
A Study of Some Flawed Adders
*** Work In Progress ***

Robert S. Boyer
Department of Computer Sciences

1 University Station, M/S C0500
Austin TX 78712-0233, USA
boyer@cs.utexas.edu

Warren A. Hunt, Jr.
Department of Computer Sciences

1 University Station, M/S C0500
Austin TX 78712-0233, USA

hunt@cs.utexas.edu

ABSTRACT
We are developing analysis and verification mechanisms for
models composed of hierarchically specified, cooperating finite-
state machines. We have used this system to represent and
compare a number of flawed adder specifications to a refer-
ence adder specification in an effort to determine the useful-
ness our tools to analyze flawed-circuit models; this deter-
mination is still in progress.

We discuss a mechanism to count the number of different be-
haviors between two circuits. We present two different kinds
of flawed adder specifications, and we count the number of
different behaviors between these adders and our reference
adder. We are attempting to determine if the number of
different behaviors can be a useful metric when attempting
to discover subtle, possibly induced, flaws. We also investi-
gate the use of dependency information as another means to
determine whether a circuit might have been inadvertently
or maliciously altered. The novelty, if any, of our approach
lies in our ability to exactly count the number of cases where
two Boolean functions differ.

Categories and Subject Descriptors
Hardware Specification [Formally specified HDL, Fault
Analysis]: ACL2-based Specifications; Circuit Verification
[Mechanical Proofs]: Fault discovery—performance mea-
sures

1. INTRODUCTION
As more and more of our supply chain for integrated cir-
cuits moves off shore, it is important that we possess the
means to ensure that foreign designs and remotely manu-
factured devices do indeed meet their specifications. We
are investigating the use of formal modeling and mechanical

∗An abbreviated, altered version of this paper with the title
!Circuit Specification, Abstraction, and Reverse Engineering
appeared in the unpublished proceedings of the 2007 High
Confidence in Computing Systems conference.

verification to this end. We present the use of the ACL2
[15, 14, 12, 11, 13] toolsuite to determine whether various
flawed adders seem maliciously altered, just incorrectly de-
signed, or maybe contain internal wires “stuck-at” specific
values. This work was originally conceived as a part of our
work with the formalization of the E language [3]. Our E-
language effort is a refinement of our previous work on the
DUAL-EVAL language [5] and the DE2 language [10]. We
are experimenting with different tools in support of formal-
methods-based CAD tools [9].

Our approach deeply embeds [1] a BDD system [6] within
the ACL2 theorem-proving system in such a manner that
it allows a user the means to directly manipulate Boolean
functions represented as BDDs. Our ability to include such
a BDD system is based on our definition of a Hash CONS op-
eration [7, 8, 16, 17] that we call HONS. The logical definition
of HONS is exactly the same as the pairing function CONS, but
its implementation ensures that only a single copy of each
distinct pair is created [2]. In addition to our definition of
HONS, we have implemented a mechanism that permits any
ACL2 function to be memoized; such a memoization capa-
bility allows the standard, recursive version of the Fibonacci
function to execute in linear time. It is this feature that al-
lows us to actually count the exact number of differences
between two functions represented as BDDs.

Our study is empirical, and we note that this effort is a
work in progress. We have investigated several thousand
different flawed adders and determined the exact number
of incorrect answers that each adder produces. Our study
revolves around comparing the 65 output bits of flawed 64-
bit adders to the 65 output bits of a known good 64-bit
adder. We do this by introducing flaws and then calculate
the number of incorrect answers as a function of all 2129

possible input configurations. Our use of BDDs to repre-
sent Boolean functions is nothing new; however, our ability
to count the exact number of differences between Boolean
functions represented with BDDs may provide some insight
in determining the kind of flaws discovered.

In some cases, we have produced flawed adders that only ex-
hibit a single incorrect answer bit; that is, we have produced
adders that are flawed in such a manner that the sum is cor-
rect for all of the 2129 possible input combinations except for
exactly one of the input cases where the answer is incorrect
in only one bit position. To find such a difference using sim-
ulation alone is practically an impossible task. However, in

such cases, the input to output information flow is radically
different than in other cases where, for instance, a single
gate is flawed.

We begin by informally describing the problem we are in-
vestigating. We briefly describe our adder specifications and
then we outline how we create flawed-adder specifications.
We discuss our mechanisms for measuring the differences be-
tween our known good adder specification and the various
flawed adders, and we present our findings. The technical
presentation herein assumes some knowledge of using a for-
mal logic, in this case ACL2, for specifying computations;
the findings can be read independently.

2. ADDER SPECIFICATION EQUATIONS
We have defined several recursive functions that operate like
variable-width adders. For the purposes of this study, we do
not actually generate thousands of different adder netlists,
but if necessary we could. Instead, we compare the equa-
tions that our different adder specifications represent. We
compare the outputs on a bit-by-bit basis with two mecha-
nisms: counting and cone-of-influence information flow.

2.1 Boolean Function Representation and Ma-
nipulation

Before we can specify our adder functions, we need a method
to represent Boolean equations that we can later compare.
We represent Boolean functions as binary trees terminating
with T or NIL. We construct such trees using ACL2’s CONS
pairing operation, where each level of the tree represents a
variable. For example, consider the disjunction of A and B.
Actually, we use the HONS pairing operation, which is logi-
cally identical to CONS; ACL2’s implementation guarantees
that only one copy of each unique HONS pair actually exists.

O <-- A ; This simple tree represents
/ \ ; the disjunction of A and B.
/ \
T O <-- B

/ \ ; The tree is represented by
/ \ ; (HONS T (HONS T NIL))
T NIL ; which prints as: (T T).

The interior nodes above labeled with A and B are actually
CONS, and T and NIL represent terminal nodes that represent
logic true and false, respectively. We only accept such trees
as recognized by the NORMP function.

(defun normp (x)
(if (atom x)

(booleanp x)
(and (normp (car x))

(normp (cdr x))
(if (atom (car x))

(not (equal (car x) (cdr x)))
t))))

NORMP does not recognize trees containing any internal node
having two identical terminal (T or NIL) children.

The meaning of a Boolean function is given by the EVAL-BDD
function, which given a (function) tree and an assignment
of Boolean values to variables, produces the output of the
function for that assignment.

(defun eval-bdd (x values)
(if (atom x)

x
(if (car values)

(eval-bdd (car x) (cdr values))
(eval-bdd (cdr x) (cdr values)))))

Next, We define Q-ITE, a three-argument argument func-
tion that is essentially a BDD-based, symbolic If-Then-Else
(ITE) operation. We will use this function to define all other
logic functions.

(defmacro qcar (x)
`(cond ((atom ,x) ,x) (t (car ,x))))

(defmacro qcdr (x)
`(cond ((atom ,x) ,x) (t (cdr ,x))))

(defmacro qcons (x y)
`(cond ((or (and (eq ,x t) (eq ,y t))

(and (eq ,x nil) (eq ,y nil)))
,x)
(t (hons ,x ,y))))

(defun q-not (x)
(if (atom x)

(if x nil t)
(hons (q-not (car x))

(q-not (cdr x)))))

(defun q-ite (x y z)
(cond
((null x) z)
((atom x) y)
(t
(let
((y (if (hqual x y) t y)) ; Simplify Left
(z (if (hqual x z) nil z))) ; Simplify Right
(cond
((hqual y z) y) ; (if x y y) => y
((and (eq y t) (eq z nil))
x) ; (if x T NIL) => x
((and (eq y nil) (eq z t)) ; Optimization
(q-not x)) ; (if x NIL T) => (NOT x)
(t (let

((a (q-ite (car x) (qcar y) (qcar z)))
(d (q-ite (cdr x) (qcdr y) (qcdr z))))

(qcons a d))))))))

A more thorough definition and the statement of correctness
for our Q-ITE function can be found in our companion paper
[4].

Given the definition of the Q-ITE operation, we can imple-
ment other common Boolean functions; here are the 16, two-
input Boolean functions. The FN argument lets any two-
input Boolean function to be selected.

(defun q-fn (fn x y)
(case fn
((0 clr) nil)
((1 set) t)
((2 v1) x)
((3 v2) y)
((4 c1) (q-ite x nil t))
((5 c2) (q-ite y nil t))
((6 and) (q-ite x y nil))
((7 ior or) (q-ite x t y))
((8 xor) (q-ite x (q-ite y nil t) y))
((9 eqv nxor) (q-ite x y (q-ite y nil t)))
((10 nand) (q-ite x (q-ite y nil t) t))
((11 nor) (q-ite x nil (q-ite y nil t)))
((12 andc1) (q-ite x nil y))
((13 andc2) (q-ite y nil x))
((14 orc1) (q-ite x y t))
((15 orc2) (q-ite y x t))
(otherwise nil)))

2.2 Reference Adder Specification
We specific three different groups of adders. The first group
has a single adder; we consider this adder to be our refer-
ence specification. We have mechanically verified that such
an adder specification does indeed add numbers when rep-
resented as bit vectors [5]. The second group is like the
first adder, but every two-input gate used in the the original
adder specification may be altered to any other two-input
Boolean function. The specification for the third group of
adders allows one to specify an adder that works correctly
except for exactly one pair of numbers; in fact, adding 3 to
7 is actually a different pair than adding 7 to 3.

Our reference adder specification is given below. We first
give the specification for a one-bit, full adder, which accepts
three BDDs as inputs and produces two BDDs that represent
the sum and carry outputs. The function Q-FN implements
the logic function identified with its first argument and ex-
pects its second and third arguments to be BDDs, which are
represented as ACL2 data objects [2].

(defun q-full-add (c x y)
(let* ((xor-x-y (q-fn 'xor x y))

(sum (q-fn 'xor c xor-x-y))
(generate (q-fn 'and x y))
(propagate (q-fn 'and c xor-x-y))
(carry (q-fn 'ior propagate generate)))

(mv sum carry)))

This one-bit adder specification is composed of five, two-
input Boolean functions (gates). We specify an arbitrary-
sized adder by repeatedly applying our one-bit, full adder
to each bit position of two, equal-length bit vectors until
all input bits have been processed; at each stage we pass
along the carry output from the previous bit position as the
carry input to the next bit position. Finally, when we have
exhausted the input bit-vectors, we include the final carry
as the last bit of the answer.

(defun q-bv-adder (c a b)
(if (atom a)

(hist c)
(mv-let
(sum carry)
(q-full-add c (car a) (car b))
(hons sum

(q-bv-adder carry (cdr a) (cdr b))))))

This ripple-carry-style adder specification is our reference
adder. In our investigation we compare our reference adder
specification to other adder specifications to see how flaws
manifest themselves by counting the number different func-
tionalities and by observing cone-of-influence alterations in
the outputs.

2.3 Single-Bad-Gate Adder Specification
We have created an adder specification that allows any two-
input function (gate) used in our reference adder to be al-
tered to another two-input function. We make this possible
by creating another one-bit, full-adder adder specification
that takes two additional arguments that are used to specify
an alternative two-input function to be used in place of one
of the internal two-input Boolean functions. We also elabo-
rate our function that composes these, possibly-flawed, full
adders so we can alter a specific gate in an arbitrary-sized
adder.

We call this series of adders the single-bad-gate (SBG) adders.
We begin by assigning a number to each of the 16 two-input
Boolean logic functions. We then define the NEW-FN function
that given some gate type and an integer from 0 to 14, it
actually selects a different two-input Boolean function that
the gate type provided. Our SBG full adder requires two
additional arguments: one identifies which gate, of the five,
should be altered and the second new argument specifies the
new operation for the gate being altered.

(defun sbg-full-add (gate fn c x y)
(let
((xor-0 (if (eql gate 0) (new-fn 'xor fn) 'xor))
(xor-1 (if (eql gate 1) (new-fn 'xor fn) 'xor))
(and-2 (if (eql gate 2) (new-fn 'and fn) 'and))
(and-3 (if (eql gate 3) (new-fn 'and fn) 'and))
(or-4 (if (eql gate 4) (new-fn 'or fn) 'or)))
(let* ((xor-x-y (q-fn xor-0 x y))

(sum (q-fn xor-1 c xor-x-y))
(generate (q-fn and-2 x y))
(propagate (q-fn and-3 c xor-x-y))
(carry (q-fn or-4 propagate generate)))

(mv sum carry))))

To complete our SBG adder specification, we define a func-
tion that applies our SBG-FULL-ADD function repeatedly to
an arbitrary-sized bit vector. This function also requires the
user to identify the bit position where the flawed gate is to
manifest itself.

(defun sbg-bv-adder (c a b pos bit gate fn)
(if (atom a)

(hist c)
(mv-let
(sum carry)

(if (equal pos bit)
(sbg-full-add gate fn c (car a) (car b))

(q-full-add c (car a) (car b)))
(hons sum

(sbg-bv-adder carry (cdr a) (cdr b)
(1+ pos) bit gate fn)))))

2.4 Single-Bad-Value Adder Specification
Our third adder group specification involves making it possi-
ble to create an adder specification that produces any desired
answer when exactly a single pair of inputs is provided. This
kind of single-bad-value (SBV) adder is most unusual, but it
is precisely what one might to insert into a larger design as a
Trojan Horse. For instance, if such an adder were embedded
in a pre-defined ALU (IP) library element, an unsuspecting
user might inadvertently include such a very subtly flawed
adder in their design that could later be exploited by soft-
ware.

Our SBV-adder specification involves selecting between our
reference adder specification and a pre-selected result when
the inputs match two pre-selected input values. Before we
define our SBV adder, we we first define a function that
recognizes two identical bit-vector inputs.

(defun q-ite-cmp (a b)
(if (atom a)

t
(q-and-ite (q-fn 'eqv (car a) (car b))

(q-ite-cmp (cdr a) (cdr b)))))

Next, we define the QV-IF-ITE bit-vector multiplexor that
selects one of its two input vectors depending on a control
input. Note, that the Q-ITE function is the BDD If-Then-
Else function.

(defun qv-if-ite (c a b)
(if (atom a)

nil
(hons (q-ite c (car a) (car b))

(qv-if-ite c (cdr a) (cdr b)))))

And finally, we define our SBV adder specification. Inputs
C, A, and B have the same purpose as they do in our reference
Q-BV-ADDER specification. But this adder specification pro-
duces ANS-VAL when input A is exactly the value provided to
input A-VAL and when input B is exactly the value provided
to input B-VAL; otherwise, SBV-BV-ADDER works exactly like
our reference adder. Generally, we provide constants for
A-VAL and B-VAL.

(defun sbv-bv-adder (c a b a-val b-val ans-val)
(let ((bv-adder (q-bv-adder c a b))

(cmp-a-val (q-ite-cmp a a-val))
(cmp-b-val (q-ite-cmp b b-val)))

(qv-if-ite (q-fn 'and cmp-a-val cmp-b-val)
ans-val
bv-adder)))

One might believe that such a change to an adder would be
obvious to detect. Of course, if such an adder is converted

into a netlist specification, which we often do, one might
be able to detect the lack of regularity. But, when such a
change is made to a sea-of-gates design, such as pre-defined
ALU, it may not be at all obvious. Later, we will compare
these last two adder specifications to our reference adder.

3. COMPARISON MECHANISMS
We have defined two comparison mechanisms for comparing
the behavior of our two, flawed adder specifications to our
reference adder. Our first comparison mechanism compares
two bit vectors on a bit-by-bit basis, and for each result bit it
returns a count of the number of correct answers and a count
of the incorrect answers; the sum of the correct and incor-
rect answers totals the number of different possible Boolean
input configurations. In addition, for each pair of result bits
(65 such pairs are compared when comparing the output of
two 64-bit adders), our second comparison mechanism de-
termines the inputs uniquely used by each answer; that is,
this comparison mechanism computes the set of inputs that
effect each output.

Before we can count the differences between two adders, we
symbolically form the bit-wise Boolean difference between
the output equations of our reference adder and one flawed
adder.

(defun qv-ite-cmp (a b)
(if (atom a)

(if (atom b)
nil

(cons nil (qv-ite-cmp nil (cdr b))))
(if (atom b)

(cons nil (qv-ite-cmp (cdr a) nil))
(cons (q-fn 'eqv (car a) (car b))

(qv-ite-cmp (cdr a) (cdr b))))))

The result returned by QV-ITE-CMP is a long as the longer of
the two bit vector being those being compared. The excess
bits of the longer bit vector are given non-equal values.

Once we have symbolically computed the bit-by-bit sym-
bolic difference between two bit vectors being compared, we
compute point-wise the number of times the answers agree
and the number of times the answers disagree, and return
both results. Thus, for our adder specifications we perform
this computation 65 times, once for each of the 65 Boolean
outputs.

(defn count-tip-values (x depth)
(declare (xargs :guard (integerp depth)))
(if (atom x)

(mv (if x (expt 2 depth) 0)
(if x 0 (expt 2 depth)))

(mv-let
(left-cnt-1s left-cnt-0s)
(count-tip-values (car x) (1- depth))
(mv-let
(right-cnt-1s right-cnt-0s)
(count-tip-values (cdr x) (1- depth))
(mv (+ left-cnt-1s right-cnt-1s)

(+ left-cnt-0s right-cnt-0s))))))

COUNT-TIPS-VALUES returns two values: number of agree-
ments and the number of disagreements. The base case
involves determining whether the Boolean atom discovered
is NIL. If T result is found, the significance is 2depth times
greater than just 1, depending the significance of this (possi-
bly)“short circuit”value. Memoizing the COUNT-TIPS-VALUES
function improves its performance, but because of the in-
clusion of the DEPTH parameter, two structurally identical
subtrees at different levels in the tree will not share a mem-
oization entry.

We have defined another version of COUNT-TIPS-VALUES. This
version takes full advantage of our function memoization
machinery, and it is presented below. We do not actually
memoize the COUNT-TIPS-VALUES function, but instead we
memoize the single-argument functions MAX-DEPTH and CTV.
Single-argument functions are memoized in a more efficient
manner than multi-argument functions.

(defun max-depth (x)
(if (atom x)

0
(1+ (max (max-depth (car x))

(max-depth (cdr x))))))

(defun ctv (x)
(cond
((eq x t) (mv 1 0))
((atom x) (mv 0 1))
(t (let* ((da (max-depth (car x)))

(dd (max-depth (cdr x)))
(m (+ 1 (max da dd))))

(mv-let
(a1 a0)
(ctv (car x))
(mv-let
(d1 d0)
(ctv (cdr x))
(let ((a1 (if (eql da (+ 1 m))

a1
(* (expt 2 (1- (- m da)))

a1)))
(a0 (if (eql da (+ 1 m))

a0
(* (expt 2 (1- (- m da)))

a0)))
(d1 (if (eql dd (+ 1 m))

d1
(* (expt 2 (1- (- m dd)))

d1)))
(d0 (if (eql dd (+ 1 m))

d0
(* (expt 2 (1- (- m dd)))

d0))))
(mv (+ a1 d1) (+ a0 d0)))))))))

(defun count-tip-values (x depth)
(let* ((max-depth (max-depth x))

(multiplier (expt 2 (- depth max-depth))))
(mv-let (1s 0s)

(ctv x)
(mv (* multiplier 1s)

(* multiplier 0s)))))

Our second comparison mechanism involves computing the
cone of influence for each output bit and then comparing
them. This can be done by trivially discovering the vari-
ables present in each output equation or, as we choose, by
computing with “gates” that actually take lists of names as
inputs and produce a list of names. By computing with such
special gates, we can compute a cone-of-influence for each
output of very large circuits; this is something we cannot
always do when attempting to inspect the variables present
in the BDD output equations. This is because the repre-
sentation size of some Boolean functions (e.g., multipliers)
using BDDs is known to grow exponentially [6].

4. ADDER COMPARISONS
We compare our two flawed adder specifications to our refer-
ence adder using our counting and cone-of-influence compar-
ison mechanisms. We first compare our SBG adder specifi-
cation before we turn our attention to our SBV adder spec-
ification.

For the purpose of our study, we make our comparisons us-
ing a 64-bit reference adder. All of our adder specifications
have two 64-bit, bit-vector inputs and a single-bit, carry in-
put; each adder produces a 65-bit, bit-vector output. Our
comparisons are performed point-wise; that is, the same out-
put bit position from both adders is compared, thus each
output bit from every flawed adder is compared bit-by-bit
to the reference adder.

With our SBG adder specification, we can cause any particu-
lar two-input gate to behave like any other gate. To facilitate
comparing the SBG adders to the reference adder, we cre-
ated a set of functions that allow us to compare every flawed
adder to the reference adder. Since there are five gates used
to implement each bit of our SBG-adder specification, we
have 4800 (64 ∗ 5 ∗ 15) different adders to compare. We
computed the number of differences between our reference
adder and all 4800 SBG adders. In all cases, substituting
any different gate for any of the five gates in any of the bit
positions produces a different answer, except for substitut-
ing a XOR gate for the OR gate in the SBG adder, where
no difference is detected. Instead of presenting the number
of differences detected for each bit position, we compute the
minimum number of non-zero differences across all bit posi-
tions. In the 4800 flawed adders compared to our reference
adder, there were 64 cases when no operational change was
detected; this case involved the substitution of a XOR gate
for the OR gate in each of the 64 bit positions. For the
remainder of the cases, the minimum number of non-zero
differences was 85070591730234615865843651857942052864;
that is, we see 2126 differences in at least some output bit.
We compute the non-zero minimum because if there is an
unaffected bit position (which is a regular occurrence in an
adder with a single bad gate), then our overall answer would
be zero even though there are bit positions where differences
are detected. On a 1.67 GHz PowerPC-based Apple lap-
top with 2 GBytes of memory we can create, compare, and
count the differences between all 4800 different SBG adders
in under a minute. For us, the remarkable thing is that even
though the counts are enormous, we are still able to compute
the exact difference counts for all of the 312,000 (4800 ∗ 65)
Boolean equations being compared.

Using our SBV-adder specification, we select exactly one
pair of input bit patterns for which the adder produces a
supplied answer; otherwise, the SBV adder will produce the
same result as our reference adder. This kind of alteration
is subtle. For instance, 3+7 might be specified to return 11,
but 7 + 3 would return the correct answer of 10. Our SBV-
adder specification only alters the output when it recognizes
exactly one pair of numbers; the user of this adder may spec-
ify the specific output desired for this pair of input numbers.
Just as we did for the SBG adder, we can count the correct
and incorrect answers for the SBV adder given a specific con-
figuration of our SBV adder. So, by using our SBV-BV-ADDER
specification with bit vectors corresponding to 3 for the
A-VAL argument, 7 for the B-VAL argument, and 11 for the
ANS-VAL, and finally, the same input values we use in our ref-
erence adder for inputs C, A, and B, we can produce an adder
specification that is incorrect exactly when its A is 3 and its
B is 7. When we compare this SBV adder to the reference
adder, we find that the first bit position of the output bit vec-
tor is incorrect in a single case and otherwise correct in the
other 680564733841876926926749214863536422911 (2129 −
1) cases. Discovering such a subtle difference would be prac-
tically impossible using testing, and knowing that there is
only a single different case might be revealing.

If we investigate the cone-of-influence contributions from the
inputs to each output bit position, a very different picture
emerges. We have written a function that allows us to re-
cover the input variables that affect each output bit. For in-
stance, in our reference adder, the input carry, the first bit of
bit-vector A, and the first bit of bit-vector B are the only bits
that should effect the first output bit. In the case of the sec-
ond output bit position, the output should only depend on
the first two input bits of A and B and the input carry C. Us-
ing this kind of comparison mechanism, we sometimes find
that the SBG adders sometimes lack expected contributions
in one output bit position (when the circuitry that computes
the output bit is flawed) or in all bit positions larger than
some specific bit position (because the flaw is affecting the
carry chain); in other cases, such as when we exchange a
two-input logic gate for a different two-input logic gate, we
may detect no cone-of-influence difference.

The cone-of-influence differences between the reference adder
and the SBV adder are much more dramatic. For the SBV
adder, every output bit position depends on every input –
obviously, the SBV adder is a very different kind of function.
It may be impossible to count the functional differences be-
tween very large circuits because it may not be possible to
build BDDs representing the functions of interest. However,
cone-of-influence computations can be done quickly even for
very large circuit specifications.

5. CONCLUSION
Our empirical study comparing various flawed adders sug-
gests that being able to use multiple comparison techniques
may allow search for subtly inserted flaws. Any novelty in
our approach lies in our ability to exactly count the number
of functional differences when comparing two sets of BDD
equations; this capability is derived from our newly devel-
oped function memoization mechanism. Such counts may
provide insight for designers that would like to investigate IP
or remotely designed circuits, and where appropriate, cone-

of-influence analysis may provide additional insight. Note,
these techniques are not limited to combinational logic.

We believe that these techniques may also be useful in a re-
verse engineering context; being able to view a circuit from
multiple perspectives may provide hints as to the actual op-
eration of a circuit under investigation. As we increase our
reliance on third-party designs and manufacturing organi-
zations, there is an increased need to have tools that allow
evaluators to thoroughly investigate designs for flaws, both
inadvertent and malicious.

6. ACKNOWLEDGMENTS
We gratefully acknowledge support from DARPA and from
the NSF (CyberTrust Award: CNS 0429591).

7. REFERENCES
[1] R. J. Boulton, A. D. Gordon, M. J. C. Gordon, J. R.

Harrison, J. M. J. Herbert, and J. Van Tassel.
Experience with embedding hardware description
languages in HOL. In V. Stavridou, T. F. Melham,
and R. T. Boute, editors, Theorem Provers in Circuit
Design: Theory, Practice and Experience: Proceedings
of the IFIP TC10/WG 10.2 International Conference,
IFIP Transactions A-10, pages 129–156.
North-Holland, June 1992.

[2] Robert S. Boyer and Warren A. Hunt, Jr.. Function
Memoization and Unique Object Representation for
ACL2 Functions. In Proceedings of the Sixth
International Workshop on the ACL2 Theorem Prover
and its Applications, ACM Digital Library, Seattle,
Washington, 2006.

[3] Robert S. Boyer and Warren A. Hunt, Jr.. The E
Language. Presented at Hardware Design using
Functional Languages (HFL) 2007 in Braga, Portugal,
March, 2007.

[4] Robert S. Boyer, Warren A. Hunt, Jr., and Qiang
Zhang. A Verified BDD Package. In Proceedings of the
Seventh International Workshop on the ACL2
Theorem Prover and its Applications, ACM Digital
Library, Austin, Texas, 2007.

[5] Bishop C. Brock and Warren A. Hunt, Jr. The
DUAL-EVAL Hardware Description Language and Its
Use in the Formal Specification and Verification of the
FM9001 Microprocessor. Formal Methods in Systems
Design, 11, 1997.

[6] Randal E. Bryant. Graph-Based Algorithms for
Boolean Function Manipulation. In IEEE
Transactions on Computers, Volume C-35, Number 8,
pages 677-691, August, 1986.

[7] A. .P. Ershov. On Programming of Arithmetic
Operations. In the Communications of the ACM,
Volume 118, Number 3, August, 1958, pages 427–430.

[8] Eiichi Goto. Monocopy and Associative Algorithms in
Extended Lisp. University of Toyko, Technical Report
TR-74-03, 1974.

[9] Warren A. Hunt, Jr. Decomposing the Verification of
Pipelined Microprocessors with Invariant Conditions.
In Proceedings of CAV 2004. Springer Verlag, LNCS
3114, 2004.

[10] Warren A. Hunt, Jr. and Erik Reeber. Formalization
of the DE2 Language. In Proceedings of CHARME

2005, volume LNCS 3725, pages 20–34, 2005.
[11] M. Kaufmann, P. Manolios, and J S. Moore, editors.

Computer-Aided Reasoning: ACL2 Case Studies.
Kluwer Academic Press, Boston, MA., 2000.

[12] M. Kaufmann, P. Manolios, and J S. Moore.
Computer-Aided Reasoning: An Approach. Kluwer
Academic Press, Boston, MA., 2000.

[13] M. Kaufmann and J S. Moore. ACL2: An Industrial
Strength Version of NQTHM. Proceedings of the
Eleventh Annual Conference on Computer Assurance
(COMPASS-96), pages 23-34, IEEE Computer Society
Press, June 1996.

[14] M. Kaufmann and
J S. Moore. A Precise Description of the ACL2 Logic. In
http://www.cs.utexas.edu/users/moore/publications/km97a.ps.gz.
Department of Computer Sciences, University of
Texas at Austin, 1997.

[15] M. Kaufmann and J S. Moore. A flying demo of
ACL2. Technical Report
http://www.cs.utexas.edu/users/moore/publications/flying-
demo/script.html, Department of Computer Sciences,
University of Texas at Austin, 2000.

[16] Donald Michie. Memo functions: a Language Feature
with Rote Learning Properties. Technical Report
MIP-R-29, Department of Artificial Intelligence,
University of Edinburgh, Scotland, 1967.

[17] Donald Michie. Memo Functions and Machine
Learning. In Nature, Volume 218, 1968, pages 19–22.

