
Formal Specification and Validation of Minimal Routing
Algorithms for the 2D Mesh

Julien Schmaltz
Radboud University

Institute of Computing and Information Sciences
6500 GL Nijmegen, The Netherlands

julien@cs.ru.nl

ABSTRACT
This paper presents the formalization of a family of routing
algorithms in the ACL2 logic. This work is based on GeNoC ,
a generic model of networks on a chip (NoCs). We review
the principles of this approach. We detail the specification
and the validation of dimension-order routing for the 2D
mesh. We consider deterministic and adaptive algorithms.

Categories and Subject Descriptors
B.7.2 [Integrated Circuits]: Design Aids—verification

General Terms
algorithms, verification

Keywords
routing algorithms, networks on chip, formal methods

1. INTRODUCTION
Chip business is highly competitive and time-to-market is
ever shrinking. A three month delay induces a loss of a
fourth of the expected income [3]. To meet this demand,
systems on a chip (SoCs) design relies on a platform based
approach: a new SoC is built by assembling pre-designed
parameterized modules. Hence, the specification and the
validation of the interconnect becomes crucial [13].

Networks on a chip (NoCs) constitute a recent paradigm,
which could meet future SoC’s performance requirements [1].
Little work has been done with respect to their formal ver-
ification. One notable exception is the formal analysis of
the Æthereal protocol [6] of Philips in the PVS logic [8] by
Gebremichael et al. [5]. This work was performed on a very
specific design.

In contrast, this paper is based on a more general approach [11,
2], based on a functional representation of the communica-
tions. It relies on a generic network model (named GeNoC ),

which formalizes the interactions between three key compo-
nents: interfaces, routing and scheduling. To abstract from
any particular design, no concrete definition is given to these
components. A component is only defined using constraints,
or proof obligations. Those imply the global correctness of
GeNoC . Consequently, the validation of a particular design
is reduced to the verification of these constraints.

GeNoC has been used to validate different architectures,
e.g. wormhole routing [2] (see [10] for more details). Two
dimensional grids constitute popular architectures. GeNoC
has been applied to deterministic networks based on this
structure. In this paper, we show how to extend these results
to adaptive routing algorithms.

In the next section, we briefly summarize the principles of
GeNoC . We give a precise description of the proof obliga-
tions associated with the routing module of GeNoC . Sec-
tion 3 formalizes basic notions for deterministic networks.
Based on these concepts, we present the formalization and
the validation of an adaptive routing algorithm in Section 4.
Section 5 concludes the paper and discusses future work.

2. A GENERIC NETWORK ON CHIP
2.1 A General Model of Communications
GeNoC considers the general communication model of Fig-
ure 1. An arbitrary, but finite, number of nodes are con-
nected to some communication architecture. The latter rep-
resents the interconnection structure, e.g. bus or network.
It comprises topologies, routing algorithms and scheduling
policies. Our model makes no assumption on these compo-
nents. As proposed by Rowson and Sangiovanni-Vincentelli
[9], each node is separated into an application and an inter-
face. The latter is connected to the communication archi-
tecture. Interfaces allow applications to communicate using
protocols. Any interface-application pair matches the layers
of the OSI model. Interfaces generally refer to layers 1 to 4;
applications to layers 4 to 7. Layer 4 is a boundary and can
be part of either interfaces or applications. To distinguish
between interface-application and interface-interface com-
munications, an interface and an application communicate
using messages; two interfaces communicate using frames.

Applications represent the computational and functional as-
pects of nodes. They are either active or passive. Typically,
active applications are processors and passive applications
memories. We consider that each node contains one pas-
sive and one active application, i.e. each node is capable of



Interface

Application

Interface

Application

Interface

Application

Interface

Application

messages

messages

messages

messages

frames

frames

frames

frames

Communication

Architecture

Figure 1: Communication Model

sending and receiving frames. As we want a general model,
applications are not considered explicitly: passive applica-
tions are not actually modeled, and active applications are
reduced to the list of their pending communication opera-
tions. We focus on communications between distinct nodes.
We suppose that in every communication, the destination
node is different from the source node.

2.2 Overview ofGeNoC
Function GeNoC represents the transfer of messages from
their source to their destination. Its main argument is the
list of messages emitted at source nodes. It returns the list
of the results received at destination nodes.

Interfaces. Function send represents the encapsulation of a
message into a frame. Function recv represents the decoding
of this frame to recover the emitted message. The main
constraint associated with these functions expresses that a
receiver should be able to extract the encoded information,
i.e. the composition of function recv with function send
(recv ◦ send) is the identity function.

Routing Algorithm. The routing algorithm is represented
by the successive application of unitary moves (routing hops).
For each pair made of a source node s and a destination node
d, the routing function computes all possible routes available
between s and d. The main constraint associated with the
routing function expresses that each route from s to d ef-
fectively starts in s and uses only existing nodes to end in
d.

Switching Technique. The scheduling policy participates
in the management of conflicts that appear on the network.
It defines the set of communications that can be performed
at the same time. Formally, these commutations satisfy an
invariant. Scheduling a communication, i.e. adding it to
the current set of authorized communications, must preserve
the invariant, for all times and in any admissible state of the
network. The invariant is specific to the scheduling policy.
In our formalization of the scheduling policy, the existence
of this invariant is assumed but not explicitly represented.
From a list of requested communications, the scheduling
function extracts a sub-list that satisfies the invariant. The
rest makes up the list of delayed communications.

Function GeNoC . Function GeNoC is pictured in Fig. 2.
It takes as arguments the list of requested communications
and the characteristics of the network. It produces two lists

as results: the messages received by the destination of suc-
cessful communications and the aborted communications.

The main input of GeNoC is a list T of transactions of the
form t = (id A msgt B). Transaction t represents the inten-
tion of application A to send a message msgt to application
B. A is the origin and B the destination. Both A and B

are members of the set of nodes, NodeSet . Each transaction
is uniquely identified by a natural id.

Briefly, function GeNoC works as follows. For every mes-
sage in the initial list of transactions, it computes the corre-
sponding frame using send . Each frame together with its id,
origin and destination constitutes a missive. Then, GeNoC
computes the routes of the missives and schedules them us-
ing functions Routing and Scheduling . To keep our model
general, function Routing computes a list of routes for every
missive. If the routing algorithm is deterministic, this list
has only one element. Once routes are computed, a travel
denotes the list composed of a frame, its id and its list of
routes. The results of the scheduled travels are computed
by calling recv . The delayed travels are converted back to
missives and constitute the argument of a recursive call to
GeNoC . To make sure that this function terminates, we as-
sociate to every node a finite number of attempts. At every
recursive call of GeNoC , every node with a pending trans-
action will consume one attempt. Function GeNoC halts if
every attempt has been consumed. The first output list R

contains the results of the completed transactions. Every re-
sult r is of the form (id B msgr) and represents the reception
of a message msgr by its final destination B. Transactions
may not run to completion (e.g. due to network contention).
The second output list of GeNoC is named Aborted and con-
tains the canceled transactions.

Function GeNoC is considered correct if every non aborted
transaction t = (id A msg B) is completed in such a way
that B effectively receives msg. Formally, we prove that for
every final result r, there is a unique initial transaction t

such that t has the same id and msg as r.

∀rst ∈ R, ∃!t ∈ T ,

(

IdR(rst) = IdT (t)
∧ Msg

R
(rst) = Msg

T
(t)

∧ DestR(rst) = DestT (t)
(1)

This formula is proved a theorem using the proof obligations
associated with each component. As shown in this formula,
the pencil and paper formulation of GeNoC relies on the
quantification over variables, as well as functions. We have
developed a systematic approach to translate this mathe-
matical model to the ACL2 logic [12]. In the remainder of
this section, we only detail aspects relative to routing algo-
rithms.

2.3 Formalization of Routing Algorithms
2.3.1 Nodes and Parameters
Nodes are defined on an arbitrary domain, GenNodeSet .
A list of elements of that domain is recognized by predi-
cate NodeSetp , which is a constrained function. The set
of nodes of a particular network is noted NodeSet . It is



Routing

Scheduling

Messages Messages
Application Application

Node A

Node A Interface

Node A

Node B Interface

Node B

Node B

FramesFrames
send

recv recv

send

Figure 2: GeNoC : A generic network on chip model

generated from parameters pms defined on an arbitrary do-
main GenParams and function NodeSetGen . Valid param-
eters are recognized by predicate ValidParamsp and consti-
tute the generating base for NodeSet . The functionality of
NodeSetGen is as follows:

NodeSetGen : GenParams → P(GenNodeSet) (2)

These functions are valid if, for all parameters recognized by
predicate ValidParamsp, every element produced by func-
tion NodeSetGen belongs to domain GenNodeSet (i.e. sat-
isfies predicate NodeSetp):

Proof Obligation 1. Definition of NodeSet .
(defthm nodeset-generates-valid-nodes

(implies (ValidParamsp pms)

(NodeSetp (NodesetGenerator pms))))

Finally, we need to prove that, for each particular instance
of predicate NodeSetp, any sublist of a valid list of nodes is
also a valid list of nodes

Proof Obligation 2. Sublists of Valid Node Lists.

(defthm subsets-are-valid

(implies (and (NodeSetp x) (subsetp y x))

(NodeSetp y)))

Functions NodesetGenerator, ValidParamsp and NodeSetp

are constrained to satisfy the given properties.

2.3.2 Route Validity
A route r is correct according to some missive m if (1) the
first element of r equals the origin of m; (2) the last element
of r equals the destination of m; (3) each node of r is a mem-
ber of the set NodeSet of the existing nodes. The length of
any route must be greater than 2. Among these properties,
one only depends on NodeSet . To avoid free variables, we
state it in a separate predicate. The other properties are
defined as follows:

(defun ValidRoutep (r m)

(and (equal (car r) (OrgM m))

(equal (car (last r)) (DestM m))

(<= 2 (len r))))

Function CheckRoutes takes a list of routes, a missive and
the set NodeSet. It checks that any route of the list of routes
satisfies ValidRoutep and is a subset of NodeSet.

(defun CheckRoutes (routes m NodeSet)

(if (endp routes)

t

(let ((r (car routes)))

(and (ValidRoutep r m)

(subsetp r NodeSet)

(CheckRoutes (cdr routes) m NodeSet)))))

Predicate CorrectRoutesp checks travels correctness accord-
ing to missives, i.e. routes associated with some travel v sat-
isfies predicate CheckRoutes for some missive m such that v

and m have the same identifier and the same frame. We also
check that the list of travels and the list of missives have the
same length.
(defun CorrectRoutesp (V M NodeSet)

(if (endp V)

(if (endp M)

t ;; len(M) = len(V)

nil)

(let* ((tr (car V))

(msv (car M))

(routes (RoutesV tr)))

(and (CheckRoutes routes msv NodeSet)

(equal (IdV tr) (IdM msv))

(equal (FrmV tr) (FrmM msv))

(CorrectRoutesp (cdr V)

(cdr M) NodeSet)))))

2.3.3 Generic Routing Function
The generic routing function takes two arguments: a mis-
sive list and the existing nodes. It returns a travel list. Its
signature is the following:

(((Routing * *) => *))



The local witness of the encapsulate simply corresponds to
routing in a bus. There is only one route made of the origin
and the destination. In the following definition, functions
IdM, FrmM, OrgM, DestM are the accessors of the various com-
ponents of a missive: identifier, frame, origin, destination.

;; local witness

(local (defun route (M)

(if (endp M)

nil

(let* ((msv (car M))

(Id (IdM msv))

(frm (FrmM msv))

(org (OrgM msv))

(dest (DestM msv)))

(cons (list Id frm

(list (list org dest)))

(route (cdr M)))))))

(local (defun routing (M NodeSet)

(declare (ignore NodeSet))

(route M)))

The main constraint on function Routing states that it must
satisfy predicate CorrectRoutesp.

Proof Obligation 3. Routing Correctness

(defthm Routing-CorrectRoutesp

(let ((NodeSet (NodeSetGenerator pms)))

(implies (and (Missivesp M NodeSet)

(ValidParamsp pms))

(CorrectRoutesp (Routing M NodeSet)

M NodeSet))))

Another constraint checks that this function outputs a valid
travel list. Predicate Vlstp checks that each travel is a tuple
of the form (id frm Routes), where id is a natural, frm is not
equal to nil, and each route in list Routes contains at least
two nodes.

Proof Obligation 4. Type of function Routing

(defthm Vlstp-routing

(let ((NodeSet (NodeSetGenerator pms)))

(implies (and (Missivesp M NodeSet)

(ValidParamsp pms))

(Vlstp (routing M NodeSet)))))

We have shown the main constraints on function Routing .
Some locals lemmas on the witness are necessary. There are
two additional constraints. One that checks that function
Routing outputs a true list. Another one checks that func-
tion Routing returns nil if the initial missive list is empty.

3. DETERMINISTIC ROUTING
In this section, we instantiate the previous generic routing
module with a deterministic routing algorithm in a 2D mesh.
This application has been treated in more detail [12]. We
recall necessary elements to make the paper self-contained.

3.1 Mesh Node Definition
In a 2D mesh, a node is represented by a pair of coordinates
on the X and Y axes. A pair of coordinates is recognized by
predicate Coordinatep. A list of coordinates is recognized
by predicate mesh-nodesetp.

Mesh parameters are the number of nodes in each dimen-
sion; they are recognized by predicate ValidParamsp2D. Let
NX and NY denote the number of nodes in the first and
the second dimension. The node set, i.e. the set of coordi-
nates from (0 , 0 ) to ((NX − 1 ), (NY − 1 )), is generated by
function mesh-nsgen. It is defined as follows.

Function XGen(NX , y) takes as arguments the number NX

of nodes in the first dimension and a constant y in the second
dimension. It generates all admissible pairs for that partic-
ular y. Function mesh-nsgen computes the coordinates by
applying function XGen to all values of y ranging from zero
to NY − 1 . To prove the main constraint on the node def-
inition, we first prove that the generation on the X axis is
valid, and use this fact prove that nodes generated on the Y
axis are valid.

Theorem 1. Mesh Nodes Validation.

(defthm 2d-mesh-nodesetgenerator

(implies (ValidParamsp2D pms)

(mesh-nodesetp (mesh-nsgen pms))))

Once this theorem is proven, we check that the coordinates
are a valid instance of the generic node definition by proving
the following theorem:

(defthm check-2D-mesh-nodeset

t

:rule-classes nil

:hints (("GOAL"

:use

(:functional-instance

nodeset-generates-valid-nodes

(NodeSetp 2D-mesh-NodeSetp)

(NodeSetGenerator mesh-nodeset-gen)

(ValidParamsp mesh-hyps))

:in-theory

(disable nodeset-generates-valid-nodes))))

This forces ACL2 to automatically generate and check all
the constraints associated with the encapsulate event. This
technique is systematically used to check compliance of mod-
ules. More details can be found in [12].

3.2 Dimension Order Routing
Dimension-order routing [4] is a deterministic routing scheme
well-suited for uniform traffic distribution. The dimensions
of the network are arranged in predetermined monotonic
order and packets traverse dimensions in sequence. First,
packets traverse the network in the lowest or highest di-
mension until no further move is needed in this dimension.
Then, they go along the next dimension and so forth until
they reach their destination. These algorithms are minimal.



Dimension-order routing in two-dimensional meshes is called
XY routing (Fig. 3). The dimensions of the mesh are named
X and Y . The chosen order is ”X is less than Y”. Packets
travel along the X dimension completely and then along the
Y dimension.

X

Y
(1 1)

(1 2)

(0 0) (1 0) (2 0)

(2 1)(0 1)

(0 2) (2 2)

Figure 3: XY Routing

Let s = (sx , sy ) be a node containing a packet addressed to
node d = (dx , dy). In the XY algorithm, the X direction
has higher priority. If the X of destination d is greater
(resp. less) than the X of origin s, the next node is the
node (sx + 1 , sy) (resp. (sx − 1 , sy) ) on the X-axis. Other-
wise, the X’s are equal and we compare the Y’s: the next
node is either (sx , sy + 1 ) or (sx , sy − 1 ) on the Y-axis. This
algorithm is applied recursively to compute the route from a
source to a destination. The measure is simply the distance
between two nodes.

Definition 1. XY Routing Algorithm

(defun xy-routing (from to)

(declare (xargs :measure (dist from to)))

;; from = (x_o y_o) dest = (x_d y_d)

(if (or (not (coordinatep from))

(not (coordinatep to)))

nil

(let ((x_d (car to))

(y_d (cadr to))

(x_o (car from))

(y_o (cadr from)))

(if (and (equal x_d x_o) ;; x_d = x_o

(equal y_d y_o)) ;; y_d = y_o

;; if the destination is equal to

;; the current node, we stop

(cons from nil)

(if (not (equal x_d x_o)) ;; x_d /= x_o

(if (< x_d x_o) ;; decreasing x

(cons from

(xy-routing (list (- x_o 1) y_o) to))

;; x_d > x_o

(cons from

(xy-routing (list (+ x_o 1) y_o) to)))

;; otherwise we test the y-direction

;; y_d /= y and x_d = x_o

(if (< y_d y_o)

(cons

from

(xy-routing (list x_o (- y_o 1)) to))

;; y_d > y_o

(cons

from

(xy-routing (list x_o (+ y_o 1)) to))))))))

This algorithm has been proven to conform with GeNoC [12].
This algorithm gives the priority to moves along the X-axis.
We define function yx-routing to give the priority to the
Y-axis. We do not detail the definition, which is mainly
obtained by switching the order of the tests to first con-
sider the Y-axis. This function is proven to conform with
GeNoC by a simple cut and paste from the proof of function
xy-routing.

4. ADAPTIVE ROUTING

4.1 Principles
Among minimal and adaptive algorithms, a well-known tech-
nique is to decompose a network into subnetworks. This is
an abstract view of the network and subnetworks do not re-
ally exist. Depending on its destination, a packet uses one
particular subnetwork. In each subnetwork, several minimal
paths are available.

A typical example is the double Y-channel routing algorithm.
This algorithm applies to a two-dimensional mesh where
nodes are connected by one bidirectional channel in the X

dimension and by two bidirectional channels in the Y di-
mension (Fig. 4). The network is cut into two subnetworks.
Each subnetwork has one channel in the Y dimension. Each
subnetwork uses the X channel in only one direction. The
X+ subnetwork (in dotted lines on Figure 4) uses this chan-
nel in the ascending X dimension. The X− subnetwork (in
plain lines on Figure 4) uses this channel in the decreasing X

dimension. Let s and d be the source and destination nodes
of a packet. Their coordinates along the X axis are noted sx

and dx. If at some node the destination of a packet is on the
right (i.e. if dx > sx ), the packet uses the X+ subnetwork; if
the destination is on the left (i.e. if dx < sx ), the packet used
the X− subnetwork. An arbitrary choice is made if dx = sx .
In each subnetwork, several minimal paths are possible. A
packet traverses the network through a single subnetwork.

Y

X
(0 0) (2 0)(1 0)

(2 1)(1 1)(0 1)

(0 2) (1 2) (2 2)

(3 0)

(3 1)

(3 2)

(3 3)(2 3)(1 3)(0 3)

s

d1

d2

Figure 4: Double Y routing algorithm



d

s

(2 2)

(0 0)

(1)

(6)

(3) (2)

(5)

(4)

(2)

(4)

(3)(5)

Figure 5: Minimal Possible Paths in a 3×3 mesh

Example 1. Let us consider Figure 4 and a packet, p1

emitted at node s = (2 1 ) and destined to node d1 = (0 0 ).
As the destination of p1 is on the left, it uses the X− sub-
network. The possible paths are the following:
(2 1 ) (1 1 ) (0 1 ) (0 0 ), (2 1 )(1 1 )(1 0 )(0 0 ) or
(2 1 ) (2 0 ) (1 0 ) (0 0 ). Similarly, a packet, p2, emitted at
node s and destined to node d2 = (3 3 ) uses one of the fol-
lowing routes of the X+ subnetwork: (2 1 )(3 1 )(3 2 )(3 3 ),
(2 1 )(2 2 )(3 2 )(3 3 ) or (2 1 ) (2 2 ) (2 3 ) (3 3 ).

4.2 ACL2 Definition of Double Y
The generic routing function of GeNoC computes all possi-
ble routes between a source and a destination. The concrete
function representing the double Y algorithm computes all
possible minimal routes between two coordinates of a grid.
In practice, only one route is taken. By proving all of them
correct, the route taken by some message is correct.

For instance, between node (0 0) and node (2 2), this algo-
rithm proposes six possible routes (see Figure 5); between
node (0 0) and node (3 2), there are ten possible routes (see
Figure 6).

We model the double Y algorithm as a function that applies
alternatively the XY and the YX algorithms. First, note
that for a node that has a common coordinate c with des-
tination d, no choice is possible. In that case, the minimal
path is to perform moves along the corresponding axis. Only
nodes that have no common coordinate with the destination
offer a choice between the two algorithms (XY or YX).

Our representation of the double Y algorithm is mainly per-
formed by function dy1. We assume that dy1 is called in a
context where the origin and the destination have no com-
mon coordinate. This function takes the following input
arguments:

• A list of sources. A source is simply a node at which a
choice is possible. Initially, this list contains the initial
(source) node.

• The final destination.

• A flag telling which algorithm should be applied at the
current step. The flag is a Boolean. If it is true, one

s

d

(1)

(2)

(3)

(0 0)

(4)

(5)

(6)

(7)

(8)(9)(10)

(3 2)

Figure 6: Minimal Possible Paths in a 4×3 mesh

should apply the XY algorithm. Otherwise, the YX
algorithm is applied.

• A list of prefixes. A prefix is a route where nodes have
no common coordinate with the final destination. Pre-
fixes are used to save intermediate route computations.

This function relies on three principal subfunctions:

• Function extract-prefixes extracts prefixes from a
route and a destination

• Function GetSources extracts sources from a route

• To prove the termination of function dy1, we need a
specific property on list sources. This property is de-
fined by predicate CloserListp.

Functionextract-prefixes. We first need a subfunction
that extracts prefixes from a route r and a given destination
d. This function is named extract-prefixes and takes as
arguments a route r and a destination d. It is defined as
follows1 :

(defun extract-prefixes (r d)

;; compute prefixes suggested by route r

;; for destination d

(if (or (not (coordinatep d))

(not (2D-mesh-nodesetp r)))

nil

(if (endp r)

nil

(let* ((n1 (car r)) ;; n1 = first node of r

(n1_x (car n1))

(n1_y (cadr n1))

(d_x (car d))

(d_y (cadr d)))

(if (or (equal n1_x d_x) (equal n1_y d_y))

;; nodes with common coordinate with d

;; do not allow any choice.

1Function append-e-all appends its first argument to each
element of its second argument.



nil

(cons (list n1) ;; n1 is a prefix

(append-e-all

n1

;; all other prefixes start with n1

;; and recursive call

(extract-prefixes (cdr r) d))))))))

Example 2. From the route produced by the XY routing
algorithm from node (0 0) to (3 2), this function extracts
three prefixes:
(((0 0)) ((0 0) (1 0)) ((0 0) (1 0) (2 0))).

FunctionGetSources. We define function GetSources to
extract a list of sources from a route r and a given des-
tination d. This function is first defined by subfunction
GetSources1:

(defun GetSources1 (r d)

(if (or (endp r) (not (coordinatep d))

(not (2d-mesh-nodesetp r)))

nil

(let* ((n1 (car r))

(n1_x (car n1))

(n1_y (cadr n1))

(d_x (car d))

(d_y (cadr d)))

(if (or (equal n1_x d_x) (equal n1_y d_y))

nil ;; n1 shares a coordinate with d

(cons n1 (GetSources1 (cdr r) d))))))

The last nodes of prefixes are always sources and we append
prefixes with routes computed from sources. Thus, a source
appears both in a prefix and in a new route. To avoid the
introduction of duplicates, we remove the first node of a
route before extracting sources from it.

(defun GetSources (r d)

;; first node removed because already computed.

;; (it is already in the prefix)

(GetSources1 (cdr r) d))

Example 3. From the route produced by the XY routing
algorithm from node (0 0) to (3 2), function GetSources

produces two sources: nodes (1 0) and (2 0). Node (0 0) is
already part of prefixes (see Example 2). It is not duplicated
as a source.

PredicateCloserListp. Finally, to prove the termination
of our main function, we need that list sources be made of
successive nodes, i.e. the distance to the destination from
an element of sources and its successor decreases by 1. This
is expressed by predicate CloserListp defined as follows:

(defun CloserListp (r d)

;; recognizes r as a list such that any higher

;; position gives a nodes that is closer to d

;; More exactly, the distance decreases by 1

;; if the position increases by 1,

(if (or (endp r) (endp (cdr r)))

t

(and (equal (dist (cadr r) d)

(1- (dist (car r) d)))

(closerlistp (cdr r) d))))

Functiondy1. The definition of dy1 is given below. The
measure is the distance between nodes. To prove the ter-
mination some hints are required. They are mostly used to
disable some rules of the arithmetic library to avoid loops in
the rewriter. We also need 7 additional lemmas. They show
that the distance between nodes decrease by one at each ap-
plication of the XY or the YX routing algorithm. The first
branch of the conditional statement (lines 04 to 08) simply
gets rid of bad inputs and ensures that list sources gives
nodes that get closer to the destination. The first branch
of the cond statement (lines 16 to 19) stops the algorithm
because we have reached a node that shares a coordinate
with the destination. The let statement at line 21 com-
putes a new route by applying either the XY routing algo-
rithm (lines 24 to 35) or the YX algorithm (lines 36 to 44).
These two computations are similar, we only detail the XY
case. We compute (line 26) a route from the first element
of sources (line 10) and the destination. We append (line
30) this route with the first prefix (line 09) of list prefixes.
This new route is cons’ed to a recursive call of dy1. The ar-
guments of this call are the sources extracted from the new
route (line 31), the destination and the negation of the flag
(line 32), a new list of prefixes. The latter is obtained by
adding the prefix used in the computation of the new route
to every prefix suggested by this new route. Finally (lines 45
to 47), the routes computed in the let statement are added
to the application of dy1 to the remaining sources.

01 (defun dy1 (sources d flg prefixes)

02 (declare (xargs :measure

03 (dist (car sources) d)))

04 (if (or (endp sources)

05 (not (CloserListp sources d))

06 (not (2d-mesh-nodesetp sources))

07 (not (coordinatep d)))

08 nil

09 (let* ((prefix (car prefixes))

10 (s (car sources))

11 (s_x (car s))

12 (s_y (cadr s))

13 (d_x (car d))

14 (d_y (cadr d)))

15 (cond

16 ((or (equal s_x d_x) (equal s_y d_y))

17 ;; if one coordinate has been reached,

18 ;; we stop

19 nil)

20 (t

21 (let

22 ((routes

23 (cond

24 (flg

25 ;; last was yx, next is xy

26 (let ((suffix (xy-routing s d)))

27 ;; the new route is made of the prefix

28 ;; and the new suffix of the route.

29 (cons



30 (append prefix suffix)

31 (dy1 (getSources suffix d)

32 d nil ;; next is YX

33 (append-l-all2

34 prefix

35 (extract-prefixes suffix d))))))

36 (t ;; last was xy-routing, next is yx

37 (let ((suffix (yx-routing s d)))

38 (cons (append prefix suffix)

39 (dy1 (getSources suffix d)

40 d t ;;next is XY

41 (append-l-all

42 prefix

43 (extract-prefixes suffix d))))

44 )))))

45 (append routes

46 (dy1 (cdr sources)

47 d flg prefixes)))))))))

We add the cases where no choice is possible. This defines
function dy below:

(defun dy (s d)

(if (and (coordinatep s) (coordinatep d)

(or (equal (car s) (car d))

(equal (cadr s) (cadr d))))

(list (xy-routing s d))

(append ;; flag is true,we start with xy

(dy1 (list s) d t nil)

;; flag is false, we start with yx

(dy1 (list s) d nil nil))))

Example 4. Let us consider the computation of all routes
between nodes (0 0) and (3 2) in a 4 × 3 mesh. Let us
consider that the flag is true. List sources contains source
node s. List prefixes is initially empty. The first iteration
produces route rxy,0 by the application of the XY algorithm
(function xy-routing) to node s (see Figure 7). This route
suggests two new sources: nodes s1 and s2. The new prefix
contains a route made of a single node (s) and two partial
routes: one from s to s1, and one from s to s2.

The algorithm is recursively applied to s1, and then to s2.
The application to s1 produces three routes (see Figure 8).
The first route is obtained by the addition of s to the result of
yx -routing(s1, d), the second route is obtained by the addition
of s and s1 to the result of xy-routing(s3, d), and the third
route is obtained by the addition of s, s1 and s3 to the result
of yx -routing(s4, d). The application to s2 produces the last
two routes (see Figure 9). The first route is obtained by the
addition of s and s1 to the result of yx-routing(s2, d), the
second route is obtained by the addition of s, s1 and s2 to
the result of xy-routing(s4, d).

In the case of the flag is initially set to false, this algorithm
produces four routes. We obtain all routes between s and d.

We complete the definition to match the signature of the
generic routing function.

2Function append-l-all appends its first argument (which
is a list) to every element of its second argument.

d

rxy,0

s s1 s2

Figure 7: First iteration of the algorithm: applica-

tion of xy-routing(s, d)

(defun DoubleYRouting1 (Missives)

(if (endp Missives)

nil

(let* ((miss (car Missives))

(org (OrgM miss))

(dest (DestM miss))

(Id (IdM miss))

(frm (FrmM miss)))

(cons (list id frm (dy org dest))

(DoubleYRouting1 (cdr Missives))))))

(defun DoubleYRouting (Missives NodeSet)

(declare (ignore NodeSet))

(DoubleYRouting1 Missives))

4.3 Verification
The main property to verify is that predicate CorrectRoutesp
holds for our double Y algorithm. We can decompose the
proof in two subproperties: all routes produced by dy(s,d)

(1) start with s and end with d; (2) are subsets of the set
of existing nodes. The proof of the latter is rather easy. We
focus on the proof of the former.

FunctionGetSources. This function must return a list of
nodes that do not share a coordinate with the destination.
We formalize this property by predicate no-common-coord-

inate defined as follows:

(defun no-common-coordinate (lst d)

;; nodes in lst do not share a coordinate with d

(if (endp lst)

t

(let ((n (car lst))) ;; pick a node

(and (not (equal (car n) (car d))) ;; x-coord.

(not (equal (cadr n) (cadr d)));; y-coord.

(no-common-coordinate (cdr lst) d)))))

We prove that function getSources satisfies it:

(defthm no-common-coordinate-getSources1

(no-common-coordinate (getSources1 lst d) d))



d

s s1 s2

rxy,1

s3 s4

rxy,2

rxy,3

Figure 8: Iterations 2,3 and 4 : application

of yx -routing(s1, d), xy-routing(s3, d) and yx-

routing(s4, d)

d

s s1 s2

s4

rxy,4

rxy,5

Figure 9: Iterations 5 and 6 : application

of yx -routing(s2, d) and xy-routing(s4, d)

This proof is fully automatic in ACL2 and do not require
any additional lemmas.

Prefixes and Sources.To prove that function dy produces
routes that starts with the right origin, we need to prove
that functions xy-routing and yx-routing produce correct
routes. We also need a similar property for prefixes and
sources. Functions xy-routing and yx-routing have al-
ready been proven to conform with GeNoC . Therefore, we
already know that they produce correct routes. The first
node of any prefixes must start with the origin. This is
expressed by the following function:

(defun inv-prefixes (prefixes s)

(if (endp prefixes)

t

(and (equal (caar prefixes) s)

(inv-prefixes (cdr prefixes) s))))

We have a similar property for the list of sources:

(defun inv-sources (sources s)

(if (endp sources)

t

(and (equal (car sources) s)

(inv-sources (cdr sources) s))))

The relation between these two invariants is that the second
one holds only if the list of prefixes is empty. We group them
in the following definition:

(defun inv (prefixes sources s)

(if (endp prefixes)

(inv-sources sources s)

(inv-prefixes prefixes s)))

This invariant is used in the next inductive proof. This in-
variant is trivially satisfied when list prefixes and sources

are both empty (base case).

Main Lemma.The main lemma proves that function dy1

satisfies predicate all-validroutep:

(defthm validroutep-apply-DoubleY-all-nodeset

(implies (and (all-2d-mesh-nodesetp prefixes)

(coordinatep d) (coordinatep s)

(not (equal s d))

(no-common-coordinate sources d)

(consp sources)

(2d-mesh-nodesetp sources)

(inv prefixes sources s))

(all-validroutep

(dy1 sources d flg prefixes) s d)))

This lemma is proven using the induction scheme suggested
by function dy1. To complete the proof we need to show
that invariant inv is preserved in the induction step. This
amounts to the proof of properties expressing the link be-
tween this invariant and functions append-l-all, getSources,
and extract-prefixes. In the case of the XY routing algo-
rithm, this is expressed as follows:

(defthm inv-append-l-all-xy-routing

(implies (and (inv prefixes sources s)

(no-common-coordinate sources d)

(coordinatep s) (coordinatep d)

(consp sources)

(all-2d-mesh-nodesetp prefixes)

(2d-mesh-nodesetp sources))

(inv (append-l-all

(car prefixes)

(extract-prefixes

(xy-routing (car sources) d)

d))

(getSources1

(cdr (xy-routing (car sources) d))

d)

s)))

We prove a similar lemma for function yx-routing. The
two proofs rely on the correctness of the XY and YX algo-
rithms, as well as additional lemmas expressing the relations
between more basic functions (like apppend-e-all) and the
invariant.



Table 1 summarizes data about the ACL2 proof. The size
is measured by the number of lines of code. Results re-
garding execution time are given in seconds. These results
were obtain on an Intel Dual Core 2400 machine with 2GB
of memory. The row regarding function dy includes also
the definition and the validation of function yx-routing.
The latter reuses part of the book developed for function
xy-routing. The proof time for function dy is mainly due
to arithmetic reasoning in the termination proof.

defun defthm size time
Mesh NodeSet 8 6 120 0.55
xy-routing 7 44 520 3.8
dy 21 84 1200 67.6

Table 1: Data for the Double Y Algorithm

5. CONCLUSION AND FUTURE WORK
We have presented the specification and the validation of
an adaptive routing algorithm for a 2D mesh. The adaptive
algorithm makes use of definitions and theorems developed
for the deterministic case. Following “The Method” ([7])
the definition and the validation of the double Y algorithm
could be developed in about two weeks by an ACL2 expert
familiar with routing algorithms in two-dimensional meshes
and the GeNoC framework.

Our current treatment of adaptive routing algorithms con-
siders the computation of all possible routes. If this works
for minimal algorithms, it might not be feasible for non-
minimal algorithms. We plan to extend GeNoC with a
global notion of the network state and to study the applica-
tion to non-minimal algorithms. Finally, the current GeNoC
definition is very abstract and very simplified. Successive,
proven correct refined models are needed before reaching the
level of details of an implementation specification. We plan
to extend our work in this direction.

As noticed by two anonymous reviewers, our use of con-
strained functions and functional instantiation raises an im-
portant issue. The issue is that ACL2 has no event whose
success means “this concrete system is a valid instance of
this generic system”. Currently, a functional-instantiation is
successful if ACL2 can prove (1) that the instantiated lemma
implies the original goal, and (2) that the concrete functions
satisfy the given constraints. One could imagine the follow-
ing “improvement” of ACL2. If ACL2 cannot prove that the
constraints are satisfied, it will try to solve the original goal.
In our case, this would mean proving ’t’ and would obvi-
ously succeed. Our trick of proving “t” would have nothing
to do with checking the valid instantiation of a generic sys-
tem. In any case, we would call for the development of a new
event that will only check that concrete functions satisfy the
constraints 3.

Acknowledgements
The author would like to thank the anonymous referees for
their constructive comments. We are especially grateful to
the reviewer who provided two pages of apposite comments.

3In release 3.2.1 of ACL2, experimental macro definitions
(see file defspec.lisp in book directory make-event) are being
developed by S. Ray and M. Kaufmann to solve this issue.

6. REFERENCES
[1] L. Benini and G. D. Micheli. Networks on Chips: A

New SoC Paradigm. Computer, 35(1):70–78, 2002.

[2] D. Borrione, A. Helmy, L. Pierre, and J. Schmaltz. A
Generic Model for Formally Verifying NoC
Communication Architectures: A Case Study. In Proc.
of First International Symposium on
Networks-on-Chip (NOCS’07), pages 127–136,
Princeton, NJ, USA, 7-9 May 2007. IEEE.

[3] W. Büttner. Is Formal Verification Bound to Remain
a Junior Partner of Simulation? In D. Borrione and
W. Paul, editors, Correct Hardware Design and
Verification Methods (CHARME’05), volume 3725 of
LNCS, 2005. Invited Speaker.

[4] W. Dally and C. Seitz. Deadlock-Free Message
Routing in Multiprocessor Interconnection Networks.
IEEE Transactions on Computers, C-36(5):547–553,
May 1987.

[5] B. Gebremichael, F. Vaandrager, M. Zhang,
K. Goossens, E. Rijpkema, and A. Rădulescu.
Deadlock Prevention in the Æthereal protocol. In
D. Borrione and W. Paul, editors, Correct Hardware
Design and Verification Methods (CHARME’05),
volume 3725 of LNCS, pages 345–348, 2005.

[6] K. Goossens, J. Dielissen, and A. Rădulescu. Æthereal
Network on Chip: Concepts, Architectures, and
Implementations. IEEE Design and Test of
Computers, 22(5):414–421, September-October 2005.

[7] M. Kaufmann, P. Manolios, and J. S. Moore. ACL2
Computer Aided Reasoning: An Approach. Klulwer
Academic Press, 2000.

[8] S. Owre, J. Rushby, and N. Shankar. PVS: A
Prototype Verification System. In D. Kapur, editor,
Eleventh International Conference on Automated
Deduction (CADE’92), volume 607 of LNAI, pages
748–752, Saragota, NY, June 1992. Springer-Verlag.

[9] J. Rowson and A. Sangiovanni-Vincentelli.
Interface-Based Design. In 34th Design Automation
Conference (DAC’96), pages 178–183, 1997.

[10] J. Schmaltz. Une formalisation fonctionnelle des
communications sur la puce. PhD thesis, Joseph
Fourier University, Grenoble, France, January 2006. In
French. A partial translation is available upon request
to the first author.

[11] J. Schmaltz and D. Borrione. A Generic Network on
Chip Model. In T. Melham and J. Hurd, editors,
Theorem Proving in Higher Order Logics
(TPHOLs’05), volume 3603 of LNCS, pages 310–325,
Oxford, UK, August 2005. Springer-Verlag.

[12] J. Schmaltz and D. Borrione. Towards a Formal
Theory of On Chip Communications in the ACL2
Logic. In Proceedings of the Sixth International
Workshop on the ACL2 Theorem Prover and its
Applications, part of FloC’06, Seattle, Washington,
USA, August 14-15 2006. ACM.

[13] G. Spirakis. Beyond Verification: Formal Methods in
Design. In A. Hu and A. Martin, editors, Formal
Methods in Computer-Aided Design (FMCAD’04),
volume 3312 of LNCS, Austin, Texas, USA, November
2004. Springer-Verlag. Invited Speaker.


