
Pythia: Automatic Generation of Counterexamples for
ACL2 using Alloy

Alexander Spiridonov
∗

Microsoft Corporation
One Microsoft Way

Redmond, WA 98052
alspirid@microsoft.com

Sarfraz Khurshid
The University of Texas at Austin

1 University Station C5000
Austin, TX 78712

khurshid@ece.utexas.edu

ABSTRACT
A key research problem in automated theorem proving is
generating examples and counterexamples to guide the dis-
covery of proofs. We present Pythia, a framework that con-
nects ACL2 with the SAT-based Alloy Analyzer, a tool for
solving formulas in first-order logic with transitive closure
using bounded exhaustive checking. Pythia takes as in-
puts an Alloy model of the ACL2 type system together with
an ACL2 formula and automatically generates examples of
ACL2 objects that satisfy the model’s constraints. Pythia
then produces an ACL2 script that evaluates the formula
on the generated objects to search for counterexamples. We
test Pythia on a set of classic ACL2 non-theorems and find
that it effectively discovers counterexamples to such formu-
las. Based on our experiments, we suggest making ACL2
more novice-friendly by adding the option to test every for-
mula on a set of basic examples before attempting the proof.

Categories and Subject Descriptors
D.2.4 [Software Engineering]: Software/Program Verifi-
cation—correctness proofs, formal methods

General Terms
Verification

Keywords
ACL2, Alloy, SAT, counterexamples

1. INTRODUCTION
While substantial progress has been made in automating
theorem provers, constructing a complex proof remains a
challenging task, particularly for novice users. When ACL2
fails to prove a given formula, there are two possible expla-
nations: the formula is not a theorem (i.e., valid under all

∗This research was done while the author was a graduate
student in the Department of Computer Sciences at The
University of Texas at Austin.

assignments of values to the formula’s free variables); or the
formula is indeed a theorem, but the user lacks some insight,
such as a key lemma, that would enable the proof to suc-
ceed. Unfortunately, at present ACL2 does not distinguish
between these two reasons for failure, which can frustrate
the novice user. Furthermore, when the formula is not a
theorem, a counterexample (i.e., an assignment to the free
variables of the formula that makes the formula false) would
demonstrate exactly when the formula is false and may sug-
gest a way to turn it into a theorem. However, novice users
might find manually constructing counterexamples difficult.
Thus, a key research problem in automated theorem proving
is automatically generating examples and counterexamples
to guide the discovery of proofs [5]. An automated tool could
alleviate the burden on novice users and help them interact
with ACL2 more effectively.

We present Pythia, a framework that connects ACL2 with
the SAT-based Alloy Analyzer [3], a tool for solving formu-
las in first-order logic with transitive closure using bounded
exhaustive checking. The Alloy Analyzer takes a comple-
mentary approach to theorem proving: instead of trying to
prove a formula, the Analyzer looks for a counterexample.
The Analyzer leverages off-the-shelf SAT technology to per-
form bounded exhaustive checking using small bounds on
the universe of discourse. By integrating ACL2 with Alloy,
Pythia has immediate practical use: before trying to prove a
formula using ACL2, the user can first check whether there
are any small counterexamples using the Alloy Analyzer.
For formulas that have small counterexamples, e.g., formu-
las often written by novice users, such an approach can save
a lot of frustration.

Pythia takes as inputs a model of the ACL2 type system
written in the Alloy specification language [2] and an ACL2
formula. Our model represents the built-in ACL2 types in
Alloy: the complex rationals (including the rationals, inte-
gers, and naturals), characters, symbols, strings, and cons
pairs. While our model is inevitably a simplification of
ACL2, it enables Pythia to leverage Alloy without model-
ing every detail of the ACL2 logic in Alloy. Pythia invokes
the Alloy Analyzer to automatically generate examples of
ACL2 objects that satisfy the model’s constraints. Pythia
then translates the generated objects from Alloy to their
ACL2 representations and produces an ACL2 script that
evaluates the formula on these objects to search for coun-
terexamples. Whenever an assignment makes the formula
false, ACL2 outputs that assignment as a counterexample.

Pythia uses Alloy to generate examples of Alloy constraints.
The Alloy constraints need not — indeed, usually do not —
capture all the constraints present in the ACL2 formula in
question. In fact, in its initial state, the Pythia constraints
consist entirely of a model of the ACL2 type system and
Pythia simply enumerates in a random order examples of
objects of the various types, without any sensitivity to the
larger ACL2 context (which is unavailable to the Alloy con-
straint solver). These examples are then tried in ACL2. Ex-
periments show that in some simple, classical non-theorems,
these examples are sufficient. This leads us to make a sug-
gestion to the ACL2 developers:

Why not test every formula before beginning proof by eval-
uating it on several dozen “typical” examples? If a formula
evaluates to false on any of these examples, ACL2 could dis-
play that example together with a descriptive error message,
instead of the traditional (and rather terse) “The proof at-
tempt has failed.” You might thereby save the novice a lot
of heartburn!

Pythia takes the first step towards leveraging Alloy to search
for examples and counterexamples. To get the full advantage
of the Alloy constraint solver, at present one must manually
translate the ACL2 constraints from the problem into Alloy.
This can be difficult since Alloy does not support general
recursive schemes. In a subsequent section we provide an
example of extending our basic model with a more complex
recursive ACL2 predicate — an ordered list of integers —
and propose some general strategies for translating recursive
ACL2 definitions into Alloy.

Our paper makes the following contributions:

• Connection with Alloy We take the first step to-
wards connecting ACL2 with Alloy, which is a powerful
and widely used tool in the formal methods commu-
nity. We present an Alloy model of the ACL2 type
system that the Alloy Analyzer can use to automati-
cally generate examples illustrating ACL2 definitions.

• Automatic discovery of counterexamples Pythia
automatically translates the generated examples from
Alloy to ACL2 and uses them to search for counterex-
amples to the provided formula. Our experiments show
that Pythia successfully uncovers counterexamples to
the kinds of non-theorems a novice user is likely to
encounter.

• A suggestion for improving ACL2 Because even
a quick search for counterexamples could improve the
experience for novice users, we propose making ACL2
more novice-friendly by adding the option to test pro-
posed conjectures on a set of basic examples before
attempting the proof. Pythia provides one possible
implementation of this improvement.

The rest of this paper is organized as follows. Section 2 pro-
vides the relevant background on Alloy. Section 3 describes
the Pythia framework, our Alloy model of ACL2 types, and
ways to model recursive ACL2 definitions in Alloy. Section 4
presents our experimental results, which demonstrate Py-
hia’s effectiveness in generating counterexamples to classic

ACL2 non-theorems. Section 5 discusses current limitations
of our work and directions for future research, and Section 6
concludes.

2. ALLOY
The Alloy toolset [2] consists of a specification language and
an analyzer that automatically generates instances of models
written in that language.

2.1 The Specification Language
The Alloy specification language is a strongly-typed, first-
order declarative language based on sets and relations. An
Alloy model (specification) contains signatures, which define
the objects in the model and the relations between them, and
constraint paragraphs, which record various constraints and
expressions.

A signature introduces a set of atoms. The declaration

sig Node {

left, right : lone Node,

value : lone Int

}

introduces a set named Node. We use this signature to define
a rooted binary tree:

sig Tree {

root : Node

}

Relations are declared as fields of signatures. The Node dec-
laration introduces binary relations left, right, and value.
The relations left and right map a node in a binary tree
to its left and right children, while value maps a leaf node
to an integer value.

Relations can be combined to form expressions. The set op-
erators union (+), intersection (&), and difference (-) com-
bine two relations of the same type. The dot operation (.)
represents relational composition. Alloy also supports the
unary operators ~ (transpose), ^ (transitive closure), and *
(reflexive transitive closure).

Expression quantifiers turn expressions into formulas. The
formula no e is true when e denotes a relation containing no
tuples. Similarly, some e, lone e, and one e are true when
e has some, at most one, and exactly one tuple respectively.
Formulas can be made with relational comparison operators:
subset (written : or in), equality (=) and their negations
(!:, !in, !=). For example, e1 in e2 is true when every
tuple in (the relation denoted by the expression) e1 is also
a tuple of e2. Formulas can be combined with the stan-
dard logical operators: && (conjunction), || (disjunction),
=> (implication), <=> (bi-implication), and ! (negation).
A sequence of formulas within curly braces is implicitly con-
joined.

A declaration is a formula v op e consisting of a variable
v, a comparison operator op, and an arbitrary expression e.

Quantified formulas consist of a quantifier, a comma sepa-
rated list of declarations, and a formula. In addition to the
universal and existential quantifiers all and some, there is
lone (at most one) and one (exactly one). In a declaration,
part specifies partition and disj specifies disjointness.

Constraint paragraphs include facts and predicates. A fact
is a constraint that is assumed always to hold. A predicate
is a named constraint, with zero or more declarations for
arguments. When a predicate is used, an expression must
be provided for each argument; its meaning is the predicate’s
constraint with each argument replaced by its instantiating
expression. For example, the following predicate places an
acyclicity constraint on its argument, which is of type Tree:

pred Acyclic (t: Tree) {

all n : t.root.*(left+right) |

n !in n.^(left+right)

}

The expression t.root.*next denotes the set of all nodes
reachable from the root node of the tree following zero or
more traversals along the left and right branches; similarly,
the expression n.^(left+right) denotes the set using one or
more traversals. This predicate thus states that for all nodes
that are reachable from the root of the tree, traversing from
such a node along the left or right pointer one or more times
does not lead back to the same node.

2.2 The Analyzer
The Alloy Analyzer is an automatic tool that finds instances
of Alloy specifications. An instance assigns values to the sets
and relations in the specification such that all formulas in
the specification evaluate to true. Because first-order logic is
undecidable, the Analyzer limits its search to a finite scope,
i.e. a bound on the universe of discourse. The analysis is
performed by translating the model into a Boolean formula
and using a SAT solver to find an assignment satisfying the
formula.

Given the predicate Acyclic defined above, we can write a
command that will tell the Analyzer to find an instance of
the model that satisfies the predicate’s constraint:

run Acyclic for 3 but 1 Tree

This command sets the scope for analysis: it limits the
search to a universe in which each top-level set has at most
3 elements, but the Tree set has at most 1 element. Effec-
tively, this command will generate a single acyclic tree with
up to 3 nodes.

In the next section we describe how we leverage the Alloy
toolset to automatically generate ACL2 objects and how we
use these objects to search for counterexamples to ACL2
formulas.

3. PYTHIA
Pythia is a framework for finding examples and counterex-
amples for ACL2 definitions and formulas. Pythia uses the

Alloy Analyzer to generate instances of ACL2 objects and
ACL2 to evaluate the formula on these instances and report
counterexamples. Pythia is written in Java and uses the
Alloy API to interact with the Alloy Analyzer.

3.1 Architecture
Pythia takes two inputs: an Alloy model of the ACL2 type
system and an ACL2 formula. Pythia’s operation proceeds
in two phases.

In the first phase, Pythia invokes the Alloy Analyzer to gen-
erate an instance of the input Alloy model. The resulting
instance is an Alloy representation of ACL2 objects that
satisfy the model’s constraints. By default, the Analyzer
generates up to three examples of each atomic ACL2 type
and two cons trees: a proper cons tree and an improper
cons tree. The user may override this default and specify
how many objects will be generated and what properties
these objects will have by listing the predicates the model
must satisfy and by setting the scope for analysis. Lastly,
the user may indicate the type of values that will appear in
the generated cons trees. This may be a single type (such
as integer or string) or a combination of types (for example,
characters and symbols.) By default, the generated cons
trees may contain objects of any atomic ACL2 type.

In the second phase, Pythia translates the generated ob-
jects from their Alloy representations into ACL2, creating
a vector of test inputs. Pythia outputs an ACL2 file con-
taining the original formula and some test code. When the
user loads the produced file in ACL2, ACL2 will execute
the test code, evaluating the formula on all combinations of
assignments of values from the test vector to the formula’s
variables. Whenever the formula evaluates to false, ACL2
outputs the current assignment as a counterexample to the
formula.

3.2 Modeling ACL2 Types in Alloy
Pythia requires a model of the ACL2 types from which the
Alloy Analyzer will generate examples of ACL2 objects. We
developed a model that captures all the built-in ACL2 types.
The user may extend the model with additional constraints
in first-order logic so that objects with particular properties
may be generated: for example, proper cons trees whose
elements are integers, appearing in ascending order. One
advantage of our model is its modularity: our predicates
define building blocks that can be combined to introduce
more complex constraints. We first describe the modeling
of atomic ACL2 types and then discuss the representation
of cons trees.

3.2.1 Modeling Atomic ACL2 Types
We begin by modeling integers as subsets of the Alloy Int

type:

sig PositiveInt extends Int {}

sig NegativeInt extends Int {}

one sig Zero extends Int {}

fact { all p : PositiveInt | int p > 0 }

fact { all n : NegativeInt | int n < 0 }

fact { int Zero = 0 }

Next, we model ratios. The signature Ratio is abstract :
it has no elements except those belonging to its subsets,
PositiveRatio and NegativeRatio.

abstract sig Ratio {

numerator, denominator: Int

}

sig PositiveRatio extends Ratio {}

sig NegativeRatio extends Ratio {}

We specify additional constraints on each type of ratio:

fact { all p : PositiveRatio |

int p.numerator > 0 && int p.denominator > 0 ||

int p.numerator < 0 && int p.denominator < 0}

fact { all n : NegativeRatio |

int n.numerator < 0 && int n.denominator > 0 ||

int n.numerator > 0 && int n.denominator < 0}

We then use ratios to model complex rationals, with the
constraint that the imaginary parts must be non-zero:

sig ComplexRational {

real, imaginary: Ratio

}

fact {

all c : ComplexRational |

int c.imaginary.numerator != 0

}

Finally, we model symbols, strings, and characters as simple
Alloy signatures:

sig Symbol {}

one sig T extends Symbol {}

one sig NIL extends Symbol {}

sig String {}

sig Character {}

We keep our model of these types simple; Pythia does all
the work of translating these objects into their valid ACL2
representations.

3.2.2 Modeling Cons Trees
We model cons trees as rooted binary trees, using the sig-
natures Node and Tree introduced in Section 2:

module Node [t]

sig Node {

left, right: lone Node,

value : lone t

}

sig Tree {

root: Node

}

The Node signature is parameterized : it resides in a separate
module, and the main model imports this module, instan-
tiating it with the name of a signature. Parameterization
is a syntactic mechanism; the effect of instantiating a Node

module is the same as adding a copy of the module with the
parameter t replaced by a name of some signature. This al-
lows the user to control the types of values appearing in the
cons trees; our model enables the generation of cons trees
whose elements are any single ACL2 type or any combina-
tion of ACL2 types. Each node has at most one left and
right child and an optional value; a node with no children
represents nil (the empty list.)

Having defined a binary tree, we introduce a predicate Cons

that constrains a tree to be a valid cons tree:

pred Cons(t: Tree) {

all n : t.root.*(left+right) |

n !in n.^(left+right)

all n : t.root.*(left+right) |

lone n.~(left+right)

all n : t.root.*(left+right) |

some n.(left+right) => no n.value

all n : t.root.*(left+right) |

no n.(left+right) or #n.(left+right) = 2

}

The predicate states that a cons tree is acyclic; each node
has at most one parent; nodes with children (i.e. non-leaf
nodes) do not have values; and each node has either two
children or none (cons trees are, by definition, full binary
trees.)

Because these properties are intrinsic to all cons trees, we
can use the Cons predicate as a building block to specify
cons trees with additional properties, such as a proper (nil-
terminated) cons tree:

pred ProperCons(t: Tree) {

Cons(t)

one n : t.root.^right |

no n.(left+right) && no n.value

}

A proper cons tree, in addition to having all the properties
of a cons tree, has one node in the right sub-tree that has
no children and no value; in effect, the right-most branch in
the tree terminates in nil. We model an improper cons tree
similarly. We model a true list of atoms, a common type of
cons tree, by reusing the ProperCons predicate and adding
one more constraint:

pred TrueListOfAtoms(t: Tree) {

ProperCons(t)

all n : t.root.*(left+right) |

some n.(left+right) =>

one n.left.value && no n.right.value

}

A true list of atoms, in addition to having all the properties
of a proper cons tree, has the following property: for all of

its nodes, the left child must have a value, and the right
child must not have a value (thus it is either a non-leaf node
or nil.) An improper list of atoms is defined analogously.

Lastly, we model a true list of integers whose values are
ordered. First, we define a predicate for an ordered tree:
one in which values in the left subtree are smaller than all
the values in the right subtree.

pred Ordered(t: Tree) {

all n : t.root.*(left+right) |

all v : n.left.*(left+right).value |

all w : n.right.*(left+right).value |

int v < int w

}

We combine this predicate with the definition of
TrueListOfAtoms to define an ordered true list of integers:

pred OrderedTrueListOfIntegers(t: Tree) {

Ordered(t)

TrueListOfAtoms(t)

}

This predicate corresponds to the following ACL2 definition:

(defun ordered-true-list-of-integers (x)

(and (integer-listp x)

(orderedp x)))

Running the Alloy Analyzer on our model generates an in-
stance that contains an object satisfying the
OrderedTrueListOfIntegers predicate. After obtaining the
instance from the Analyzer, Pythia automatically translates
the object into its ACL2 representation. This object illus-
trates the definition ordered-true-list-of-integers and
becomes one of the entries in the test vector that is then
used to find counterexamples to ACL2 formulas.

3.3 Modeling Recursive Functions in Alloy
Recursive functions are very common in ACL2; unfortu-
nately, Alloy does not support recursive definitions. We de-
scribe three ways of overcoming this problem: unrolling re-
cursive functions to create non-recursive constraints; using
transitive closure; and introducing a new relation to com-
pute the fixed point of the recursive function.

The first approach to translating a recursive ACL2 function
to Alloy is to unroll the recursion a fixed number of steps.
Consider the following ACL2 definition of a predicate to
recognize an ordered list:

(defun orderedp (x)

(cond ((atom x) t)

((atom (cdr x)) t)

(t (and (<= (car x) (cadr x))

(orderedp (cdr x))))))

This definition states an atom is “ordered”; a singleton list
is ordered; and if the list has more than one element, it is
ordered if the first element is less than or equal to the second
element, and the rest of the list is ordered. While we cannot
directly translate this definition into Alloy, we can unroll it,
generating the following set of constraints:

(and (consp x)

(consp (cdr x))

(< (car x) (cadr x))

(null (cddr x)))

We can then formulate an Alloy predicate that captures
these constraints:

pred Orderedp(t: Tree) {

Cons(t) //basic "cons" constraints

t.left.value < t.left.right.value

no t.right.right.value // right-most node is NIL

}

The second method is to model a recursive ACL2 definition
with an Alloy predicate that uses transitive closure. Con-
sider the ACL2 function to check membership in a cons tree:

(defun mem (e x)

(if (endp x)

nil

(or (equal e (car x))

(mem e (cdr x)))))

The recursion in mem can be eliminated in favor of transitive
closure:

pred mem(x: Tree, e: Elem) {

e in lst.*(left+right).value

}

Lastly, it is possible to eliminate recursion by introducing a
new relation that computes the fixed point of the recursive
function [6]. Here is the definition of a function len that
finds the length of a list:

(defun len (x)

(if (endp x)

0

(+ 1 (len (cdr x)))))

This definition can be modeled in Alloy as follows:

one sig Recursion {

len: Node -> Int

}

fun lenFix(n: Node): Int {

no n.right => Int[0]

else Int[int[Recursion.len[n.right]] + 1]

}

fact FixPoint {

all n: Node {

Recursion.len[n] = lenFix[n]

}

}

4. EXPERIMENTAL RESULTS
As an initial evaluation, we tested Pythia’s ability to gen-
erate counterexamples for 15 ACL2 formulas that are not
theorems. Most formulas came from [4] and represented
typical conjectures that novice users try to prove. The for-
mulas ranged from simple conjectures with no hypotheses to
more complex statements whose hypotheses included recur-
sive functions. Pythia successfully found counterexamples
to all 15 formulas. Below we show some formulas and coun-
terexamples that Pythia discovered.

Consider the following formula (the function rev is defined
in the standard way, as in [4]):

(equal (rev (rev x)) x)

This formula attempts to capture the intuitive notion that
reversing the same object twice produces the original object.
While this statement is true when the object is a true list,
it is not true for improper lists and atoms. The counterex-
amples that Pythia finds illustrate this fact:

x = (2 . 3)

x = #C(3 3)

x = String0

x = T

Next, consider a formula that tries to formalize the rela-
tionship between the functions rev and app (also defined in
[4]):

(equal (rev (app a b))

(app (rev a) (rev b)))

This formula contais an error: the calls to rev in the right-
hand side of the equality should be swapped. Any pair of
distinct objects could serve as a counterexample, and Pythia
produces many such pairs, such as:

a = (2 . 3); b = (0 -1)

a = ’SYMBOL0; b = ’SYMBOL1

a = ’SYMBOL1; b = (2 . 3)

Finally, the following formula has a hypothesis containing
calls to recursive functions integer-listp and orderedp:

(implies (and (integer-listp x)

(integer-listp y)

(orderedp x)

(orderedp y))

(orderedp (app x y))))

The predicate OrderedTrueListOfAtoms, defined in Section
2, models the combination of these recursive definitions, al-
lowing Pythia to generate objects with the required proper-
ties and produce a counterexample:

x = (2 3); y = (-1 0 1)

5. DISCUSSION
Prior efforts to automatically find counterexamples to ACL2
formulas by using SAT include the work of Sumners [8],
who presents a procedure for checking “suitably bounded”
ACL2 theorems using a SAT checker that is also written in
ACL2, and Reeber and Hunt [7], who define the subclass of
unrollable list formulas in ACL2 (SULFA) and extend ACL2
to recognize SULFA formulas and automatically verify them
with a SAT-based decision procedure.

Pythia takes a novel approach by connecting ACL2 with
an external tool, the Alloy Analyzer. This connection al-
lows ACL2 users to leverage Alloy’s strength: the ability to
solve complex conjunctions of constraints through bounded
exhaustive checking. The immediate practical advantage is
that before trying to prove a formula using ACL2, the user
can first check for counterexamples using the Alloy Ana-
lyzer. For formulas that have small counterexamples, e.g.,
formulas often written by novice users, this approach can be
effective and save a lot of frustration.

The connection between Alloy and ACL2 can also be used in
the other direction: ACL2 could help Alloy perform bounded
exhaustive checking. Consider checking a complex formula
using the Alloy Analyzer. Suppose the translation of the
formula generates a SAT problem that is infeasible to solve.
The user could try to decompose the original formula into
subformulas and check some of them using ACL2 in an at-
tempt to simplify the original formula by reducing them to
constants, similarly to the approach described in [1].

While Pythia takes the first step towards integrating ACL2
and Alloy, two limitations preclude it from being applied to
formulas of greater complexity.

Pythia’s first limitation is that although our approach is
sound, it is not complete: Pythia may not find a counterex-
ample to a formula even if one exists because none of the
objects Pythia generates may turn out to be valid coun-
terexamples. Two factors mitigate this drawback. First, by
default we generate instances of all primitive ACL2 types,
which yields coverage that is often sufficient to find coun-
terexamples to simple theorems, as illustrated by our exper-
imental results. Second, our model allows the user to add
constraints and to specify the scope for analysis. A greater
scope increases the chances of generating a counterexample,
at the expense of increased analysis time.

The second limitation is that in its initial state, Pythia can-
not handle recursive functions effectively and automatically.
While our model does not require any user involvement to

generate examples of all primitive ACL2 types and cons trees
with certain properties (such as ordered true lists of inte-
gers), at present the user must manually define additional
constraints in Alloy in order to represent more complex def-
initions. This obstacle can be overcome by developing an
automatic translator from ACL2 formulas to Alloy using
the techniques for representing recursive definitions in Alloy
described in Section 3.

The next step, therefore, is to implement translation from
ACL2 formulas to Alloy formulas based on our Alloy model
to provide a fully automatic tool that enables bounded ex-
haustive checking of a range of ACL2 formulas. Generat-
ing instances using the Alloy Analyzer and checking each of
them against the ACL2 formula can require a large number
of instances before a counterexample is found. A translation
of the ACL2 formula to Alloy would enable SAT to directly
look for a counterexample. Another future direction is to
prove some standard Alloy models — particularly the ones
for which the Analyzer does not find any counterexamples
— using ACL2. Such a study would help us determine how
often bounded exhaustive checking gives false confidence in
the correctness of a formula and how useful the Analyzer is
in building lemmas to construct a proof in ACL2.

6. CONCLUSIONS
Pythia is a novel framework that connects ACL2 with the
SAT-based Alloy Analyzer in an effort to automatically find
examples and counterexamples for ACL2 formulas. The Al-
loy Analyzer takes a complementary approach to theorem
proving: instead of trying to prove a formula, the Analyzer
looks for a counterexample. The Analyzer leverages off-the-
shelf SAT technology to perform bounded exhaustive check-
ing using small bounds on the universe of discourse. By
integrating ACL2 with Alloy, Pythia has immediate prac-
tical use: before trying to prove a formula using ACL2,
the user can first check whether there are any small coun-
terexamples using the Alloy Analyzer. For formulas that
have small counterexamples, e.g., formulas often written by
novice users, such an approach can save a lot of frustration.
This leads us to propose making ACL2 more novice-friendly
by adding the option to test each formula on a set of basic
examples before attempting the proof.

Pythia takes the first step towards integrating ACL2 with
the Alloy Analyzer. In addition to automatically finding
counterexamples, we envision other interesting applications
of this collaboration, such as using ACL2 to help Alloy over-
come SAT problems that are infeasible to solve directly. We
hope that in the future, by working together and leverag-
ing each other’s strengths, ACL2 and Alloy could help both
novices and experts achieve results that would be difficult
or even impossible to obtain using either tool only by itself.

7. ACKNOWLEDGMENTS
We are grateful to J Strother Moore for his comments on an
early draft of this paper.

8. REFERENCES
[1] K. Arkoudas, S. Khurshid, D. Marinov, and M. Rinard.

Integrating model checking and theorem proving for
relational reasoning. In Seventh International Seminar

on Relational Methods in Computer Science (RelMiCS
2003), volume 3015 of Lecture Notes in Computer
Science (LNCS), pages 21–33, Malente, Germany, May
2003.

[2] D. Jackson. Software Abstractions: Logic, Language,
and Analysis. The MIT Press, Cambridge, MA, 2006.

[3] D. Jackson, I. Scheckter, and I. Shlyakhter. Alcoa: The
Alloy constraint analyzer. In Proceedings of the 22nd
International Conference on Software Engineering,
pages 730–3, Limerick, Ireland, June 2000.

[4] M. Kaufmann, P. Manolios, and J. S. Moore.
Computer-Aided Reasoning: An Approach. Kluwer
Academic Publishers, June 2000.

[5] M. Kaufmann and J. S. Moore. Some key research
problems in automated theorem proving for hardware
and software verification. In RACSAM, volume 98(1),
pages 181–195. Spanish Royal Academy of Science,
2004.

[6] S. Khurshid, D. Marinov, and D. Jackson. An
analyzable annotation language. In OOPSLA ’02:
Proceedings of the 17th ACM SIGPLAN conference on
Object-oriented programming, systems, languages, and
applications, pages 231–245, 2002.

[7] E. Reeber and W. A. H. Jr. A SAT-based decision
procedure for the subclass of unrollable list formulas in
ACL2 (SULFA). In Automated Reasoning, Third
International Joint Conference, Aug. 2006.

[8] R. Sumners. Checking ACL2 theorems via SAT
checking. In Third International Workshop on the
ACL2 Theorem Prover and Its Applications, Feb. 2002.

