
Formalizing Simplicial Topology in ACL2

M. Andrés, L. Lambán, J. Rubio
Departamento Matemáticas y Computación

Universidad de La Rioja
Edificio Vives, Luis de Ulloa s/n

26004 Logroño, Spain
{mirian.andres,lalamban,
julio.rubio}@unirioja.es

J. L. Ruiz-Reina
Departamento de Ciencias de la Computación e

Inteligencia Artificial
Escuela Técnica Superior de Ingeniería

Informática. Universidad de Sevilla
Avda. Reina Mercedes s/n

41012 Sevilla, Spain
jruiz@us.es

ABSTRACT
This paper presents an approach to formally analyze con-
cepts and algorithms in the mathematical domain of Sim-
plicial Topology. Our aim is twofold. First to show, by
means of an elementary example, that it can be feasible,
and even natural, to undertake that formalization in ACL2,
since most of the theorems in Simplicial Topology can be
seen as theorems about list manipulation. It is also worth
pointing out how this example can be also proved reusing
some previously proved results about abstract reduction sys-
tems. Second, to sketch a methodology for using ACL2 to
increase reliability of a previously existing symbolic compu-
tation system for Simplicial Topology, written in Common
Lisp.

1. INTRODUCTION
Kenzo is a Common Lisp program [3] designed by F. Serg-
eraert, implementing his ideas on Constructive Algebraic
Topology [8]. Several years ago, a project was launched
to analyze the Kenzo system by means of formal methods.
The first efforts were devoted to the Algebraic Specification
of Kenzo (see, for instance, [5]). After that, these rather
theoretical results were put into practice through theorem
provers. The tactical assistant Isabelle [7] was chosen for
the first studies [2].

The main limitation when using Isabelle for this task is the
distance from the theories and proofs built in Isabelle, to the
real Kenzo code. Kenzo is programmed in Common Lisp;
thus, the idea of using ACL2 to verify the actual Kenzo
programs is quite appealing. Nevertheless, this approach is
quickly seen as incomplete: Kenzo intensively uses higher or-
der functional programming, and therefore it cannot be sim-
ply translated to ACL2. Even so, one can imagine different
strategies to face the problem of increasing the reliability
of Kenzo by means of ACL2. One of them is to choose a
convenient first-order fragment of Kenzo and to reprogram

and verify it in ACL2. This is the proposal we are intro-
ducing in this paper, with respect to Simplicial Topology,
an essential mathematical tool in Kenzo. (It is worth noting
that the previous works in Isabelle are rather oriented to the
algebraic part of Kenzo.) These new programs, written in
ACL2, are very closely related to, but different from, its cor-
responding full-Common Lisp, Kenzo counterparts. Thus, a
distance between our formal (ACL2) model and the actual
running program is still present. In [1] a methodology to
overcome this difficulty was introduced. This methodology
is applied in this paper to the case of Simplicial Topology.

The organization of the paper is as follows. The next section
introduces Simplicial Topology very briefly and explains how
its rather abstract mathematical concepts can be smoothly
formalized in ACL2. To illustrate this, Section 3 focuses on
an example, giving the statement of an elementary property,
and then, in Subsection 3.2, reporting on a direct proof in
ACL2 of it. Then, in Subsection 3.3, an alternative ACL2
proof is commented on, which has the unexpected property
of being based on abstract reduction systems. Section 4
presents our proposal to combine ACL2 certificates with pre-
viously written, and running, Common Lisp programs. The
paper ends with conclusions and future work.

2. SIMPLICIAL TOPOLOGY IN ACL2
Simplicial Topology is a theory where abstract topological
spaces are replaced by combinatorial artifacts, called simpli-
cial sets. Then, topological spaces are recovered by means of
a notion of (geometrical) realization of a simplicial set. The
idea behind Simplicial Topology is that algebraic invariants
associated to topological spaces are read (i.e. computed) in
an easier way from combinatorial objects, as simplicial sets.
(The main reference for the simplicial notions used in this
paper is [6].)

Let us explain briefly the nature of this moving from the
abstract world of topological spaces to the discrete world of
simplicial objects. In Figure 1 we have drawn a topological
space, which is composed by a sphere and other connected
figures. The important thing to be stressed is that to define
such a topological space, which is always of infinite cardi-
nality, we should give some description indicating, not only
the elements belonging to the space, but also the topology
to be considered on them. This description can be done in
different ways (for instance, giving a complete collection of
its open subsets), but always in a cumbersome manner.

Figure 1: A topological space

Figure 2: Model obtained by triangulation

The next aspect to be pointed out is that, since it is a
topological space, we are only interested in its topological
properties. For instance, connectedness is such a topologi-
cal property: to study whether any two points in the space
can be connected by a continuous path. From this point of
view, the concrete size or the appearance of the space are
not relevant. We could replace the space by any other, un-
der the condition that one can be obtained from the other
through a homeomorphism (informally speaking: a continu-
ous deformation, i.e. a deformation which does not disrupt
the space). Thus, we could look for different models of a
given space. These models can be designed to make easier
the study of some properties. For instance, it can be very
difficult to decide whether a topological space (such as that
of Figure 1) is connected, if the space is described by means
of its infinitely many open subsets.

A first idea to look for more suitable models is triangu-
lating the space. For instance, in Figure 2 we have illus-
trated that a part of Figure 1 can be modeled by means

Figure 3: A tetrahedron is (topologically) a sphere

Figure 4: A smaller model for the sphere

of a triangle (without losing any topological information),
and in Figure 3 that a sphere can be represented by means
of a (hollow) tetrahedron. Once a space has been trian-
gulated, it is very easy to pass to a combinatorial model.
Coming back to Figure 2, the triangle can be described just
by means of a list (a0, a1, a2), understanding that its three
faces (or three sides, in this case) are obtained in the follow-
ing way: ∂0(a0, a1, a2) = (a1, a2), ∂1(a0, a1, a2) = (a0, a2)
and ∂2(a0, a1, a2) = (a0, a1). That is to say, the ∂i is de-
noting the edge opposite to the i-th vertex. This structure
is nothing but a natural generalization of the notion of a
graph. Thus, the two “faces” of each edge are defined in
an analogous way: ∂0(a1, a2) = (a2), ∂1(a1, a2) = (a1),
and so on. The essential relationship explaining that this
combinatorial representation (by means of lists of symbols)
is really describing a triangle is captured by the formula:
∂i∂j = ∂j−1∂i, if i < j. For instance: ∂0∂1(a0, a1, a2) =
(a2) = ∂0∂0(a0, a1, a2). These equalities describe the adja-
cency relations among the different (symbolic) elements in
our combinatorial model.

Now, to go from the discrete to the continuous, we should
choose for each vertex ai a concrete point in a Euclidean
space, for each edge a concrete segment (respecting the adja-
cency relations), and so on. This gives the previously evoked
geometrical realization of our combinatorial model (see [6]
for details). Let us remark that the problem on the con-
nectedness of the space that was presented as difficult in the
abstract context, is very easy in the combinatorial setting:
a traversal algorithm allows us to compute the number of
connected components.

Once it has been accepted that replacing topological spaces

by combinatorial models opens the possibility of algorith-
mically computing topological invariants (as the number of
connected components), the next question is efficiency. It
is quite clear that the complexity of the algorithms depends
on the number of elements in the model. From this point of
view, the modelling of a sphere by means of a (hollow) tetra-
hedron, as in Figure 3, is quite verbose: 4 vertices, 6 edges,
4 triangles (14 elements). Since the topological notions are
quite flexible, we could imagine a much more efficient way of
representing a sphere. We could think in a triangle where all
the edges and vertices are collapsed to just one point (this
gives as figure a sort of “parachute”); see Figure 4. This
would allows us to represent the sphere just with two essen-
tial elements (the triangle and the collapsing point), instead
of the 14 elements needed in the thetrahedron.

The problem with this new respresentation of the sphere is
there is a “dimension jump”: there is one element of dimen-
sion 2 (the triangle) and another of dimension 0 (the point)
but nothing in dimension 1. This seems to be contradictory
with the faces system described previously, when comment-
ing on Figure 2, because a face operator ∂i decreases in one
unit the dimension. The great idea of simplicial sets is that
we can “invent” new combinatorial elements, without any
topological meaning (that means that they produce nothing
in the geometrical realization), but allowing us to maintain
the “faces system”, and thus the algorithmic treatment. In
the example of Figure 4, the point ∗ is “repeated” in dimen-
sion 1, by means of the new expression η0(∗). If the triangle
is denoted by the symbol x, we would define its faces as
∂0x = ∂1x = ∂2x = η0(∗). This invented element η0(∗) is
called a degeneration of the vertex ∗.

In order to discover which axiomatic presentation is neces-
sary to keep coherent these new degenerated elements, which
are included without any geometrical meaning, we can come
back to the example of Figure 2. Let us define

η0(a0, a1, a2) := (a0, a0, a1, a2),

η1(a0, a1, a2) := (a0, a1, a1, a2),

η2(a0, a1, a2) := (a0, a1, a2, a2),

and similarly in other dimensions (that is to say, the oper-
ator ηi is repeating the i-th element in the list). Then the
equalities relating ∂i and ηi are summarized in the following
definition of simplicial set.

Definition 1. A simplicial set K consists of a graded set
{Kq}q∈N and, for each pair of integers (i, q) with 0 ≤ i ≤ q,
face and degeneracy maps, ∂i : Kq → Kq−1 and ηi : Kq →
Kq+1, satisfying the simplicial identities:

∂i∂j = ∂j−1∂i if i < j

ηiηj = ηj+1ηi if i ≤ j

∂iηj = ηj−1∂i if i < j

∂iηj = Id if i = j or i = j + 1

∂iηj = ηj∂i−1 if i > j + 1

The elements of Kq are called q-simplices. A q-simplex x is
degenerate if x = ηiy with y ∈ Kq−1, 0 ≤ i < q; otherwise

x is called non-degenerate. (For instance, 0-simplices can be
tought as vertices, non-degenerate 1-simplices as edges, non-
degenerate 2-simplices as (filled) triangles, non-degenerate
3-simplices as (filled) tetrahedra, etc.)

Let us note that, in fact, each operator as ∂i or ηi depends
on q (so, it should be more appropriate to denote them by
∂q

i or ηq
i). Nevertheless, it is usual to skip the dimension q

on notations, and we will see soon that it is convenient in
our cases of interest, too.

Kenzo can deal with simplicial sets in a quite general way:
infinite simplicial sets can be encoded, and operations on
simplicial sets are built-in (for instance, given two simplicial
sets K and L, Kenzo can construct its cartesian product
K × L, a new simplicial set). To this aim, Kenzo is based
on higher-order functional programming, implementing each
simplicial set as a record of lambda expressions.

Fortunately, in order to start formalizing Simplicial Topol-
ogy in ACL2 it is not necessary to emulate this Common
Lisp organization of Kenzo. The reason is theoretical: there
exists a universal simplicial set ∆ (see [6]) where the initial
studies on Simplicial Topology can be carried out. This sim-
plicial set ∆ contains the minimal number of identifications
from the equalities introduced in Definition 1. That is to
say, any theorem proved on ∆ by using only the equalities
of Definition 1, will be also true for any other simplicial set
K.

In our ACL2 context, the simplicial set ∆ can be easily for-
malized: a q-simplex of ∆ is any ACL2 list of length q + 1.
The face operators are defined by means of a function (del-

nth i l), which eliminates the i-th element in the list l.
The degeneracy operators are similarly defined by means
of a function (deg i l), which repeats the i-th element in
the list l. Thus, as previously announced, the face and de-
generacy operators can be defined in ACL2 regardless of the
dimension of the simplices (i.e. the length of the lists). (For-
mally speaking, we are considering the simplicial set freely
generated from the set of all ACL2 objects.)

In this manner, we could reduce the formalization of a frag-
ment of the theory of Simplicial Topology to proving prop-
erties in ACL2, dealing with simple data structures such
as lists. In the next section, we explore this possibility by
means of a concrete and elementary example.

3. AN EXAMPLE
3.1 Statement of the theorem
One of the fundamental results in Simplicial Topology (it
is so fundamental that. . . its proof is given as an exercise to
the reader! [6]) is the following.

Theorem 1. Let K be a simplicial set. Any degenerate
n-simplex x ∈ Kn can be expressed in a unique way as a
(possibly) iterated degeneracy of a non-degenerate simplex
y in the following way:

x = ηjk . . . ηj1y

with y ∈ Kr, k = n− r > 0, 0 ≤ j1 < · · · < jk < n.

In order to model it in ACL2, let us first note that a non-
degenerate simplex in ∆ is a list where any two consecutive
elements are different. Besides, a simplex in ∆ can be rep-
resented in another way: as a pair of lists, the first element
being a list of natural numbers (let us call it degeneracy list)
and the second one any ACL2 list. Such a pair is represent-
ing the simplex obtained by repeatedly applying the degen-
eracy operators deg using as indexes those of the degeneracy
list. The corresponding ACL2 function is (degenerate dl

l). With these definitions and notations, the previous the-
orem can be stated, in the case of ∆, in the following way.

Theorem 2. Any ACL2 list l can be expressed in a unique
way as a pair (dl, l′) such that:

l = degenerate(dl, l′)

with l′ without two consecutive elements equal and dl a
strictly increasing degeneracy list.

3.2 A direct ACL2 proof
With the statement of the previous theorem in mind, we
can define the following function generate to obtain the
witnesses dl and l′ from l.

(defun generate (l)

(if (or (endp l) (endp (cdr l)))

(cons nil l)

(let ((gencdr (generate (cdr l))))

(if (equal (first l) (second l))

(cons (cons 0 (add-one (car gencdr)))

(cdr gencdr))

(cons (add-one (car gencdr))

(cons (car l) (cdr gencdr)))))))

Note that the method of this function relies on eliminating
consecutive repetitions in l, adding properly the correspond-
ing indexes to dl (the function add-one adds one to every
element of its input list.)

As for the existence part, we established the following, where
the function canonical encodes all the properties required in
Theorem 2 (strictly increasing degeneracy list, for example):

(defthm existence

(let ((gen (generate l)))

(and (canonical gen)

(equal (degenerate (car gen) (cdr gen)) l))))

The proof is achieved by standard interaction with ACL2
by providing the proper lemmas and the suitable induction
schemes.

In order to prove that the pair (dl, l′) is unique, we establish
the following lemma:

(defthm uniqueness-main-lemma

(implies (canonical (cons l1 l2))

(equal (generate (degenerate l1 l2))

(cons l1 l2))))

Problems appeared in the proof of the above lemma because
the lists obtained after rewriting (generate (degenerate

l1 l2)) in

(generate (degenerate (cdr l1) (deg (car l1) l2))),

do not satisfy the hypotheses of the theorem, so it was not
possible to apply a simplified induction scheme on them.
We solved it by means of some elaborated lemmas which
transform the expressions until reaching a suitable situation
where induction is applicable.

With the above lemma, it is now easy to prove the unique-
ness part of Theorem 2, stated as follows:

(defthm uniqueness

(implies

(and (canonical p1) (canonical p2)

(equal (degenerate (car p1) (cdr p1)) l)

(equal (degenerate (car p2) (cdr p2)) l))

(equal p1 p2)))

3.3 An abstract reduction systems approach
The direct proof of Theorem 2 which has just been outlined
is not completely satisfactory since it does not explicitly use
the face operators and is not directly based on the combi-
natorial properties which relate the face and the degeneracy
maps. To take advantage of these relationships (and thus to
carry out a formalization more closely related to the source
concept), we present an alternative proof. The idea is to
consider the elimination of a consecutive repetition in a list
(by applying the corresponding face operator) as a simple
reduction step; also, another type of reduction step can be
used to “fix” disorders in the degeneracy list.

To formalize this idea, we define the following reduction re-
lation→S , whose domain and rules are given as follows. The
set of S-terms is the set of pairs (l1, l2) where l1 is intended
to be a list of natural numbers, and l2 is any list. Two types
of reduction rules are considered in →S :

• o-reduction: if the list l1 has a “disorder” at position
i, i.e., l1(i) ≥ l1(i + 1), then (l1, l2) →S (l′1, l2), where
l′1(i) = l1(i + 1) and l′1(i + 1) = l1(i) + 1 (here l(j)
denotes the j-th element of l).

• r-reduction: if at index i there is a repetition in l2,
i.e., l2(i) = l2(i + 1), then (l1, l2) →S (l′1, l

′
2), where

l′1 = cons(i, l1) and l′2 = del-nth(i, l2)

These reductions are very closely linked to the equalities in
Definition 1. Thus, o-reductions reflects exactly the equality
ηiηj = ηj+1ηi, if i ≤ j. In an analogous way, r-reductions
are related to ∂iηi = Id. The iteration of these reductions
gives us“paths”relating different representations of the same
simplex in ∆. The “abstract reduction approach” allows us
to concentrate just on local applications of the reductions
instead of studying the whole class of representations as in
the “direct approach”. This feature is related to the well-
known Newman’s lemma, as explained in the sequel.

We modeled →S in the framework of an existing ACL2 for-
malization about abstract reduction systems [9]. In our case,
operators are represented as pairs of the form (t, i), where t is
’o or ’r (depending on the type of the reduction rule) and i
is the position in the list where the corresponding reduction
takes place. The relation →S is then represented by means
of two functions (s-legal x op) and (s-reduce-one-step

x op), defining, respectively, the conditions needed to apply
a given operator op to the pair of lists x, and the result of
applying a“legal”operator. See the supporting materials for
their definitions. In [9], it is shown how these two functions
suffice to represent a reduction and other related concepts
such as noetherianity, equivalence closures, normal forms or
confluence.

First, we proved that the reduction is noetherian (that is,
there is no infinite sequence of S-reductions) using a suitable
lexicographic measure. As a consequence, we can define the
following function s-normal-form, that computes a normal
form with respect to→S (the function s-reducible returns
a legal operator, whenever it exists, nil otherwise):

(defun s-normal-form (x)

(let ((red (s-reducible x)))

(if red

(s-normal-form (s-reduce-one-step x red))

x)))

Let
∗→ denote the reflexive-transitive closure of→. A reduc-

tion is said to be locally confluent if whenever y ← x→ z (a

local peak) then y
∗→ u

∗← z (a valley). The reduction →S is
locally confluent, as established by the following theorem:

(defthm local-confluence

(implies (and (s-equiv-p x y p) (local-peak-p p))

(and (s-equiv-p x y (s-transform-local-peak p))

(steps-valley (s-transform-local-peak p)))))

This theorem needs some explanation. The function called
s-equiv-p formalizes the equivalence closure of→S (usually
denoted as =S); that is, the connection of x and y by a se-
quence of (zero or more) →S reduction steps, either applied
from left to right or from right to left. This sequence of
reductions is explicitly represented by its third argument p.
The functions local-peak-p and steps-valley check the
corresponding shape of a sequence of steps. Note that in
this context, local confluence is justified by the definition
of a function s-transform-local-peak that explicitly con-
structs a valley from a given local peak. This function is
defined dealing with all the possible combinations of posi-
tions and types of the two S-reductions in a local peak.

As a consequence of Newman’s lemma (a result on abstract
reductions), every noetherian and locally confluent reduc-
tion is convergent [4], which in particular means that two
equivalent elements (w.r.t. the equivalence closure of the
reduction) have a common normal form. In our case, this is
established by the following theorem:

(defthm s-reduction-convergent

(implies (s-equiv-p x y p)

(equal (s-normal-form x) (s-normal-form y)))

Now, the main relation between our reduction relation →S

and the function degenerate is given by the following two
properties: (a) If (l1, l2)→S (l3, l4), then degenerate(l1, l2)
= degenerate(l3, l4). And (b) If degenerate(l1, l2) = l, then
(nil, l) =S (l1, l2).

For example the following is the ACL2 formalization of prop-
erty (b) above (we omit some technical conditions, for the
sake of clarity). Note that the function degenerate-steps

explicitly constructs the sequence of reduction steps con-
necting (nil, l) and (l1, l2):

(defthm degenerate-s-equivalent

(implies

(s-equiv-p (cons l m)

(cons nil (degenerate l m))

(degenerate-steps l m))))

Now we simply define (generate l) as (s-normal-form

(cons nil l))). With this definition, and given the pre-
vious properties explained above, it is not difficult to prove
the theorems existence and uniqueness exactly as stated
in Subsection 3.2 (but w.r.t. this alternative definition of
generate). As an interesting corollary, it can be proved
that both definitions of generate are equivalent.

4. THE ROLE OF ACL2 FOR INCREASING
RELIABILITY IN COMPUTER
ALGEBRA PROGRAMS

In order to explain the differences between the ACL2 im-
plementation sketched in the previous sections, and the real
Kenzo implementation, let us introduce some terminology.
In Kenzo, there is a distinction between geometrical sim-
plices and abstract simplices. Roughly speaking, the first
ones correspond to lists in ∆ without two equal consecutive
elements. The second ones are pairs (dg, l′) where dg is a de-
generacy list and l′ is a geometrical simplex. The theorem
of Section 3 explains that the representation of simplicial
sets by means of abstract simplices is complete and faith-
ful (i.e. every element of K can be represented in a unique
way as an abstract simplex). As an example, and going
back to the space described in Figure 4 (and with the nota-
tions introduced in Section 2), in that simplicial set there is
just two geometrical simplices: the 2-simplex x and the 0-
simplex ∗. There are infinitely many abstract simplices that
can be denoted by ((), ∗), ((0), ∗), ((), x), ((0, 1), ∗), ((0), x),
((0, 1, 2), ∗), etc.

Operations with degeneracy lists are very frequent in Kenzo,
and, in fact, this kind of manipulation is one of the sources of
the exponential complexity of the algorithms implemented
in Kenzo. Thus, to be efficient there is specially important.
Sergeraert devised a smart implementation of degeneracy
lists by coding them as binary numbers and then handling
them by means of the fast Common Lisp functions ash,
logxor and the like. This arithmetical implementation is

very different from the more explicit one (more geometrical,
let us say) presented here. Therefore, proving properties in
ACL2 is still different from proving the correctness of Kenzo
in this particular area.

Similar but more complicated situations can be found in
other parts of Kenzo, where the occurrence of Common Lisp
features which are not part of ACL2 (for instance, higher-
order functional or object-oriented programming) precludes
a direct modeling in ACL2 (let us note that it is not the
case in the previous example: since the functions as ash and
logxor are also in ACL2, we could undertake a direct mod-
eling of if in ACL2). Such situations are reported on in [1].
There, we advocated by using ACL2 proofs to prepare an au-
tomated testing of some parts of Kenzo. The scenario is as
follows, illustrated by means of examples from our simplicial
setting. Given a program included in Kenzo (let us imagine,
the function composing arithmetically two degeneracy lists),
we establish an ACL2 model with the same intended behav-
ior (for instance, we give in ACL2 a direct implementation of
the composing, by means of lists of natural numbers). Then,
we prove in ACL2 the correctness of the ACL2 implementa-
tion (instead of proving the correctness of the arithmetical
version, likely much harder to be verified in ACL2). And
finally, we test the actual Kenzo program against the ACL2
certified model. The function achieving the testing should
be, in general, a Common Lisp non-ACL2 program (so, with-
out formal verification), but even if a proof of correctness is
not considered, we think that a well-designed testing strat-
egy could considerably increase the reliability of the Kenzo
system. We think that this kind of approach is especially
relevant in the parts of Kenzo where it is capable of finding
algebraic invariants that have been not determined before,
by any other means (theoretical or automatic).

5. CONCLUSIONS AND FURTHER WORK
In this short note, some ideas to apply ACL2 in Simpli-
cial Topology have been presented. The main contributions
are: an analysis of feasibility (by means of an elementary
example) and a surprising remark relating ACL2 proofs in
Simplicial Topology with abstract rewriting systems. The
interest of this kind of research is due to its application to
increase the reliability of a real Computer Algebra program
called Kenzo [3].

The future work would be oriented to formalize and prove
in ACL2 more difficult results from Simplicial Topology.
Our main objective would be to give an ACL2 proof of
the Eilenberg-Zilber theorem [6], which is essential in Kenzo
since it establishes the bridge between Geometry and Alge-
bra in Algebraic Topology.

6. ACKNOWLEDGMENTS
Partially supported by MEC, projects TIN2004-03884 and
MTM2006-06513, and by Comunidad Autónoma de La Ri-
oja, project ANGI-2005/19. We will like to thank Jónathan
Heras for his design of the graphics in this paper.

7. REFERENCES
[1] M. Andrés, L. Lambán, and J. Rubio. Executing in

Common Lisp, Proving in ACL2. In Proceedings
MKM/Calculemus 2007, pages 1–12. LNAI 4573,
Springer, 2007.

[2] J. Aransay, C. Ballarin, and J. Rubio. Four Approaches
to Automated Reasoning with Differential Algebraic
Structures. In Proceedings AISC 2004, pages 221–234.
LNCS 2349, Springer, 2004.

[3] X. Dousson, F. Sergeraert, and Y. Siret. The Kenzo
Program, 1999–2007. Institut Fourier, Grenoble,
http://www-fourier.ujf-grenoble.fr/~sergerar/Kenzo/,
2007.

[4] G. Huet. Confluent reduction : abstract properties and
applications to term rewrite systems. Journal of the
Association for Computing Machinery, 27(4):787–821,
1980.

[5] L. Lambán, V. Pascual, and J. Rubio. An
Object-Oriented Interpretation of the EAT System.
Applicable Algebra in Engineering, Communication and
Computing, 14(3):187–215, 2003.

[6] J. P. May. Simplicial Objects in Algebraic Topology,
volume 11 of Mathematical Studies. Van Nostrand,
1967.

[7] T. Nipkow, L. C. Paulson, and M. Wenzel.
Isabelle/HOL: A Proof Assistant for Higher Order
Logic. Lecture Notes in Computer Science 2283,
Springer, 2002.

[8] J. Rubio and F. Sergeraert. Constructive Algebraic
Topology. Bulletin Sciences Mathématiques,
126:389–412, 2002.

[9] J. L. Ruiz-Reina, J. A. Alonso, M. J. Hidalgo, and F. J.
Mart́ın-Mateos. Formal Proofs About Rewriting Using
ACL2. Annals of Mathematics and Artificial
Intelligence, 36(3):239–262, 2002.

