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ABSTRACT
We describe a preliminary study on embedding a Lisp in-
terpreter in a logic that only admits total functions. The
long-term goal is to verify an ACL2 interpreter in HOL. We
hope the approach will scale to this task, but the details
could turn out to be overwhelming. The current study uses
pure Lisp to investigate the formulation of correctness. We
define the semantics of Lisp evaluation operationally, using
inductively defined relations. We then define a ‘clocked’ in-
terpreter that is guaranteed to terminate and prove it equiv-
alent to the operational semantics. This provides an exe-
cutable Lisp evaluator that is a total function.
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1. BACKGROUND
The following quote is from an earlier paper [9] on embed-
ding the ACL2 logic [10] in higher order logic (HOL).

Consider the ACL2 axiom ASSOCIATIVITY-OF-*
occurring in the ACL2 source file axioms.lisp:
(EQUAL (* (* X Y) Z) (* X (* Y Z))) . This can
be viewed as an S-expression in ACL2’s version
of Lisp, or as a formula of first-order logic.

Under the first view the axiom is valid because if
X, Y and Z are replaced by any S-expressions, then
the resulting instance of the axiom will evaluate
to ‘true’, i.e., T in Common Lisp. Under the sec-
ond view, the formula is an axiom that defines
what it means for evaluation to be correct: it
is a partial semantics of Lisp evaluation. Thus,
in order to build a formal model of the ACL2
logic, we are faced with deciding whether to take
Lisp evaluation or the ACL2 axioms as ‘golden’
– i.e., as the primary specification.

Recent work has developed the second view [8, 9, 14, 15].
In this paper we explore the first view, but just for pure
Lisp [11]. Scaling to full ACL2 Lisp [1] is future work.

The pure Lisp interpreter is given by partial recursive func-
tions apply and eval that operate on S-expressions represent-
ing Lisp programs [11, 12]. These functions can be defined
using Scott domains [6], so an approach based in LCF [7]
embedded in a total logic (e.g. HOLCF [13]) is a possibility.
However, we explore a simpler operational method based on
inductively defined relations. The basic idea is explained in
the next section. We then apply the method to pure Lisp.

2. INDUCTIVE RELATION SEMANTICS
A standard way of representing partial recursive functions is
as inductively defined relations. As an example consider the
following recursive scheme defining function f , where p, q,
h and k are given functions (p should return a truth-value).

f(x) = if p(x) then q(x) else h(x, f(k(x)))

For some choices of p, q, h and k there is no total function
satisfying this equation (e.g. if p(x) = false, k(x) = x and
h(x, y) = 1+y then the equation becomes f(x) = 1+f(x)).
However, we can evaluate terms f(a), for a given argu-
ment a, by repeatedly rewriting with the defining equation.
Rewriting might not terminate (e.g. the example just men-
tioned), but when the function is defined it will compute
the correct result. This kind of operational semantics can
be formalised by defining the binary relation Rf such that
Rf (x, y) represents y = f(x). Rf is the least relation satis-
fying:

(∀x. p(x) ⇒ Rf (x, q(x)))
∧
(∀x y. ¬p(x) ∧ Rf (k(x), y) ⇒ Rf (x, h(x, y)))

Many general theorem provers have support for making in-
ductive definitions. In HOL4, for example, the user gives
the formula above (with Rf as a free variable) to a tool
(HOL_reln) which then generates the definition of the rela-
tion that is the least solution, together with reasoning sup-
port [5]. It is then easy to prove that if the equation defining
f holds, then Rf (x, y) entails y = f(x):

` (∀x. f(x) = if p(x) then q(x) else h(x, f(k(x))))
∧
Rf (x, y)
⇒
y = f(x)

Although relations are a way to represent partial functions



in a logic of total functions, they are cumbersome and not
immediately executable. A widely used trick with Boyer-
Moore provers is to add an extra argument – sometimes
called a ‘clock’ – that decreases on each recursive call and
forces the function to terminate. We use n for the clock
variable. A first clocked version of f , say fc, is defined by:

fc(n, x) = if n = 0 then u else

if p(x) then q(x) else h(x, fc(n−1, k(x)))

where u is a value indicating ‘timeout’ (clock n has hit 0).
As a ‘sanity check’ it is easy to verify

` Rf (x, y) ⇒ ∃n. fc(n, x) = y

However, one would like also to know that if the clocked
function doesn’t timeout, then it returns the correct re-
sult. This would enable us to compute y from x by running
fc(n, x) with a large n and then checking the result isn’t u.
Thus one would like fc to satisfy:

¬(y = u) ∧ (∃n. fc(n, x) = y) ⇒ Rf (x, y)

This isn’t true for all choices of u, but it is easy to show that
it holds if h(x, u) = u:

` (∀x. h(x, u) = u)
⇒
∀y. ¬(y = u) ⇒ ((∃n. fc(n, x) = y) ⇔ Rf (x, y))

For more complex examples, finding a suitable condition like
∀x. h(x, u) = u can be hard (I was unable to find such a con-
dition for the recursive Lisp interpreter functions eval and
apply described in Section 3). A general solution is to use a
well-known idea that first appeared in the denotational se-
mantics of exceptions and was subsequently popularised via
the ‘exception monad’ [16]. This idea is to have the clocked
function return a value marked as a ‘success’ only when it
really succeeds; when the clock times out a ‘failure value’,
which is propagated unchanged by other functions, is re-
turned.

A value is marked as a success is by having the clocked
function return some(v) instead of just v. The failure value
returned on clock-timeout is a value none chosen so that
none 6= some(v) for any v. The some/none terminology
comes from option types, e.g. in HOL and ML. We use the
same simple example of f to illustrate the new approach.
The definition of the new clocked version of f , which will
still be called fc, uses a case· · · of notation.1

fc(n, x) = if n = 0 then none else

if p(x) then some(q(x))
else case fc(n−1, k(x)) of

none → none
| some(y) → some(h(x, y))

If the recursive call fc(n−1, k(x)) exhausts the clock, none

is returned immediately. If fc(n−1, k(x)) returns some(y),

1Define the function the so that the(some(v)) = v holds
and let e[u/v] be the result of substituting u for v in
e, then “case e of none → e1 | some(v) → e2” abbreviates
“if e = none then e1 else e2[the(e)/v]”.

then some(h(x, y)) is returned. Notice that fc can only re-
turn none or a value of the form some(v). This ‘exit-or-
propagate’ semantics could perhaps be written more slickly
with monad-style combinators.

With the revised definition of fc it follows by induction that:

` Rf (x, y) ⇔ ∃n. fc(n, x) = some(y)

The ⇒-direction uses a fixed-point induction principle au-
tomatically generated from the definition of Rf [5] and the
⇐-direction is by mathematical induction on n.

3. RELATIONAL PURE LISP SEMANTICS
Pure Lisp was introduced by McCarthy in 1960 in the pa-
per Recursive Functions of Symbolic Expressions and Their

Computation by Machine, Part I [11]. Lisp computes on S-
expressions (symbolic expressions), e.g.: NIL, X, 42, (A.B),
(FOO (A B)). Functions on S-expressions are defined by re-
cursion equations written in a notation called M-expressions
(meta-expressions). McCarthy specified the Lisp seman-
tics with a “Universal LISP Function” apply defined via
a translation from M-expression function definitions to S-
expressions. If fn∗ is the translation of fn then apply is
defined so that apply[fn∗; [arg1; · · · ; argn]; a] evaluates to
fn[arg1; · · · ; argn], where the third argument a is an ‘alist’
that specifies values of variables occurring in the body of
fn. In the early descriptions of Lisp interpreters there is no
formal treatment of the semantics of M-expression recursive
definitions. Perhaps it was assumed the semantics was clear
by analogy with the theory of partial recursive functions over
numbers. Before giving the relational definition of the pure
Lisp interpreter we review S-expressions and M-expressions.

An S-expression is an atom or a dotted pair (S1.S2) where
S1 and S2 are S-expressions. An atom is either NIL, or is a
number or a symbol. A proper list is NIL or an S-expression
of the form (S1.(S2.( · · · (Sn.NIL) · · · ))) which may be writ-
ten (S1 S2 · · · Sn). An example of an S-expression that is
a proper list is (FOO.(X.(Y.(5.NIL)))), where FOO, X and
Y are symbols. This may be written (FOO X Y 5).

An M-expression term is either an S-expression constant c,
or a variable v or the application fn[e1; · · · ; en] of a func-
tion fn to argument terms e1,. . .,en, or a conditional term
[p1 → e1; . . . ; pn → en], where pi, ei (1 ≤ i ≤ n) are terms.

An M-expression function is either a primitive function con-
stant k (where k is car, cdr, cons, eq or atom), or a function
variable f , or a lambda λ[[v1; . . . ; vn]; e], where v1, . . . , vn

are term variables and e is a term, or a recursive definition
label[f ; fn], where f is a function variable and fn a func-
tion. The label-operator is Lisp’s syntax for fixed-points.
For example, the recursive definition:

ff [x] = [atom[x] → x; T → ff [car[x]]]

defines the function that is denoted using M-expressions as:

label[ff ; λ[[x]; [atom[x] → x; T → ff [car[x]]]]]

It is assumed that k[arg1; . . . ; argn] is defined for each func-
tion constant k and argument S-expressions arg1, . . . , argn.
For example, cons[x; y] = (x.y) (cons also needs to be de-
fined when there are fewer or more than two arguments).



We define Rap so Rap(fn, [arg1; · · · ; argn], ρ, s) means that
fn[arg1; · · · ; argn] = s if the free variables in fn have values
specified by an environment ρ. We will model environments
as maps from variables to S-expressions or M-expression
functions, so if ρ is defined on a term variable v then ρ(v) is
an S-expression and if ρ is defined on a function variable f ,
then ρ(f) will be an M-expression function. The notation
ρ[a/b] denotes ρ updated so variable b is mapped to a b can
be a term or a function variable); ρ[[a1; . . . ; an]/[b1; . . . ; bn]]
means ρ[a1/b1] · · · [an/bn].

We define relation Rap by mutual recursion with Rev and
Revl. These relations correspond to the Lisp interpreter
functions eval and evlis: Rev(e, ρ, s) holds if term e eval-
uates to the S-expression s with respect to environment ρ,
and Revl(el, ρ, sl) holds if list el of M-expression terms eval-
uates to the list sl of S-expressions with respect to ρ. The
relations Rap, Rev and Revl are defined by cases on their
first argument. They are the least relations such that:

Rap(k, args, ρ, k args)
∧

Rap(ρ(f), args, ρ, s) ⇒ Rap(f, args, ρ, s)
∧

Rev(e, ρ[args/vars], s) ⇒ Rap(λ[[vars]; e], args, ρ, s)
∧

Rap(fn, args, ρ[fn/x], s) ⇒ Rap(label[[x]; fn], args, ρ, s)

and

Rev(c, ρ, c)
∧

Rev(v, ρ, ρ(v))
∧

Rev([ ], ρ, NIL)
∧

Rev(p, ρ, NIL) ∧ Rev([gl], ρ, s) ⇒ Rev([p → e; gl], ρ, s)
∧

Rev(p, ρ, x) ∧ x 6= NIL ∧ Rev(e, ρ, s) ⇒ Rev([p → e; gl], ρ, s)
∧

Revl([el], ρ, args) ∧ Rap(fn, args, ρ, s) ⇒ Rev(fn[el], ρ, s)

and

Revl([ ], ρ, [ ])
∧

Rev(e, ρ, s) ∧ Revl([el], ρ, sl) ⇒ Revl([e; el], ρ, [s; sl])

Traditionally the recursion down a conditional is delegated
to a separate function evcon [11, 12], but for simplicity we
have folded this into the definition of Rev.

The three relations defined above are analogous to Rf in
Section 2. Now we define a clocked interpreter functions
applyc, evalc and evlisc analogous to fc. The first argu-
ment is the clock, we use case · · · of notation and define
List[s1; . . . ; sn] = (s1 · · · sn) and Split((s1 · · · sn)) = [s1; . . . ; sn].

(applyc(n, fn, args, ρ) =
if n = 0
then none

else case fn of

k → some(k args)
| f → applyc(n−1, ρ(f), args, ρ)
| lambda[vars; e] → evalc(n−1, e, ρ[args/vars])
| label[f ; fn] → applyc(n−1, fn, args, ρ[fn/f ]))

∧
(evalc(n, e, ρ) =
if n = 0
then none

else case e of

c → some(c)
| v → some(ρ(v))
| [ ] → some(NIL)
| [p → e; gl] → (case evalc(n−1, p, ρ) of

none → none

| some(s)
→ (if s = NIL

then evalc(n−1, [gl], ρ)
else evalc(n−1, e, ρ))

| fn[el] → case evlisc(n−1, el, ρ) of

none → none

| some(sl) → applyc(n−1, fn, Split(sl), ρ))
∧
(evlisc(n, el, ρ) =
if n = 0
then none

else case el of
[ ] → some(NIL)

| [e; el′] → case evalc(n−1, e, ρ) of
none → none

| some(s) → case evlisc(n−1, el′, ρ) of

none → none

| some(sl) → some((s.sl)))

The use of exception monad notation [16] might substan-
tially simplify these definitions.

The connection between the relational and clocked func-
tional semantics is similar to the connection between Rf

and fc in Section 2, and the proof is similar.

` (Rap(fn, args, ρ, s) = ∃n. some(s)=applyc(n, fn, args, ρ))
∧
(Rev(e, ρ, s) = ∃n. some(s)=evalc(n, e, ρ))
∧
(Revl(el, ρ, sl) = ∃n. some(List(sl))=evlisc(n, el, ρ))

This function definition is expressed in HOL2, but it could be
coded in ACL2 Lisp to give a sound and complete interpreter
inside ACL2. It is not clear how useful this might be though
(see the discussion below).

4. DISCUSSION
In Section 1 two views of the semantics of Lisp were dis-
cussed: a programming language view versus a logic view.
We have explored the first view here and shown how to
define a Lisp interpreter in a classical logic of total func-
tions. This interpreter could be used to validate the axioms

2See http://www.cl.cam.ac.uk/~mjcg/papers/acl207/
for actual HOL formalisations and proofs.



of the logic. For example, the ‘axiom’ car[cons[x; y]] = x
can be validated by evaluating car[cons[x; y]], i.e. proving
` Rev(car[cons[x; y]], ρ, x). Although we have not attempted
to validate a Lisp theory, we have built a tool that can
apply a function fn to arguments args in a given envi-
ronment ρ by running the clocked interpreter with a large
clock and then, if a result some(s) is returned, deducing
` Rap(fn, args, ρ, s). This tool is a simple derived rule
coded in ML that combines the first conjunct of the the-
orem at the end of the preceding section with the result of
the clocked evaluation.3

Once we have a Lisp interpreter defined formally we can
use it to interpret definitions of apply and eval coded as S-
expressions [12, Section 1.6]. One should be able to prove,
for example, that Rev(e, ρ, s) ⇔ Rap(eval, [e∗; ρ∗], ρinit, s),
where e∗ is than translation of e, ρ∗ translates ρ to an alist
S-expression and ρinit contains the definitions of the Lisp
interpreter functions (assoc, pairlis, apply, eval etc.) used
by eval. We hope to perform this proof for pure Lisp to see
how tricky it is and to get an estimate of the feasibility for
ACL2, but have not attempted this yet.

Will the approach described here scale to ACL2? I am pretty
confident that one could define an evaluator for ACL2 inside
HOL and prove that it was consistent with the ACL2 logical
theory [10]. This would integrate nicely with the prior work
on modelling ACL2 in HOL [8]. A second trickier question is
whether a formally defined and verified interpreter would be
worth the effort? Are there any uses for verified guaranteed-
total clocked apply and eval functions inside ACL2? One
possibility is to provide support in ACL2 for bounded quan-
tifiers. In Nqthm, such quantifiers are supported by V&C$

[3, 4]. Investigating the relationship between the V&C$ way
of adding an interpreter to a logic of total functions and
relational semantics would be interesting further research.
Another possible application could be some kind of reflec-
tion of Lisp code verified inside ACL2 into the ACL2 trusted
kernel [2], though I don’t have a particular idea to suggest.
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