
Building Lemmas Using Examples

Gabriel Infante-Lopez
Universidad Nacional de Córdoba

Consejo Nacional de Investigaciones Científicas y Técnicas
Córdoba, Argentina

gabriel@famaf.unc.edu.ar

ABSTRACT
We present a heuristic for automated lemma discovery that
generates lemmas that might help ACL2 in proving theo-
rems like ∀x : t1(x) = t2(x). This heuristic exploits man-
ually created examples of x. These examples are used to
produce ground terms t′1 and t′2, for which semantical mod-
els are built. In order to generate useful intermediate lem-
mas, we search for a specific pattern in these two mod-
els. The lemmas suggested by our heuristic are of the form
∀x : h(g1(x)) = h(f1(x)). A lemma is suggested if and only
if t′1 and t′2 can be rewritten as terms containing subterms
h(g1(a)) and h(f1(a)) respectively, such that h(g1(a)) =
h(f1(a)) but g1(a) 6= f1(a). We explain how to search for
these patterns and how to build lemmas from a collection of
ground equalities.

Categories and Subject Descriptors
I.2 [Artificial Intelligence]: Deduction and Theorem Prov-
ing

General Terms
Algorithms, Theory

Keywords
automated theorem proving, lemma discovery, program syn-
thesis

1. INTRODUCTION
The ACL2 theorem prover can easily prove that two func-
tions f(x) and g(x) compute the same result for a particu-
lar value a: It compares the results of evaluating f(a) and
g(a). In contrast, showing that both functions compute the
same value for all possible values of x is a completely dif-
ferent task. For this purpose, ACL2 may need intermediate
lemmas. The need for such intermediate lemmas is one of
the main reasons for user interaction/guidance while ACL2
is attempting to prove something. Various strategies have
been developed for building intermediate lemmas, e.g., [1,

2]. Most of them have in common that they use symbolic
strategies that are mainly based upon rewriting systems, but
none take into consideration how terms are effectively re-
duced or computed. In other words, none of them compares
the process that makes f(x) equal to g(x). This is because,
in principle, it is not possible to observe the computations
of f(x) and g(x) as both terms have free variables.

In order to elaborate a strategy based on observation of com-
putational models for suggesting lemmas, two main steps
have to be fulfilled. First, we need to define the nature of
the object that codifies the computation of a term. This
object should represent a kind of semantic model and it is
not necessarily a trace on a semantic machine; we picture it
as an object that keeps track of the intermediate evaluation
of subterms. Since the goal of the approach is to compare
computations that produce the same results but that are
carried out in different ways, we need this semantic object
to be easily computed and compared. It is important to note
that the semantic object that we want to define is not mod-
elling the final result of the computation, instead, its focus
in on the process that produces this final result. Second, we
need to define strategies that construct examples of ground
terms a such that the computation of f(a) and g(a) can
be observed. Ideally, these strategies should suggest those
examples a that best reveal insightful information.

In this paper we present work in progress focused on the
first step. We introduce a semantic model, called evalua-

tion graphs, that models ground terms expressed in lisp.
An evaluation graph contains all possible ways to expand
function calls together with all possible partial evaluations
of all possible subterms. All subterms are evaluated in a lisp
interpreter and their evaluation values are used to compare
evaluation graphs coming from terms that are believed to
compute the same value in different ways. The comparison
of the two graphs generates lemmas that might help to deter-
mine the equivalence of the two terms. In terms of rewriting
systems, our approach can be summarized as follows. We
present a lemma discovery heuristic that generates lemmas
by comparing the computational model of two closed terms
f(a) and g(a). The heuristic rewrites f and g into two terms
f ′ and g′ that share the same set of functions. Then, it com-
pares the two terms searching for subterms h(f1(ai)) in f ′

and h(g1(ai)) in g′ such that h(f1(ai)) and h(g1(ai)) eval-
uate to the same value but f1(ai) does not evaluate to the
same value as g1(ai). From equalities between ground terms
we generate the lemmas that are suggested to ACL2.

The rest of the paper is organized as follows. Section 2
presents evaluation graphs. Section 3 explains how to use
them for lemma generation. Section 4 shows an example
where we apply our strategy. Finally, Section 5 concludes
the paper and states our plans for future research.

2. COMPUTATIONAL MODEL
Our approach is based on the idea of comparing semantic
models for ground terms. We start by defining what we
understand as semantic models. Given a term t, its com-
putation is modelled by evaluation graphs. An evaluation
graph Gt for a term t is a labelled directed graph that is
built using term t by progressively evaluating parts of t in
a lisp interpreter. Vertices in Gt are called evaluation ver-

tices, and each of them consists of tuples 〈r, e, R〉 where r is
a tree-term, e is the evaluation of r – equivalent to comput-
ing (eval r) (not necessarily simplified) in a lisp interpreter
– and R is a set of ground terms.

Terms are expressed as trees. A term-tree for a term t is
the syntactic tree that corresponds to term t. The tree in
Figure 1 (b) is the tree-term that corresponds to the term
(tail ’(1 2 3)). We use tree-terms and terms indistinguish-
ably in the rest of the paper. We refer to nodes in tree-terms
as nodes, and to nodes in an evaluation graph as vertices.

Gt contains a special vertex, called the root vertex, that
represents the term t and is given by 〈t, e, ∅〉, with e equal
to (eval t), i.e., the value that results from evaluating term
t. Note that this vertex is well defined: since t is a closed
term, (eval t) becomes computable. The set of vertices of
an evaluation graph is constructed progressively by applying
two different operations, namely term extraction and term

expansion, to vertices that have already been constructed.
Initially, the set of vertices contains only the root vertex.
Since every vertex is built from an existing one, it is easy to
show that if a vertex v belongs to the set of vertices, then
there exist intermediate vertices v1, . . . , vn such that v1 is
the root vertex and vj is the result of applying one of the
two operations to vj−1 for all j.

These two operations take two arguments: a vertex 〈t, e,R〉
and a path definition. A path definition is a way to select a
node in a tree-term. Paths are described by possibly empty
sequences of integers. As such, the empty string corresponds
to the root node of a tree while a path x : xs corresponds
to the node indicated by path xs in the x-th subtree of
t. If t is a term, and α is a path, then tα is the subtree
that hangs from the node selected by α. For example, if
t is (if (atom ’(1 2 3)) ’(1 2 3) (tail (cdr ’(1 2 3)))),
its syntactic tree is shown in Figure 1 (d), t2 is the subterm
(tail (cdr ’(1 2 3))) whose tree is picture in Figure 1 (e).

The set of edges of an evaluation graph is used to help with
keeping track of how all vertices were created: if vertex vj

was obtained from vertex vi by applying one of the two oper-
ations, then there is a directed edge from vi to vj . Moreover,
this arc is labelled with both the name of the operation and
the path that was given as an argument.

Both operations construct a new vertex by modifying exist-
ing ones; the operation either expands a function name by
introducing its definitions or extracts a subterm. In what

follows, we define both.

2.1 Function Expansion
The Function-Expansion operation can be defined in terms
of 3 different procedures: The first procedure consists of
inserting the tree that represents the body of a function
definition into a tree term. Formally, let v = 〈t, e, R〉 and α

be, respectively, the tree-term and the path that are given
as arguments. Suppose that α points to a node in t that is
labelled with function name F . Let TF be the tree-term that
represents the body of F . The first step of the operation
creates a new tree-term t′ by replacing tα by TF and by
replacing TF arguments by the corresponding daughters of
tα. For example, Figure 1 (c) represents the body definition
of the function tail. The first step, when applied to the
Figure 1 (b) with the empty paths ǫ as argument, produces
the tree in Figure 1 (d).

The second procedure traverses the tree t′ generated by the
first procedure, in this case looking for nodes that are la-
belled with the if function. For every if-node it encounters,
their conditionals are evaluated and the if-nodes are replaced
by its second or third child depending on the result of the
evaluation of the condition. For example, the tree in Fig-
ure 1 (d) is rewritten as the tree in Figure 1 (e) because the
term (atom ’(1 2 3)) returns nil.

Finally, the third procedure collects a set of equality terms
(terms like (equal a b)). Each of them is defined using the
terms that appeared as first arguments of if-nodes and that
were deleted in the second procedure: If a term u appeared
as the first argument of an if node, then the term (equal

(u nil) or (not (equal u nil)) is collected depending on
whether u evaluted to false of true respectively.

The operation of Function Expansion is defined using these
3 procedures as follows. Suppose the Function Expansion
operation is called with arguments 〈t, e, R〉 and path α. The
result of the operation is that a new vertex 〈t′, e′, R′〉 and a
new arc l are added to the graph, where t′ is the result of
applying the first two procedures to t and α. e′ is equal to e

given that inserting a function definition does not change the
evaluation value and R′ is the union of R and the output of
the third procedure. Finally, the arc l = (〈t, e, R〉, 〈t′, e′, R′〉)
connects the vertex given as argument and the new vertex
and it is labelled with “Function Expansion: α”.

2.2 Term Extraction
The Term Extraction operation also takes as arguments a
vertex and a path. Intuitively, it creates a new vertex by
extracting part of the information that is contained in the
vertex given as argument. Formally, suppose that the Term
Extraction operation is called with arguments 〈t, e,R〉 and
α. The new vertex 〈t′, e′, R′〉 is defined as follows. t′ is
tα, e′ is the result of evaluating tα in a lisp interpreter,
and R ⊆ R′ is defined as all if-conditions that were created
while reducing both nodes along the path α and nodes in
tα. For example, if the Term Extraction operation is ap-
plied to arguments 〈t, e,R〉, and α = 0 where t is the tree
pictured in Figure 1 (e), e equals to 3, and R equals to
{(equal (atom ’(1 2 3)) nil)}, the result is a new vertex
〈t, e, R〉, where t = (cdr ’(1 2 3)), e = (2 3) and R′ =
{(equal (atom ’(1 2 3)) nil)}.

(defun tail (x)
(if (atom x)

x
(tail (cdr x))))

tail

quote

(1 2 3)

if

atom

x

x tail

cdr

x

if

atom

quote

(1 2 3)

quote

(1 2 3)

tail

cdr

quote

(1 2 3)

tail

cdr

quote

(1 2 3)

(a) (b) (c) (d) (e)

Figure 1: (a) Definition of tail. (b) tree representing term (tail ’(1 2 3)). (c) tree representing the body of
function tail. (d) tree in (a) where the root has been expanded. (e) tree resulting from removing if-conditions
from the tree in (d).

The set R keeps track of all the terms in the if-nodes that
have been evaluated during the second procedure of the
Function Expansion operation. Whenever a subtree t′ is
extracted from a tree t, all the if-conditions that were used
for reducing t have to be added to R. As we will see in the
following section, R is used for lemma generation.

Clearly, the number of vertices contained in an evaluation
graph depends on the number of functions that are expanded
and the number of subterms that are extracted. If all func-
tions that are called in the term of the root vertex terminate,
then we can show that its evaluation graph is finite. As we
said before, our heuristic compares two evaluation graphs
coming from two different terms. In order to make these
two graphs comparable, we require that they have vertices
whose tree-terms share the same functions being called, that
is, both tree-terms are expressed using the same functions.
It has to be possible to rewrite both terms until both of
them are expressed in terms of basic functions. In order to
guide the rewriting procedure, we introduce the concept of
set of basic functions. Functions that are in the set of basic
functions are not expanded. In contrast, all nodes that are
labeled with functions that do not belong to this set are ex-
tracted or expanded. An evaluation graph is constructed by
applying both operations to all vertices whose terms do not
have a node labelled with a basic function. It is important
for our purposes that the operator quote belongs to the set
of basic functions.

3. FINDING LEMMAS
In this section we describe the use of evaluation graphs for
lemma generation. Our main aim is to generate interme-
diate lemmas that might help proving lemmas like (defthm

lemma-to-prove (equal (f x) (g x))) which involves the equal-
ity between two functions f and g. Since our model requires
terms to be grounded, we manually define the set of ground
terms that are used as arguments of f and g.

In order to find lemmas, we keep track of how the two evalu-
ation graphs compute their results. In order to relate the two
computation models, we define a relation ∼ between vertices
in the two graphs. As we will see below, two vertices are re-
lated if, first, their evaluation value is the same and, second,
it is computed in the right place of the computation. Let us
make this idea more formal. Let Gf(a) = 〈Vf(a), Ef(a)〉, and
Gg(a) = 〈Vg(a), Eg(a)〉 be evaluation graphs that correspond
to terms f(a) and g(a) respectively. Let ∼ be a relation be-

tween the set of vertices Vf(a) and Vg(a) defined as follows:
A vertex vg(a) in Vg(a) is related to a vertex vf(a) in Vf(a)

if, first, both vertices share the same evaluation value and,
second, one of the following items is satisfied:

1. vg(a) and vf(a) are the root vertices of graphs Gg(a)

and Gf(a) respectively.

2. There exist vertices v′

g(a), v′

f(a) and edges (v′

g(a), vg(a)),

(v′

f(a), vf(a)) both labelled with “Function-Expansion:

α” such that v′

f(a) is related to v′

g(a).

3. There exist vertices v′

g(a), v′

f(a) and edges (v′

g(a), vg(a)),

(v′

f(a), vf(a)), labelled with“Term-Extraction: α’,’ such

that α has length equal to 1, v′

f(a) is related to v′

g(a),
both root nodes of their tree-terms are labelled with
the same function name and both root nodes have the
same number of descendents.

In order to build lemmas using relation ∼, we first need
to introduce some auxiliary concepts. Since our algorithm
builds evaluation graphs using terms f(a) and g(a), a ground
term a has replaced variables in both terms f and g. For
any vertex in evaluation graphs, it is still possible to replace
original occurrences of a by a free variable x. This is the case
because subtrees labelled with quote are not extracted nor
rewritten, as a consequence of the function quote belonging
to the set of basic functions. It is not possible to find half of
a term a in one subtree and the other half in another subtree.
Replacing back argument a by free variables produces terms
with free variables that are used for building lemmas. Let us
call lifta the operation of replacing appropriate occurrences
of a by a fresh free variable x. Specifically, if f(a) is a
ground term, then lifta(f(a)) returns a term with a free
variable for every occurrence of a, which was initially a free
variable. The operation lifta applied to a set of terms R

returns
V

f∈R
lifta(f).

The relation ∼ expresses many different formulae between
terms. Let 〈t, e,R〉 and 〈t′, e′, R′〉 be two vertices in Gf(a)

and Gg(a) respectively such that 〈t, e, R〉 ∼ 〈t′, e′, R′〉. If it
is true that f(x) = g(x) for a ground term a, then we spec-
ulate that it is true that lifta(R) ∧ lifta(R′) ⇒ lifta(t) =
lifta(t′). In particular, if 〈t, e, ∅〉 and 〈t′, e′, ∅〉 are root
vertices of evaluation graphs Gf(a) and Gg(a) respectively,
then, if they are related, we speculate that the formula
f(x) = g(x) holds.

Intuitively, the ∼ relation encodes all possible equalities be-
tween subterms of f and g. The relation deconstructs the
equality between f(x) and g(x) in terms of more basic equal-
ities. Note that ∼ is constructed by a heavy use of the eval-
uation of subterms.

3.1 Searching For Patterns
The relation ∼ encodes many different lemmas, but not all
of them are of interest. In our case we search for a particular
pattern in the relation ∼. We seek vertices v in G and v′

in G′ that satisfy the following requirements: (a) v ∼ v′

(b) their corresponding tree terms share the same label at
their root name, and (c) there exist one vertex w, and an arc
(v, w) (respectively, (v′, w)) labelled with “extract:α” in G

(respectively G′); |α| = 1 such that w is not ∼-related to any
neighbor of v′ (respectively v) connected to v′ (respectively
v) with an edge with labeled “extract:α”.

In other words, we look for subterms h(g1(a), . . . , gn(a)) and
h(f1(a), . . . , fm(a)) in G and G′ respectively such that both
terms evaluate to the same value but m 6= n or there is
an argument i such that gi(a) 6= fi(a). For each pair of
vertices v and v′ that satisfies this pattern we propose as a
new lemma the one that is encoded in the relation between
these two vertices.

3.2 Filtering Formulas
While comparing two graphs, many lemmas are generated.
Some of them are too specific to the grounding that is used
for building ∼. In order to reduce the number of lemmas
that this procedure produces, we filter out some of the gen-
erated lemmas. So far, we have implemented two different
filtering mechanisms. One of them generates different set of
lemmas using different groundings and it reports only those
lemmas that are common to all sets. The other mechanism
uses a complexity measure defined over lemmas and reports
those lemmas having a small value for it.

4. EXAMPLE
In this section we show our heuristic in action. We use an
example from [4] where two different functions compute the
same value and where we find it necessary to prove the equal-
ity between the two. We build the two evaluation graphs and
we search for the patterns described in the previous sections.
We use the following functions in our example:

(defun flatten (x)
(cond ((atom x) (list x))
(t (append (flatten (car x)) (flatten (cdr x))))))

(defun gopher (x)
(if (or (atom x) (atom (car x))) x
(gopher (cons (caar x) (cons (cdar x) (cdr x))))))

(defun samefringe (x y)
(if (or (atom x) (atom y)) (equal x y)
(and (equal (car (gopher x)) (car (gopher y)))
(samefringe (cdr (gopher x)) (cdr (gopher y))))))

Because of the Lisp interpreter we use, the function equal

that is used in our example is treated as a non-basic function.
That is, we had to define it in terms of the function eql which
is a basic functions. Finally, the following states the equality
we want to prove.

(defthm correctness-of-samefringe
(equal (samefringe x y)(equal (flatten x)(flatten y)))

In order to generate lemmas that help prove this equality, we
built several evaluation graphs for terms (samefringe x y)

and (equal (flatten x) (flatten y)) using different values
of x and y; for each grounding we build evaluation graphs,
and finally we generate the lemmas for vertices that satisfy
the pattern presented in the previous section.

We tried the following pairs of ground terms for variables (X,
Y): (’3, ’3), (’(1 2), ’(1 2)) and (’((1 2) . 3), ’(1 .

(2 3))). These terms were chosen arbitrarily and were gen-
erated by hand. The first grounding does not produce any
lemma: the pattern we are interested in does not appear in
the comparison between the two graphs. All others produce
a number of lemmas that grows quite fast with the size of
the term and they all have one lemma in common:

(implies (and (not (atom x)) (consp (flatten x)))
(eql (car (gopher x)) (car (flatten x))))

removing trivial clauses our lemma can be rewritten as

(implies (consp x)
(eql (car (gopher x)) (car (flatten x))))

This lemma is one of the lemmas required by ACL2 to prove
the equality of correctness-of-samefringe

5. DISCUSSION AND FUTURE WORK
We have presented a heuristic for discovering lemmas that is
based on a computational model that evaluates and rewrites
terms. Our computational model is based on graphs that
keep track of all possible ways to rewrite a function. We
showed an example where our heuristics helps finding an
intermediate lemma. Still, one example is not enough to
ensure that our heuristic helps. It is our intention to build
a test set where our ideas can be tested.

We believe that the lemmas generated by this procedure
can be used in two different ways: as a tool to help ACL2
find intermediate lemmas, or as a tool to help ACL2 select
which books to load. For the second, the book that best
fits the set of lemmas that our tool generated should be
loaded. We have also developed a graphical tool that shows
evaluation graphs; we believe that such a tool can help hu-
mans interfacing with ACL2 because it provides a compact,
traversable, and graphical representation of a computation.
The tool can also be extended to show the relation between
two evaluation graphs.

As drawbacks, our approach requires some meaningful ex-
amples of ground terms to produce lemmas. How to auto-
matically generate non-trivial examples is still an open is-
sue that requires further research. Moreover, our approach
lacks of strategies to generate lemmas that can help proving
equalities by induction as in [3].

6. REFERENCES
[1] S. Colton, A. Bundy, and T. Walsh. Automatic concept

formation in pure mathematics. In IJCAI, 1999.

[2] M. Demba and K. Bsäıes. Appropriate lemmae
discovery. Inf. Sci., 163(4):221–237, 2004.

[3] D. Kapur and M. Subramaniam. Lemma discovery in
automating induction. LNCS, 1104, 1996.

[4] M. Kaufmann, P. Manolios, and J. Moore. Computer–

Aided Reasoning: An Approach. Kluwer, 2000.

