Backtracking and Induction in ACL2 ~

John Erickson
University of Texas at Austin

jderick@cs.utexas.edu

ABSTRACT

This paper presents an extension to ACL2 that allows back-
tracking to occur when a proof fails. Using this extension,
two techniques are implemented for proving theorems. The
first of these allows ACL2 to find alternate substitutions for
unmeasured variables during induction. The second allows
ACL2 to try alternate generalizations when one fails. These
techniques combine to allow ACL2 to prove theorems that
it could not prove before.

1. INTRODUCTION

Often, ACL2[6] has to choose between several promising al-
ternatives during the course of a proof. For example, a
given theorem may suggest three possible induction schemes.
ACL2 will choose one and proceed. However, if the proof
fails, ACL2 has no mechanism for returning to the point at
which the choice was made and attempting an alternate in-
duction. In this paper, we describe an extension to ACL2
that allows such backtracking to occur. This extension en-
ables us to experiment with many new theorem proving
heuristics.

We describe two such heuristics and show how they can be
used to automatically prove theorems that ACL2 could not
prove automatically before. The first of these is an induc-
tion variable matching algorithm that allows ACL2 to au-
tomatically generate new induction schemes for theorems
about functions with unmeasured variables. This algorithm
in based on a paper by Kapur and Subramaniam [5] and al-
lows ACL2 to prove theorems such as (equal (rot (len x)
(append x y)) (append y x)), where an induction scheme
must be discovered that substitutes (append y (list (car
x))) for y, when no such scheme is suggested by the func-
tions involved.

The second heuristic is related to cross fertilization. There

*This work supported by DARPA CyberTrust project num-
ber 0429591

are times when ACL2 will choose to cross fertilize and gener-
alize when it would be better to skip cross fertilization and
generalize directly. With our extension, both possibilities
can be tried.

2. INDUCTION VARIABLE MATCHING

In ACL2, when an induction scheme contains unmeasured
variables, the scheme can be modified to yield any substi-
tution for those variables. Since only unmeasured variables
are modified, the measure will be unchanged, and the scheme
will remain sound.

Although this allows a great deal of flexibility in choosing an
induction scheme, it can be difficult to find the right substi-
tutions for a given variable. The technique we use is based
on a paper by Kapur and Subramaniam [5]. The main idea
is to replace the unmeasured variables with new constrained
functions in the induction hypothesis, and then attempt to
find definitions for them by attempting to match the induc-
tion conclusion (“IC”) and the induction hypothesis (“IH”)
after simplification. Differences are eliminated by removing
recursive functions using case splits. After definitions are
found for the constrained functions, they are substituted
back into the original induction step. If any differences re-
main, lemmas are speculated to remove them.

For an example of when induction variable matching can be
helpful, consider the theorem®

(implies (and (true-listp x) (true-listp y))
(equal (rot2 x (append x y))
(append y x)))

where rot is defined as:

(defun rot (n x)
(if (zp n)
X
(rot (1- n) (append (cdr x) (list (car x))))))

ACL2 will attempt to induct on (cdr x), leaving y un-
changed. This gives

Here we show the full theorem with true-listp hypotheses.
In the rest of the paper, we will present this example as
if these hypotheses were not needed. However, our system
must track these in order to correctly prove this theorem
and does so.



(equal
(rot (len (cdr x)) (append (cdr x) y))
(append y (cdr x)))

for the induction hypothesis. After stepping and simplifying
the induction conclusion, we get:

(equal
(rot (len (cdr x))

(append (append (cdr x) y) (list (car x))))
(append y x))

The IH,

(equal
(rot (len (cdr x)) (append (cdr x) y))
(append y (cdr x)))

cannot be applied. But note that if in this IH we further
replaced y with (append y (list (car x))) and we knew
that append was associative, the new IH would apply and
finish the proof. The challenge is finding this instantiation
of y.

To do this, we start by replacing y with the constrained func-
tion (F x y) in the induction hypothesis to get the following
induction hypothesis:

(equal
(rot (len (cdr x)) (append (cdr x) (F x y)))
(append (F x y) (cdr x)))

Attempting to match the LHS of the IH and simplified IC
reveals the following differences:

IH (append (cdr x) (F x y))
IC (append (append (cdr x) y) (list (car x)))

We try to match these by assuming the base case for the in-
ner most append, namely (endp (cdr x)), and simplifying.
This gives us:

IH (F x y)
IC (append y (list (car x)))

which gives us a definition for F. Since this definition was
generated using a special case, we substitute it back into
the constrained IH,

(equal
(rot (len (cdr x))

(append (cdr x) (append y (list (car x)))))
(append (append y (list (car x))) (cdr x)))

and then compare this to the simplified IC,

(equal
(rot (len (cdr x))

(append (append (cdr x) y) (list (car x))))
(append y x))

to see what differences remain.

On the LHS, this gives us:

IH (append (cdr x) (append y (list (car x))))
IC (append (append (cdr x) y) (list (car x)))

On the LHS, this difference can be proved as a lemma. If
we also generalize by replacing common subterms with new
variables, we obtain the associativity of append:

(equal (append (append x y) z) (append x (append y z)))

On the RHS, we have these differences:

IH (append (append y (list (car x))) (cdr x))
IC (append y x)

This lemma is a special case of associativity, and can be
recognized as redundant.

3. MULTIPLE GENERALIZATIONS

It is well known that many theorems must be generalized
before they can be proved. For example, (equal (revl
x nil) (rv x)) is typically generalized to (equal (revl x
a) (append (rv x) a)). Although ACL2 already has the
capability to generalize theorems, often it will choose a bad
generalization. If this happens, ACL2 will not try another
generalization; it will simply fail. Our extension allows al-
ternate generalizations to be attempted.

The system generates two alternatives during every induc-
tion. First, it will try to cross fertilize and then generalize
any remaining goals before another induction. If that fails,
it will throw away the IH and generalize the remaining goals
without cross fertilization. Below we give several examples
of when this alternate generalization will succeed.

3.1 Reverse Example
As an example, consider the theorem (equal (rvl x nil)
(rv %)), where rv and rv1l are defined as:

(defun rv (x)
(if (endp x)
nil
(append (rv (cdr x)) (list (car x)))))

(defun rvl (x a)
(if (endp x)
a
(rvl (cdr x) (cons (car x) a))))



ACL2 will induct on (cdr x) to prove this theorem. After
simplification and destructor elimination, the induction step
will be:

(implies (equal (rvl x2 nil) (rv x2))
(equal (rvl x2 (list x1))
(append (rv x2) (list x1))))

ACL2’s normal behavior is to cross fertilize after this step,
yielding:

(equal (rvl x2 (list x1))
(append (rvl x2 nil) (list x1)))

Cross fertilization has reintroduced the constant nil into the
accumulator of rvi. This will make proving the above goal
difficult. If instead, we throw away the IH and generalize by
replacing (list x1) with x3, we get:

(equal (rvl x2 x3)
(append (rv x2) x3))

which can be proved by ACL2.

3.2 Rotate Example

Consider the theorem (equal (rot (len x) x) x). After
simplification and destructor elimination, the induction step
will be:

(implies
(and (equal (rot (len x2) x2) x2)
(true-listp x2))
(equal (rot (len x2) (append x2 (list x1)))
(cons x1 x2)))

after cross fertilization, we get:

(implies

(true-listp x2)

(equal (rot (len x2) (append x2 (list x1)))
(cons x1 (rot (len x2) x2))))

which ACL2 further generalizes to the non-theorem:

(implies (and (integerp i)
(<= 0 i)
(true-listp x2))
(equal (rot i (append x2 (list x1)))
(cons x1 (rot i x2))))

If instead, we skip cross fertilization and throw away the
induction hypothesis, we get:

(defthm car-ap-cons
(equal (car (append (cons a b) c))
a))

(defthm cdr-ap-cons
(equal (cdr (append (cons a nil) c))
c))

(defthm append-cons
(consp (binary-append (cons x3 nil) z))
:rule-classes :type-prescription)

(defthm cons-ap
(implies (syntaxp (not (equal x ’’nil)))
(equal (cons a x)
(append (cons a nil) x))))

Figure 1: cons to append normalization rules

(implies

(true-listp x2)

(equal (rot (len x2) (append x2 (list x1)))
(cons x1 x2)))

In this case, there are no common subterms across the equal-
ity, so generalization fails. However, notice that the element
x1 occurs at the end of the list in the accumulator on the
LHS and at the beginning of the list on the RHS. If we
use the rules in Figure 1 to normalize lists, the goal above
becomes:

(implies

(true-listp x2)

(equal (rot (len x2) (append x2 (list x1)))
(append (list x1) x2)))

Now we can generalize, because the term (1ist x1) appears
on both sides. This gives

(implies (true-listp x2)
(equal (rot (len x2) (append x2 x3))
(append x3 x2)))

This theorem we proved earlier using unmeasured variable
matching.

4. IMPLEMENTATION

Our implementation uses ACL2’s simplification and gener-
alization routines along with our own version of induction.
Our induction routines replace unmeasured variables in the
induction hypothesis with constrained functions for which
we will later find definitions. Instead of using ACL2’s top
level prover, we have our own control flow that allows induc-
tion to be entered and exited recursively. Below we present
pseudocode for our implementation. The top level func-
tion, shown in Figure 2 below, is called bprove. It takes a
term and attempts to prove it, returning either SUCCESS
or FAILURE.



bool bprove(term x)

{
1 := bash(x)

for each permutation p of 1
success := prove-perm(p)
if success

return SUCCESS
else
continue

return FAILURE
}

Figure 2: The top level function for the backtracking prover.

// 1 is a list of clauses
bool prove-perm(list 1)
{
while 1 is non-empty
c, 1 := remove-clause(l)
if there are any constrained functions in c
c, success, bind := remove-constraints(c)
if !success
return FAILURE
1 := apply-subst(bind, 1)

refuted := refute(c)
if refuted
return FAILURE

success := binduct(c)
if !success
c := generalize(c)
success := binduct(c)
if !success
return FAILURE

return SUCCESS
}

Figure 3: Prove a list of clauses



(clause, bool, list) remove-constraints(clause c, list bind)
{
for each literal 1 in c
if 1 is of the form (not (equal lhs rhs)), attempt
to match each side of the equality against all subterms of the
other literals in the clause, replacing lhs[rhs] with rhs[1lhs]
wherever applicable

if an equality successfully matches, remove it from the clause and
call remove-constraints again on the remaining literals, along
with any bindings aquired during the match

if 1 is of the form (not 1’), attempt to match 1’
against the other literals in the clause

if the match is successful, then we have found two literals that
are negations of each other. We return SUCCESS along with the
substitutions returned from match and the empty clause.

if any constrained functions remain, return FAILURE
else return SUCCESS along with the modified clause and any bindings
}

Figure 4: Remove constraints

// returns a list of bindings for any constrained functions if
// successful
(bool, list) match(term a, term b)
{
if neither a nor b contain any constraints
call bprove on ‘‘a = b’’

if a contains no constraints
switch a and b

if the top symbol of a is a constrained function
bind the constrained function to b and return SUCCESS

if a and b have the same top symbol, decompose them and attempt to
match corresponding subterms

if that fails, let h be the simplifying assumptions attained by
assuming the base case for the innermost recursive function in a,
and return match(a’, b’), where a’ and b’ are simplifications of a
and b under hypotheses h

Figure 5: Match two terms modulo constrained functions



Our prover starts with a call into the simplifier using the
bash book developed by Matt Kaufmann. This simplifier
returns a list of clauses. We must prove all clauses in order
to prove our goal theorem. Since there may be constrained
functions in the clauses that will be bound to concrete func-
tions as we proceed, the order that we prove the clauses is
important. This is because, while proving a clause, we may
discover bindings for constrained functions in that clause.
These bindings will be used to remove any instances of the
same constrained function in later clauses. Furthermore,
different clauses may find differing bindings for the same
constrained function. Therefore, it is necessary to try to
prove all permutations of a given clause list. Figure 3 shows
the pseudocode for the function prove-perm, which is used
to prove such a permutation. For performance reasons, our
implementation does not actually compute the entire set of
permutations at once. Instead, we generate one at a time.
This allows us to avoid unnecessary work if we find a proof
early.

For each clause, we first remove any constraints. Any bind-
ings acquired by removing constraints are applied to the
remaining clauses. Next, we attempt to refute the clause,
by generating a number of finite cases of the theorem and
sending them through the simplifier. If no counterexamples
were found, we induct with cross fertilization and generaliza-
tion. If that fails, we throw away any induction hypothesis
and generalize before attempting a second induction. These
calls to binduct use our own induction mechanism so that
we can annotate the induction hypothesis with constrained
functions if there are any unmeasured induction variables.
The goals generated by this induction are then fed back into
our prover via the function bprove. The proof search ter-
minates because it is bounded by a maximum number of
nested inductions. This limit is usually set to 3 but can be
set to any number.

4.1 Removing Constraints

Removing constraints is done using the function remove-
constraints from Figure 4. In order to satisfy the constraints
for a given clause, we visit all pairs of literals in the clause.
For a given pair, if one literal is negated and the other is not,
we attempt to match them. Also, if one is a negated equality,
we will attempt to match the lhs[rhs] or the equality against
all subterms of the other. If the match is successful, we
substitute terms using the equality, remove the equality from
the clause, and then attempt to prove the clause without the
equality.

There are two techniques we use to match two terms, as
shown in Figure 5. First, if two terms have the same top
function symbol, we will decompose the terms and attempt
to match their subterms. Second, if two terms do not share
the same top symbol, we will simplify the terms by assuming
the base case of the inner most recursive call in the first
term. By repeating these two procedures, we guarantee that
eventually all recursive functions will be removed from the
first term. In such a case, one way unification can be used to
determine if a definition has been found for any constrained
functions remaining. Subterms that contain no constrained
functions will be sent back to the prover to determine if they
are equal.

4.2 Refuting Conjectures

Matching creates many subgoals that are easily disproved.
We use a simple technique to refute such goals that can
deal with most ACL2 formulas. Doing so avoids sending the
prover down many dead end paths. For formulas where no
recursive functions are present, we send the formula through
the simplifier. If the simplifier fails to prove the formula,
we assume the formula false. For functions with recursive
calls, we find any recursive function call in the formula and
open it up, creating a number of new formulas with a case
split. We then recur on these formulas. In theory, because
these functions must terminate, for any invalid conjecture
there exists a finite depth at which this procedure will find
a refutation. However, we limit the depth of the search,
typically to a maximum of five nested case splits. We have
found this technique to be effective for eliminating obviously
false conjectures.

S. RELATED WORK

Rippling [2] and proof planning [1] are two of the more well
known techniques for automating induction. Other more
recent techniques for automatically proving theorems by in-
duction include higher order rippling with proof critics [3]
and cover sets with decision procedures [4].

6. CONCLUSIONS

ACL2 has powerful heuristics which can often prove theo-
rems automatically. However, there are times when several
reasonable alternatives exist. Allowing ACL2 to try more
than one alternative and backtrack in the case of failure
results in more theorems proved. We presented two such
scenarios. First, when an induction scheme contains un-
measured variables, there may be many different viable sub-
stitutions for those variables. Second, after induction, it
may sometimes be useful to throw away the induction hy-
pothesis and generalize before continuing. Our implemen-
tation allows the possibility of extending ACL2 with even
more search capabilities. As computers become faster, es-
pecially as multi-core processors become more widespread,
these search capabilities offer the possibility to take advan-
tage of this computing power for the purpose of proving
theorems.

7. REFERENCES

[1] A. Bundy. The use of explicit plans to guide inductive
proofs. In Conference on Automated Deduction, pages
111-120, 1988.

[2] A. Bundy, A. Stevens, F. van Harmelen, A. Ireland, and
A. Smaill. Rippling: A heuristic for guiding inductive
proofs. Artificial Intelligence, 62(2):185-253, 1993.

[3] L. Dixon and J. D. Fleuriot. Higher order rippling in
IsaPlanner. In Theorem Proving in Higher Order
Logics, volume 3223 of LNCS, pages 83-98, 2004.

[4] D. Kapur. Rewriting, decision procedures and lemma
speculation for automated hardware verification. In
Theorem Proving in Higher Order Logics, pages
171-182, 1997.

[5] D. Kapur and M. Subramaniam. Lemma discovery in
automating induction. Lecture Notes in Computer
Science, 1104:538—77, 1996.

[6] M. Kaufmann, P. Manolios, and J. S. Moore.
Computer-Aided Reasoning: An Approach. Kluwer



Academic Publishers, 2000.



