution

B> not random seed, whether to enable debugging, etc.

> some will affect performance, others will have no effect at all
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Automated Algorithm Configuration

> no background knowledge on parameters or algorithm —
black-box process
D> as little manual intervention as possible

B> failures are handled appropriately
B> resources are not wasted
B> can run unattended on large-scale compute infrastructure
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Algorithm Configuration

Parameter domains
& starting values

Calls with
: different

parameter

settings

Configuration scenario

Target
algorithm

Solves

Problem
instances

Returns solution cost

Frank Hutter and Marius Lindauer, “Algorithm Configuration: A Hands on

Tutorial”, AAAI 2016
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General Approach

> evaluate algorithm as black-box function

D> observe effect of parameters without knowing the inner
workings, build surrogate model based on this data

D> decide where to evaluate next, based on surrogate model

D> repeat
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When are we done?

D> most approaches incomplete, i.e. do not exhaustively explore
parameter space

D> cannot prove optimality, not guaranteed to find optimal
solution (with finite time)

B> performance highly dependent on configuration space

—> How do we know when to stop?
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Time Budget

How much time/how many function evaluations?

>

>
>
>
>
>

too much —> wasted resources

too little — suboptimal result

use statistical tests

evaluate on parts of the instance set
for runtime: adaptive capping

in general: whatever resources you can reasonably invest
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Grid and Random Search

D> evaluate certain points in parameter space

Grid Layout Random Layout

Unimportant parameter
Unimportant parameter

Important parameter Important parameter

Bergstra, James, and Yoshua Bengio. “Random Search for
Hyper-Parameter Optimization.” J. Mach. Learn. Res. 13, no. 1 (February
2012): 281-305.
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Model-Based Search

D> evaluate small number of configurations

> build model of parameter-performance surface based on the
results

B> use model to predict where to evaluate next

> repeat

> allows targeted exploration of new configurations

D> can take instance features into account like algorithm selection

Hutter, Frank, Holger H. Hoos, and Kevin Leyton-Brown. “Sequential
Model-Based Optimization for General Algorithm Configuration.” In LION 5,
507-23, 2011.
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Model-Based Search Example

Iter = 1, Gap = 1.9909e-01
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Model-Based Search Example
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Model-Based Search Example

Iter = 3, Gap = 1.9909e-01
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Model-Based Search Example

Iter = 4, Gap = 1.9992e-01

08-
<
0.4- type
e init
A prop
0.0- seq
8e-04- i type
A §
1y Iy —-y
6e-04 - Iy Iy - = yhat
1 \ | 1 - i
4e-04 - Iy Iy z
Iy Iy
2e-04 - I \ I /AR
/ v I I
06400~ === —— / L T Ty A, —
-10 -05 00 0.5 10
X



Model-Based Search Example
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Model-Based Search Example
Iter = 6, Gap = 1.9996e-01
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Model-Based Search Example

0.8-

0.4-

0.0-

5e-05-

4e-05-

3e-05-

2e-05-

le-05-

0e+00 -

Iter = 7, Gap = 2.0000e-01

19

type
e init
A prop

seq

type
-y
= = yhat

34



Model-Based Search Example
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Model-Based Search Example
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Model-Based Search Example
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Selected Applications



Compiler Parameter Tuning

D> pre-defined optimization levels offer not much flexibility

B> improvements possible by tuning full compiler parameter space
D> tuned compute-intensive Al algorithms

> up to 40% runtime improvement over gcc -02/-03
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Pérez Caceres, Leslie, Federico Pagnozzi, Alberto Franzin, and Thomas
Stitzle. “Automatic Configuration of GCC Using lIrace.” In Artificial Evolution,
edited by Evelyne Lutton, Pierrick Legrand, Pierre Parrend, Nicolas
Monmarché, and Marc Schoenauer, 202-16. Cham: Springer International
Publishing, 2018.
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Application — Optimizing Graphene Oxide Reduction

> reduce graphene oxide to graphene through laser irradiation

> allows to create electrically conductive lines in insulating
material

D> laser parameters need to be tuned carefully to achieve good
results

40



From Graphite/Coal to Carbon Electronics
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Evaluation of Irradiated Material
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Morphology of Irradiated Material

19.796um
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Surrogate-Model-Based Optimization
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Surrogate-Model-Based Optimization

+ Prediction
¢ Actual

0 2 4 6 8
lteration

During Training After 1t prediction

* Predictions work even with small training dataset (19 points)
* Al Model achieved I/l ratio (>6) after 1st prediction

45



Explored Parameter Space
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Outlook



Quo Vadis, Software Engineering?

—
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Quo Vadis, Software Engineering?

Hoos, Holger H. “Programming by Optimization.” Communications of the
Association for Computing Machinery (CACM) 55, no. 2 (February 2012):
70-80. https://doi.org/10.1145/2076450.2076469.
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(Much) More Information

B Algorithm Selection Literature Summary .
h— Last update 21 November 2018
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https://larskotthoff.github.io/assurvey/

Kotthoff, Lars. "Algorithm Selection for Combinatorial Search Problems: A
Survey.” Al Magazine 35, no. 3 (2014): 48-60.
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https://larskotthoff.github.io/assurvey/

Tools and Resources

LLAMA
SATzilla
iRace
mlrMBO
SMAC
Spearmint
TPE

autofolio
Auto-WEKA
Auto-sklearn

https://bitbucket.org/lkotthoff/1lama
http://www.cs.ubc.ca/labs/beta/Projects/SATzilla/
http://iridia.ulb.ac.be/irace/
https://github.com/mlr-org/mlrMBO
http://www.cs.ubc.ca/labs/beta/Projects/SMAC/
https://github.com/HIPS/Spearmint
https://jaberg.github.io/hyperopt/

https://bitbucket.org/mlindauer/autofolio/
http://wuw.cs.ubc.ca/labs/beta/Projects/autoweka/

https://github.com/automl/auto-sklearn
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https://bitbucket.org/lkotthoff/llama
http://www.cs.ubc.ca/labs/beta/Projects/SATzilla/
http://iridia.ulb.ac.be/irace/
https://github.com/mlr-org/mlrMBO
http://www.cs.ubc.ca/labs/beta/Projects/SMAC/
https://github.com/HIPS/Spearmint
https://jaberg.github.io/hyperopt/
https://bitbucket.org/mlindauer/autofolio/
http://www.cs.ubc.ca/labs/beta/Projects/autoweka/
https://github.com/automl/auto-sklearn

Summary

Algorithm Selection choose the best algorithm for solving a
problem

Algorithm Configuration choose the best parameter configuration
for solving a problem with an algorithm

mature research areas

can combine configuration and selection

effective tools are available

COnfiguration and SElection of ALgorithms group COSEAL
http://www.coseal.net

vV vV vV V

Don't set parameters prematurely, embrace choice!
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http://www.coseal.net
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