
The While-language Challenge: First Progress

John Cowles
Department of Computer

Science
University of Wyoming

Laramie, Wyoming

cowles@cs.uwyo.edu

David Greve
Advanced Technology Center

Rockwell Collins
Cedar Rapids, Iowa

dagreve@rockwellcollins.com

William Young
Department of Computer

Science
University of Texas

Austin, Texas
byoung@cs.utexas.edu

ABSTRACT
Prior work by Manolios and Moore[2] showed that it is pos-
sible to introduce a certain class of “partial functions” in
ACL2 with a mechanism called defpun. However, this class
is syntactically very restrictive—the most interesting are
functions with defining equations that syntactically match
a tail recursive schema. We describe progress toward intro-
ducing into ACL2 a certain partial function not amenable to
modeling with defpun. This function provides an interpreter
semantics for a simple imperative language containing while

loops. We believe that solving this challenge points the way
toward useful extensions of the ACL2 defpun facility and
may facilitate reasoning within ACL2 about a large class of
useful functions, including interpreters for some expressive
formal languages not easily modeled in ACL2 currently.

1. THE WHILE LANGUAGE CHALLENGE
As a prelude to some work on information flow analysis,

we attempted to model in ACL2 the semantics of the fol-
lowing simple imperative language, described in [5].

cmd ::= x := e |
skip |
if e then c1 else c2 |
while e do c |
c1; c2

Assume that we wish an operational semantics for this lan-
guage. That is, we’d like to define an ACL2 function (run

stmt mem), where stmt is a statement (command) in the
language and mem is the memory/state on which the state-
ment operates. Finally, assume that a while statement in
our formalism has the form (while test body).

The most “natural” operational semantics for this lan-
guage might include a clause for a while statement similar
to the following:

(if (zerop (evaluate test mem))

.

mem

(run (while test body)

(run body mem)))

But since this is potentially non-terminating, such a function
“definition” does not satisfy the ACL2 definitional principle.

The traditional work-around in ACL2 is to model the se-
mantics using a clock argument to the interpreter function.
That is, we define a function (run-clock stmt mem clk),
where the additional argument clk decreases in each prob-
lematic recursive call.1 Typically, run-clock will return two
values, the updated state and a boolean indicating whether
the function call completed or “timed out.”

The meta-level justification for this approach is as fol-
lows: Assuming the function terminates, it is always possi-
ble to supply a large enough clock value for the execution
to complete. If the function does not terminate, then no
such value suffices; this possibility must be acknowledged
in our reasoning about the semantics. The clock approach
is straightforward, but complicates the semantics and the
process of reasoning about programs in the language.

Manolios and Moore[2] developed a technique for admit-
ting some “partial functions” into the ACL2 logic of total
functions. This involves showing that there exists a witness
for a defining equation whenever it has the syntactic form
of a tail recursive function definition. They prove the re-
sult in general for a nest of uninterpreted function symbols.
This proof can then be applied to any specific tail recursive
equation through functional instantiation[1].

In a number of useful cases, their approach obviates the
need for a clock argument and yields a more elegant and nat-
ural definition than the corresponding clock-based function.
The technique of Manolios and Moore is implemented in the
defpun macro in a book within the standard ACL2 distribu-
tion. This approach has been extended by Matt Kaufmann
to allow single-threaded objects. It has been used, for ex-
ample, in the compositional cutpoint work of Moore[3].
Defpun is not directly applicable to the run function for

our simple language because our function is not tail recur-
sive. However, one of us (Young) wondered if some modi-
fication or extension of defpun could be used to admit the
run function within ACL2, and submitted that challenge to
the ACL2 listserv.

In a nutshell, the challenge is as follows: Construct an
ACL2 function (necessarily total) that satisfies the following

1It need not decrease in all recursive calls. In most cases,
the “size” of the other arguments decreases, allowing a lex-
icographic ordering using the clock and the sizes of other
arguments together to provide the measure.



definitional equation.2

(equal

(run stmt mem)

(case (op stmt)

(skip (run-skip stmt mem))

(assign (run-assignment stmt mem))

(if (if (zerop (evaluate (arg1 stmt)

mem))

(run (arg3 stmt) mem)

(run (arg2 stmt) mem)))

(while (if (zerop (evaluate (arg1 stmt)

mem))

mem

(run stmt

(run (arg2 stmt)

mem))))

(sequence (run (arg2 stmt)

(run (arg1 stmt) mem)))

(otherwise mem)))

Matt Kaufmann posed an additional challenge: extend the
defpun macro to allow ACL2 to admit a more general class of
partial functions, including our challenge function. We view
progress on solving Young’s challenge as a useful step in the
direction of answering Kaufmann’s challenge. Solving this
motivating example may point the way to a general solution.

Suggestions toward a potential solution to the two chal-
lenges were offered by John Cowles, Dave Greve, Matt Kauf-
mann, John Matthews and Sandip Ray. Kaufmann, Ray,
and Matthews outlined a possible solution. They proposed
using a clock parameter to ensure termination and accep-
tance by ACL2. They suggested that the clock then be
eliminated using defchoose or defun-sk. This is similar
to what was implemented by Manolios and Moore in the
defpun macro. Both Matthews and Kaufmann additionally
suggested the need for a special value, say BTM, such that
(equal (run stmt BTM) BTM). This special value is concep-
tually what is “returned” in the non-terminating case.

John Cowles and Dave Greve independently developed so-
lutions to slightly modified forms of the original challenge.
This paper outlines the solutions of Greve (the “Rockwell
Solution”) and Cowles (the “Wyoming Solution”), and ex-
plores what needs to be done to carry out Kaufmann’s chal-
lenge for extending defpun. We also address the question
whether a BTM value is necessary.

2. THE ROCKWELL SOLUTION
Dave Greve of Rockwell submitted a possible solution to

the challenge problem. Using an extension of the defpun

library called defminterm, Greve proved the following ver-
sion of the desired theorem under the assumption that run

terminates:

(equal

(run stmt mem)

(if (run_terminates stmt mem)

(case (op stmt)

* * *

2Since only the while clause is problematic, it suffices to
solve the challenge for an even simpler language eliminating,
say, the clauses for assign, if and sequence.

(while

(if (zerop (evaluate (arg1 stmt) mem))

mem

(run stmt

(run (arg2 stmt) mem))))

* * *

(otherwise mem))

mem))

2.1 Infrastructure
Any tail recursive function definition can be expressed in

the following form.

(equal (foo x)

(if (exit x)

(base x)

(foo (step x))))

Using defpun, we can define a partial Boolean function that
characterizes exactly what it means for such a recursive func-
tion to terminate by simply mimicking the recursive pattern
and replacing the base case with the recursive guard.

(defpun foo-terminates (x)

(if (exit x)

(exit x)

(foo-terminates (step x))))

This simple technique enables us to define a termination
predicate based only on the structure of the function spec-
ification and without knowledge of the actual computation
being performed.

From the tail recursive function specification a tail recur-
sive partial measure can be generated automatically.

(defpun foo-measure-tail (x n)

(if (exit x)

n

(foo-measure-tail (step x) (1+ n))))

(defun foo-measure (x)

(foo-measure-tail x 0))

The desired characterization of the measure function is:

(equal (foo-measure x)

(if (exit x)

0

(1+ (foo-measure (step x)))))

But proving this requires that we first prove:

(equal (foo-measure-tail x (1+ n))

(1+ (foo-measure-tail x n)))

This looks like the sort of theorem that could be easily
proven by induction. However, foo-measure-tail does not
suggest an induction scheme. In fact, this theorem is true
only if the foo recursion terminates. It is termination that
enables us to commute tail-recursive functions with other
commutative operations such as addition.

Assuming foo-terminates makes it possible to prove the
following property of foo-measure:

(defthm foo-measure-property

(implies



(foo-terminates x)

(equal (foo-measure x)

(if (exit x)

0

(1+ (foo-measure (step x)))))))

Note that the proof of this property must appeal to the
clocked implementations of foo-terminates and foo-meas-

ure-tail underlying defpun. Consequently it is easier to
prove if both functions are defined in tandem rather than
sequentially as we have done here for illustration.

Given foo-measure it is possible to define an induction
scheme that matches the foo recursion:

(defun foo-induction (x)

(declare (xargs :measure (foo-measure x)))

(if (foo-terminates x)

(if (exit x)

(base x)

(foo-induction (step x)))

x))

Using this scheme it is possible to perform inductive proofs
about foo assuming foo-terminates.

The defminterm macro extends the principles behind def-

pun to provide, not only a function witness for the given
specification, but also a termination predicate, a measure,
and an induction scheme for the recursion as described above.
However the defminterm macro still shares the defpun re-
striction that the function be presented in a tail-recursive
form. These extended capabilities were central to the Rock-
well solution of the challenge problem.

2.2 The Rockwell Approach
The first step in the Rockwell solution was to craft a tail

recursive implementation of run. The tail recursive version
of run used in the Rockwell solution, run-stk, employs a
stack argument to implement the reflexion inherent in run.
defminterm is used to characterize this implementation and
to produce a termination predicate.

(defminterm run-stk (stmt mem stk)

(if (and (exit stmt mem)

(not (consp stk)))

(base stmt mem)

(if (exit stmt mem)

(let ((mem (base stmt mem)))

(run-stk (car stk) mem (cdr stk)))

(case (op stmt)

* * *

(while (run-stk (arg2 stmt)

mem

(cons stmt

stk)))

* * *

))))

The second step was to prove that this implementation
satisfied the original specification. The proof involved in-
duction over run-stk. It also required the property that
operations pushed on the stack commuted with run-stk,
the proof of which required an assumption of termination.
Both of these capabilities were enabled by defminterm.

2.3 Execution
The defminterm library can be used to produce executable

function bodies in a manner analogous to that of defpun.
The executable body in this case, however, employs the tail
recursive run-stk, not the final reflexive specification. It
seems unlikely that a reflexive version of the specification
can be made executable due to the need to assume termina-
tion (run-terminates is not executable).

2.4 Further Extending defpun
Any computable function that can be expressed in the

ACL2 logic has a tail recursive implementation. We have
shown that, for any tail recursive implementation, we can
construct a predicate to express what we mean by termina-
tion. Assuming termination, it is possible to define a partial
measure for the tail recursive function and to prove that the
tail recursive implementation is equal to the original func-
tion specification. Consequently, it should be possible to
admit any function computable in ACL2 under the assump-
tion that it terminates.

The Rockwell proposal is to extend defpun by transform-
ing the user provided functional specification into a tail re-
cursive implementation and then prove that the implemen-
tation satisfies the original function specification assuming
that the function terminates. Techniques for transform-
ing functions into tail recursive implementations are well
known[6]. The primary challenge in this approach will be in
generating the proof that the tail recursive implementation
satisfies the specification.

In the supporting materials we illustrate the above tech-
nique for run using run-stk as an implementation. We hope
to be able to identify and codify a general methodology that
will enable such derivations and proofs to be performed au-
tomatically for any user provided specification.

3. THE WYOMING SOLUTION
The outline of Kaufmann, Ray, and Matthews, presented

above, using a “clock” parameter to limit some resource, is
followed. The limited resource is the maximum number of
times that the result of a while-test causes that while-body
to be entered.

An interpreter, run-limit, acceptable to ACL2, is pro-
vided. The inputs, in the call

(run-limit stmt mem limit),

are a statement of the while-language, stmt; the initial state
of the memory, mem; and the maximum number of while-
test evaluations causing a while-body to be entered, limit.
When run-limit terminates, multiple values,

(mv new-mem new-limit)

are returned. Here new-mem is the memory at termination of
run-limit and new-limit is the number of while-test tries
remaining.

A value of new-mem equal to nil indicates that execution
of stmt did not terminate with the given limit. It turns
out that this use of nil forces it to behave like the special
value BTM discussed above.
Defchoose provides a function, choose-limit:

(defchoose

choose-limit limit (stmt mem)



(not (equal (mv-nth 0

(run-limit stmt

mem

limit))

nil)))

For any while-language statement, stmt, and any memory,
mem, if there is any value of limit such that first value re-
turned by

(run-limit stmt mem limit)

is not nil, then (choose-limit stmt mem) is also such a
value of limit. That is, whenever the first value returned
by (run-limit stmt mem limit) is not nil, then the first
value returned by

(run-limit stmt mem (choose-limit stmt mem))

also is not nil. Otherwise, if the first value returned by

(run-limit stmt mem limit)

is nil for every value of limit, then the only thing known
about the value of (choose-limit stmt mem) is that the
first value returned by

(run-limit stmt mem (choose-limit stmt mem))

is nil.
Since choose-limit is introduced using defchoose, it is

not an executable function. In fact, choose-limit is not
computable, because if it were, it would solve the halting
problem for the while-language.

An interpreter, run, is defined in terms of the interpreter
run-limit and the choice function choose-limit:

(run stmt mem)

returns the first value returned by

(run-limit stmt

mem

(nfix (choose-limit stmt mem))).

Then ACL2 can prove that run satisfies

(equal

(run stmt mem)

(if (null mem)

nil

(case (op stmt)

(skip (run-skip stmt mem))

* * *

(sequence (run (arg2 stmt)

(run (arg1 stmt)

mem)))

(otherwise mem))))

Note that this is not the exact equation specified in the
challenge.

3.1 The need for a special value
Both Matthews and Kaufmann suggest the need for a spe-

cial value, BTM, such that

(equal (run stmt BTM) BTM).

The interpreter run, described in this section, treats nil as
such a special value, so (equal (run stmt nil) nil).

Dave Greve’s solution shows that no such special value is
required whenever run terminates. The following indicates
that such a special value might be needed when run does
not terminates:

Suppose the function application

(run stmt mem)

returns mem (instead of nil) when stmt does not terminate
when the initial state is given by mem. For a while statement,
we want (run stmt mem) to satisfy

(*) (if (zerop (evaluate (arg1 stmt) mem))

mem

(run stmt (run (arg2 stmt) mem))))

Now suppose (run stmt mem) does not terminate, but

(run (arg2 stmt) mem)

does terminate (i.e. the loop body terminates). Suppose
further that

(run (arg2 stmt) mem)

does not equal mem (i.e. the body modifies mem).
Since (run stmt mem) does not terminate, but

(run (arg2 stmt) mem)

does terminate, then

(run stmt (run (arg2 stmt) mem))

also must not terminate. Then

(run stmt mem)

equals mem but

(run stmt (run (arg2 stmt) mem))

equals (run (arg2 stmt) mem). Then

(run stmt mem)

does not equal

(run stmt (run (arg2 stmt) mem)),

contrary to (*).
A similar problem exists when sequence statements do not

terminate (i.e. when the sequence statement does not termi-
nate, but the first argument of the statement does terminate
and modifies mem).

3.2 Executability
There is nothing to prevent the clock version of the inter-

preter (the function run-limit in the “Wyoming Solution”)
from being an executable function. However, it is undecid-
able what value of the clock parameter will be large enough
for any given terminating call. Answering that question is
equivalent to solving the halting problem.

The corresponding version of run is not executable, nor
even computable. Sandip Ray has suggested that we could
obtain fast executability using ACL2’s :mbe (must be equal)
facility to show that run is equivalent to an executable ver-
sion. However, it seems doubtful that there is an executable
function in the ACL2 world equivalent to run. This needs
additional study.



3.3 Extending defpun
As a response to Young’s initial challenge, Matt Kauf-

mann issued the additional challenge: Extend or modify
defpun to allow for function definitions of the following form:

(defun f (... st ...)

(if (equal st BTM)

BTM

<body>))

where in <body>, every recursive call of f is at the top level
except perhaps for calls of f in the st position of a superior
call of f. Notice that for the recursive calls of run shown
above,

(run stmt

(run (arg2 stmt) mem)),

this condition is met—provided we add the initial

(if (equal mem nil) nil ...)

code to the definition of run. Thus, the solution of Kauf-
mann’s challenge would provide a mechanical way to solve
our original problem. Conversely, solving the original chal-
lenge has given us valuable insight into how to solve this
more general problem.

4. LATER PROGRESS
Sandip Ray, in generalizing the Wyoming solution, has

shown [4] that there is a function run acceptable to ACL2
that satisfies

(equal

(run x st)

(cond ((equal st (btm)) (btm))

((test1 x st) (finish x st))

((test2 x st)

(run (dst1 x st) (stp x st)))

(t (let ((st2 (run (dst1 x st)

(stp x st))))

(run (dst2 x st st2) st2)))))

where btm, test1, test2, finish dst1, dst2, and stp are
encapsulated functions with the following constraint

(implies (not (equal st (btm)))

(not (equal (finish x st) (btm))))

It is not difficult to see that the equation for the language
semantics is a special case of this equation.

Ray has also made progress towards implementing a macro
for defining operational semantics for languages containing
while loops.

5. CONCLUSIONS
Two proposed solutions to the while language challenge

are described. We hope these solutions point the way toward
useful extensions of the ACL2 defpun facility that may facil-
itate reasoning within ACL2 about a large class of functions,
including interpreters for some expressive formal languages
not now easily modeled in ACL2.

6. REFERENCES
[1] R. S. Boyer, D. M. Goldschlag, M. Kaufmann, and J S.

Moore. Functional instantiation in first-order logic. In
V. Lifschitz, editor, Artificial Intelligence and
Mathematical Theory of Computation: Papers in Honor
of John McCarthy, pages 7–26, Academic Press, 1991.

[2] P. Manolios and J Moore. Partial functions in ACL2. In
M. Kaufmann and J S. Moore, editors, 2000 ACL2
Workshop, October 30-31, 2000, University of Austin at
Texas.

[3] J S. Moore. Inductive assertions and operational
semantics. In CHARME 2003, LNCS 2860, pages
289–303. Springer-Verlag, 2003.

[4] S. Ray. A generalized solution for the while challenge.
Announcement at ACL2 Workshop 2007 (this
workshop).

[5] G. Smith. Principles of secure information flow
analysis. In M. Christodorescu, S. Jha, D. Maughan,
D. Song, and C. Wang, editors, Malware Detection,
pages 291–307. Springer-Verlag, 2007.

[6] M. Wand. Continuation-Based Program
Transformation Strategies. Journal of the ACM,
volume 27, number 1 pages 164–180, January 1980.


