
ACL2 for Freshmen: First Experiences

Carl Eastlund Dale Vaillancourt Matthias Felleisen
cce@ccs.neu.edu dalev@ccs.neu.edu matthias@ccs.neu.edu

College of Computer Science
Northeastern University

Boston, MA 02115

Abstract

Northeastern University’s College of Computer Science uses an ap-
plicative subset of Scheme in its introductory programming course
with a heavy emphasis on design. Students then proceed to a
second-semester programming course using Java and a course on
symbolic logic. During the 2007 spring semester, we experimented
with an ACL2-based course as a potential replacement for the fresh-
man course on symbolic logic. This paper reports on the specifics
of the experiment (context, syllabus, students), its mixed outcomes,
and our conclusions for future revisions. Based on our prelimi-
nary experiences, the College has decided to adopt our experimen-
tal course as the standard course.

Categories and Subject Descriptors

F.3.1 [Logics and Meanings of Programs]: Specifying and Veri-
fying and Reasoning about Programs; K.3.2 [Computers and Ed-
ucation]: Computer and Information Science Education

General Terms

DrScheme, ACL2, formal methods, pedagogy

Keywords

DrScheme, ACL2, TeachScheme!

1 Logic in the Computing Curriculum

Introducing undergraduate students to logic poses a major challenge
to computer science departments. Although logic is to computing
what analysis is to physics, the designers of undergraduate curric-
ula still assign logic a minor role in the overall educational pro-
gram. Many curricula relegate logic to a single required course or
a module in a course on discrete mathematics. Worse, few of those

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

courses connect logic to the students’ active programming experi-
ence, which usually means that students fail to appreciate the im-
portance of logic for their future work.

Northeastern University’s College of Computer Science recognizes
the importance of logic and requires freshman students to enroll in
Symbolic Logic, a course offered by the Philosophy department.
This service course is targeted at computer science students and
taught by a faculty member of the Philosophy department who has
an adjunct appointment in the College. Even so, the course is a
classical introduction to propositional and predicate logic, with lit-
tle connection to computing. As Felleisen has observed over five
years, undergraduates simply cannot connect the content of Sym-
bolic Logic with any software-related activity.

In response to this observation, Felleisen proposed to develop and
test an alternative course that combines ACL2 programming with
elements of Symbolic Logic. The conjecture is that since students
learn to design functional programs in the first semester course in
Scheme, it would be easy to write the same functions in Applicative
Common Lisp (ACL), to state conjectures about them in the Com-
putational Logic, and to prove them automatically or with minimal
interaction. Students thus motivated could then be introduced to the
logical underpinnings that enable proofs about programs, and they
would learn to appreciate that logical guidelines—such as those
taught in the freshman programming course—lead to correct and
well-designed programs.

This paper reports on our experience with a small field test of this
conjecture. At the end of Fall ’06, we asked for six volunteers from
the freshman course and ended up with 28. Of those, we picked
two students with stellar records, two with weak As, and two with
B-level final grades. These students signed up for directed stud-
ies but we actually conducted a small regular course. All students
were concurrently enrolled in Symbolic Logic. The results of our
course are highly encouraging but also point to weaknesses in the
approach. Still, the College has found the results convincing and
has decided to take on the Symbolic Logic course and to use our
approach as a starting point.

Section 2 presents the pedagogic and technological context of the
experiment. Sections 3 and 4 make up the heart of the paper. They
present the material we taught and the evaluation of the course. The
last two sections discuss related and future work.

2 Background and Context

Northeastern’s freshman year in computer science has the following
structure:

hhhhhhhhhh
Form of data

Steps atomic enumeration records unions inductive . . .
1. Data definition
2. Purpose & contract
3. Functional examples
4. Template (inventory)
5. Function definition
6. Examples to tests

For each form of data, fill in the appropriate questions:
Q1a: Does the data definition include disjoint subsets?

A: If so, formulate a conditional with as many clauses.
Q1b: What are the distinguishing conditions for each clause?

Q2: Is any of the data structured?
A: If so, formulate selector expressions.

Q3: Does the data definition refer to itself?
A: If so, introduce recursion in the matching clause and selector expression.

Figure 1. The two dimensions of the design recipe.

Programming and Computing Mathematical Context

CS U 211 Fundamentals I
functional program design,
algebraic models of
computation

CS U 200 Discrete Structures
discrete mathematics,
including sets, functions,
relations, inductive proofs

CS U 213 Fundamentals II
class-based program design,
object-oriented computation

PHL U 215 Symbolic Logic
introduction to propositional
and predicate logic, models

The courses in the left column introduce students to rigorous pro-
gram design principles in two language paradigms: functional pro-
gramming (using an applicative dialect of Scheme) and object-
oriented programming (using a dialect of Java, dubbed Profes-
sorJ [9]).

The purpose of the courses in the right column is to introduce stu-
dents to those mathematical topics that are useful to practicing com-
puter scientists. The first course mostly covers mathematics for al-
gorithmic topics, e.g. combinatorics; the second is a course on logic
that contains little computing material. Students without the neces-
sary calculus background (some 30%) are registered in a remedial
calculus course and start the right-column sequence one semester
behind the regular students.

For the introduction of an ACL2-based logic course in place of PHL
U 215, the existence of CS U 211 is a necessity. In this course,
students learn to design programs according to a “design recipe”
that systematically matches the inductive structure of the input. In
addition, the design recipe introduces a process with intermediate
products of high diagnostic value. Roughly speaking, the design
recipe is somewhat analogous to “The Method” promoted by the
ACL2 literature [10, 11].

A second prerequisite for teaching novices is appropriate technol-
ogy, especially a programming environment that supports the grad-
ual introduction of linguistic constructs with a special focus on er-
ror messages. Since a proper analysis of this issue is beyond the
paper, we refer the reader to literature on DrScheme [8]. Based
on our DrScheme experience, we developed Dracula, a pedagogic
programming environment for ACL2; the environment proved in-
valuable for introducing freshman students to ACL programming.

In order to provide the complete background to our experiment, the
first subsection provides a summary of the pedagogy in CS U 211,
based on Felleisen et al’s text [5]. The second subsection introduces
the essential elements of Dracula [14].

2.1 How to Design Programs

The CS U 211 course is based on Felleisen et al’s TeachScheme!
project and the resulting text (How to Design Programs) [6, 7].
Based on observations of numerous high school and college
courses, Felleisen et al concluded that programming novices need
to see more than the syntax of a programming language and a few
programming examples to play with. What novices should imme-
diately see is the systematic design of programs.

To this end, the textbook introduces the idea of a design recipe. The
design recipe is a six-step process for problem solving that evolves
with the complexity of data representations over the course of a
semester. Figure 1 depicts the process and its evolution as two “di-
mensions” of the design recipe. Along the vertical axis, the table
lists the process-oriented part of the recipe. Along the horizontal
axis, it enumerates the forms of data to which the process steps are
applied.

The design recipe starts with a thorough analysis of the problem.
The goal of this first step is to describe the collections of data that
the program may consume and produce. For the second step, the
novice programmer is to formulate the tasks in his/her own words;
this includes a “contract,” i.e., a statement about the input and out-
put data/conditions. The third step is to create small functional ex-
amples that illustrate what the program computes from given data.
Following this, the fourth step brings in the second dimension of
the design recipe. The goal is for the programmer to construct a
“template” for the program’s organization from the data definition
of the input(s). Put differently, they write down the inventory of
givens because it is those pieces of data that the program can use
to produce its answer. Then, and only then, students code. The
very fact that coding is the fifth step of the design recipe—even
for small programs—shows students that the creation of good pro-
grams requires a solid preparation, just like cooking a good meal.
Last but not least, students must turn the functional examples into
a test suite. Doing so tends to reveal typos, misunderstandings and
other simple mistakes. Of course, passing tests merely ensures that
the program performs as expected on small examples. Still, stu-
dents may only run the program—apply to large and/or a lot of real
data—after they have completed this sixth step.

Clearly, the fourth step, template construction, is the critical one.
It demands a thorough understanding of data definitions and how
they relate to the organization of programs. The course staff sup-
ports this step with the question-and-answer “game” in figure 1.
Indeed, they use these questions all the time and never respond to
students’ questions with explicit answers. Eventually students real-

ize that they can ask those questions themselves and the question-
and-answer game becomes second nature.

Given the central role of data definitions, it is natural that the course
is organized along the complexity of data definitions instead of the
syntax of the programming language. Specifically, How to Design
Programs uses naı̈ve set theory as the basis of this development.
It starts with atomic data (numbers, booleans, characters, symbols)
where the data definition says nothing about the organization of the
function. Instead, knowledge about the application domain dictates
what the function definition looks like. As the course progresses,
the data definitions become more highly structured—such as an in-
ductive definition of a tree—and the structure of the data definition
determines in most cases almost all the program structure. For de-
tails, we refer the reader to Felleisen et al’s article on the design
rationale for their book and course [6].

The alert reader has recognized by now that the goal of the template
is to train students to recognize inductive definitions of data and to
translate them into structural recursions. Let’s illustrate this idea
briefly. Say the student has determined that the function’s input is a
list of dates:

(define-struct date (year month day))
;; A Date is (make-date Number Number Number)

;; A LOD (list of dates) is one of:
;; – empty
;; – (cons Date LOD)

;; MyFunction : LOD -> . . . [intentionally omitted detail] . . .
;; MyFunction returns . . . [intentionally omitted detail] . . .
(define (MyFunction an-lod) . . .)

The first question of the design recipe (figure 1, Q1) demands the
introduction of a cond expression into the body with two clauses:

(define (MyFunction an-lod)
(cond

((empty? an-lod) . . .)
((cons? an-lod) . . .)))

Answering the second question (Q2) reminds the student that empty
(a.k.a. null) is atomic and cons is structural, with first and rest (a.k.a.
car and cdr) used as selectors:

(define (MyFunction an-lod)
(cond

((empty? an-lod) . . .)
((cons? an-lod) . . . (first an-lod) . . . (rest an-lod) . . .)))

Finally, students introduce a recursive call around (rest an-lod) in
response to the third question (Q3):

(define (MyFunction an-lod)
(cond

((empty? an-lod) . . .)
((cons? an-lod) . . . (first an-lod) . . .

. . . (MyFunction (rest an-lod)) . . .)))

In short, the question-and-answer game guides students to use the
program structure that LISPers find natural and use intuitively. The
difference is that students can take away design rules that also work

in an object-oriented setting (CS U 213), something they are likely
to encounter in the rest of the curriculum and their internships.

For purely motivational reasons, the course has heavily relied on
interactive graphical games for the last five editions. The design
recipe works well for this setting and students respond with enthu-
siasm. In support of this scenario, DrScheme supports images as
first-class data and an algebra of images for manipulating them.

Still in the first-order world of data, students also encounter the
concept of generative recursion in the world of How to Design Pro-
grams. In contrast to structurally recursive functions, generatively
recursive functions do not traverse the given data according to its
structure. Instead, they generate a new piece of data (of the same
kind) and recur on it. For example, while insertion sort proceeds
structurally, quick sort proceeds in a generative fashion. At that
point, the text also extends the design recipe process with a sev-
enth step: a termination analysis. After all, generatively recursive
functions can diverge for some inputs, unlike structurally recursive
functions, which always terminate. Thus, students have also en-
countered an essential element of ACL2’s admission process and
are prepared to understand that for some functions this analysis is
straightforward and for others it is complex.

Accumulator-style programming is the last ingredient from How to
Design Programs that is relevant here. Once students have seen
generative recursion, an instructor can demonstrate how, for exam-
ple, an applicative algorithm for searching in a graph may diverge
for cyclic graphs. This flaw naturally motivates accumulator-style
programming. Like generatively recursive functions, accumulator-
style programs perform recursion with newly generated values, mo-
tivating strengthened induction hypotheses for proofs.

Students come away from CS U 211 with several important ideas.
First, programming requires a systematic design process. Second,
the central step of the design process demands a solid understanding
of shapes of data definitions. They also get the idea that logic is
relevant for both axes of design. Finally, they learn to apply the
first two ideas in the context of applicative Scheme. We conjecture
that freshmen with this background can succeed in a course using
ACL2.

2.2 Dracula

Dracula [14] is an embedding of a subset of Applicative Com-
mon Lisp into DrScheme. The embedding simulates ACL using
PLT Scheme’s macro and syntax system, and therefore inherits
DrScheme’s tools, especially the interactions window (read-eval-
print loop) and the Check Syntax tool. Downloads, instructions,
and more information on Dracula can be found at
http://www.ccs.neu.edu/home/cce/acl2/.

Based on our experience with the TeachScheme! project, we de-
cided to make Dracula’s primitives safe and to enforce safety at
all times.1 We consider safety essential for novice programmers,
so that they discover “type” problems as quickly as possible. Fur-
thermore, freshman students are used to Scheme and may have en-
countered Java in high school, both of which are safe programming
languages.

Figure 2 displays a snapshot of Dracula. For novices, the IDE con-
sists of three parts: a console with five buttons for controlling the

1In ACL2 terminology, guard-checking is on.

Figure 2. Safety check violation in DrACuLa

Figure 3. Interacting with ACL2 via DrACuLa

IDE, plus an optional Save button; a definitions window; and an
interactions window.

The definitions window is a Scheme-oriented program editor, which
in this case contains function definitions for fact (factorial) and g.
Once the student clicks the RUN button, the definitions are evalu-
ated2 and the focus shifts to the bottom pane, the interactions win-
dow.

The interactions window is roughly like a Lisp read-eval-print loop,
though Dracula reinitializes the state of the loop every time a stu-
dent clicks RUN.3

In the screen shot, the student is trying to evaluate (g 42). Since
g then calls fact with −42, the safety check for zp, whose domain
proper is the set of natural numbers, raises an exception. Dracula
highlights the use of zp that causes the error and, with a failure
arrow, also shows the pending call to fact and where its result would
be used (through y and let).

To prove theorems, Dracula invokes the standard ACL2 implemen-
tation, rather than simulating its logic. A student can launch the the-
orem prover with a click on Start ACL2 (top right). As the screen
shot in figure 3 shows, doing so brings up a “report window” (on
the right) and opens an additional command pane in Dracula, with
buttons for sending definitions and theorems from the definitions
window to the theorem prover.

2Dracula can optionally prove the function total by invoking the
ACL2 theorem prover during this process.

3This so-called transparent read-eval-print loop is inherited
from DrScheme. Our experience with freshman courses suggests
that creating a clean slate is critical [8].

The additional console in the DrScheme window supports six new
functions. The first button sends the next unadmitted definition or
theorem to ACL2. If the prover accepts it, Dracula highlights it in
green; otherwise it turns red. The second button sends the entire
definitions window to ACL2, one definition at a time. The third
button undoes the last admit. The fourth button attempts to certify
the current file as an ACL2 book. The fifth button resets the theorem
prover to its initial state. And the last one terminates the ACL2
process. At the time of the course, this was the only way to interrupt
a proof.

The ACL2 report window has two panes. The top pane shows the
proof tree summary of ACL2’s proof attempts, adapted from similar
functionality in the ACL2 Emacs mode. The bottom pane shows the
complete output of the ACL2 session. The buttons at the top of the
window, Previous Checkpoint and Next Checkpoint, allow users to
jump directly to key points of the latest proof attempt in the bottom
pane.

3 Course Description

Vaillancourt and Eastlund taught the experimental course CS U
294 on formal logic and automated theorem proving in the spring
semester of 2007. The course consisted of three parts: lectures,
homeworks, and a final project. There were no exams in the course.
Here we outline our plan for the course, how we executed it, and
how the students performed.

3.1 Conjecture and Motivation

The working conjecture of our project is that proving theorems
about working programs motivates students to perceive logic as the

1. Introduction to ACL2 programming
2. Propositional logic
3. Model theory and interpretations
4. Structural induction principles
5. Structural induction proofs
6. ACL2 tips: defstructure
7. Formal proof language
8. Inference rules
9. Proving induction principles

10. Induction for generative recursion
11. Induction for accumulators
12. Model theory for first-order logic

Figure 4. Lecture topics.

“calculus of computer science.” To be precise, we expected that the
selected students had understood functional program design, both
along the data and the process axes. In addition, the introductory
programming course repeatedly makes claims about programs that
are easily formulated and proven in a logic such as ACL2. Thus,
students should be ready for the transition from programming to
proving theorems about programs.

Based on this conjecture, we intended to start the logic course with
simple exercises on programming familiar functions in ACL2 in-
stead of Scheme, formulating claims as theorems, and proving them
automatically in ACL2. From there, the course could then proceed
to theorems that do not go through automatically, which would de-
mand a close look at the nature of claims, proofs, and logic in gen-
eral.

Students were expected to become proficient in evaluating logical
propositions, relating them to computer programs, proving them by
hand, and establishing simple proofs in ACL2. In a broader sense,
we expected that students would take away two lessons from this
course:

1. Reasoning about programs requires logic in the same way that
reasoning about physical events requires calculus.

2. Attempting to prove theorems is just another step in detecting
and preventing flaws in programs and their structure.

While we still believe that such a logic course could be designed
and taught, our first experiences suggest that such an effort demands
an even tighter integration of programming (as in CS U 211) and
logic (as in CS U 294) than we imagined.

3.2 Lecture Material

The course syllabus combined the theory of formal logic with prac-
tical applications to program verification. The complete progres-
sion of topics is shown in figure 4. We started with a primer on
programming in ACL2. We followed with propositional logic, in-
cluding conjunction, disjunction, implication, atomic propositions,
and truth tables. We introduced model theory via interpretations,
which map atomic propositions to truth values.

The course continued with a treatment of structural induction. First
we showed students how to create a structural induction principle
from a recursive data definition, and walked through several exam-
ples. The following lecture used these rules for some examples of
inductive proofs.

Figures 5 and 6 show an example data definition and structural in-

LoN = nil | (cons Number LoN)

Figure 5. Data definition for a List-of-Numbers (LoN).

if P(nil) and ∀l ∈ LoN. P(l)⇒∀n ∈ Number. P((cons n l))
then ∀ l ∈ LoN. P(l)

Figure 6. Structural induction principle for a LoN.

(defun sum (l)
(cond ((endp l) 0)

((consp l) (+ (car l) (sum (cdr l))))))

Figure 7. Simple program operating on LoN.

∀ xs,ys ∈ LoN.
(sum (append xs ys)) = (+ (sum xs) (sum ys))

Proof by induction on xs.

Case xs = nil:
(sum (append nil ys))
= (sum ys) definition of append
= (+ 0 (sum ys)) additive identity
= (+ (sum nil) (sum ys)) definition of sum

Case xs = (cons n l):
I.H.: (sum (append l ys)) = (+ (sum l) (sum ys))
(sum (append (cons n l) ys))
= (sum (cons n (append l ys))) definition of append
= (+ n (sum (append l ys))) definition of sum
= (+ n (+ (sum l) (sum ys))) I.H.
= (+ (+ n (sum l)) (sum ys)) associativity of +
= (+ (sum (cons n l)) (sum ys)) definition of sum

Figure 8. Inductive proof over LoN.

duction principle for lists of numbers, as presented in lecture. We
taught students to formulate the induction principle by case analy-
sis on the clauses of the data definition. This process mimics the
template step of the design recipe from CS U 211. Figure 7 shows
the program sum which adds the elements of a list of numbers; fig-
ure 8 demonstrates a proof, also taken from the lecture material, of
a simple property of sum. The proof follows the form of the in-
duction principle: one clause for nil and one for (cons n l); the
second clause proves an implication based on an inductive hypoth-
esis (I.H.).

We spent the next lecture on tactics for using ACL2. We started
by presenting defstructure, a mechanism from one of the ACL2
books for reasoning about structured data as presented in CS U 211.
The lecture continued with strategies for recovering from failed
proof attempts in ACL2, which we repeated with examples through-
out the semester. Students were encouraged to work out proofs by
hand ahead of time. We taught them to compare ACL2’s output to
their solution on paper, and to guide ACL2 with lemmas where it
deviated from the expected strategy. Dracula’s Previous and Next
Checkpoint buttons helped students jump to the key points in the
output of failed ACL2 proof attempts.

The course transitioned to focus on proof theory. First, we dis-
cussed a formal language of proofs and how they can be formally
checked. Then we presented the notation of inference rules. We
gave examples of their use, including translating structural induc-
tion principles from implications to inference rules and redoing
prior proof examples with them.

Next, we examined the foundations of induction principles. We

proved the validity of structural induction in terms of set theory and
infinite unions, then generalized our notion of induction by show-
ing how any closure condition for a set can be an induction prin-
ciple. Structural induction allowed us to reason about structurally
recursive programs, which recur on a component of their input. Ex-
panding our set of induction principles allowed us to reason about
generative recursion.

To exemplify generative recursion, we presented an implementa-
tion of quicksort. We formulated a new induction principle for lists
based on their length, rather than their construction, and used it to
prove equivalence between quicksort and insertion sort, except for
a few lemmas left as exercises. This introduced students to strong
induction.

Another variation on recursion, programs which use accumulators,
was our next example. An accumulator is an argument to a function
which records the result so far and is constructed, rather than de-
structured, by the computation. We presented the implementation
of summing a list that records the total so far as an accumulator,
rather than the naive structurally recursive implementation, which
builds up a call stack of additions. We used this to motivate the tac-
tic of strengthening induction principles: the naive induction based
on the structure of the list fails to take the changing accumulator
into account.

We wrapped up our material on program verification before assign-
ing the final project and concluded the semester with two lectures
on model theory for first-order logic. We covered universal and ex-
istential quantifiers, logical structures defining a set of objects and
predicates, and how to establish the truth of a proposition in a given
structure.

3.3 Lecture Practices

The course met twice weekly during the semester, for 60 minutes
on Tuesday mornings and 45 minutes on Friday afternoons. Usu-
ally, we used Tuesdays to present new material and Fridays as lab
sessions. In lab sessions, students were allowed to work on their
homework in pairs and ask questions as needed.

Lectures were informal and interactive; because of the small class
size, we prompted each student to participate during every lecture.
After presenting each new topic, we worked through a few exam-
ples as time permitted. At each step we asked students to work out
the next part of a proof or program, and discussed why each choice
was correct or incorrect.

Lab sessions were less structured. Students brought laptop com-
puters and used the class as supplemental homework time. We an-
swered questions they raised and presented new ACL2 techniques
to the class as appropriate.

3.4 Homework Assignments

We assigned students eight homeworks over the course of the
semester. The progression of topics is shown in figure 9. The
assigned problems were a mix of ACL2 programming, proofs by
hand, and proofs with ACL2. We had students work and submit as
pairs, changing the partnerships a few times during the semester.
After the pairs handed in their assignments, we discussed the solu-
tions in class. In some cases, we had students present their program
or proof to the class and had the rest of the class critique the solu-
tion.

1. ACL2: Basic programming
2. ACL2: Propositional validity checker
3. Hand-written: Model theory and structural induction
4. ACL2: Structural induction on binary search trees
5. ACL2: Proof checker and more structural induction
6. Hand-written: Why structural induction fails for quicksort
7. Hand-written: Lemmas for proof about quicksort
8. ACL2: Accumulators and generative recursion

Figure 9. Homework topics.

We designed the first assignment to give students familiarity with
ACL2. We asked students to represent two simple data structures,
implement a few structurally recursive functions over them, and
formulate a test suite for their program. We gave instructions for
running the program in both Dracula and ACL2.

The second assignment built on students’ ACL2 programming
skills and the model theory lecture material. Students were in-
structed to represent a language of propositions in ACL2 and im-
plement predicates such as validity and satisfiability over them. The
students had to derive their own data definition for interpretations
(a mapping from atomic propositions to truth values) to solve the
problems.

The third assignment consisted of several proofs to be done by
hand. The first two theorems were simple equivalences in model
theory. The remaining problems required students to formulate
structural induction principles for recursive data types and prove
theorems about programs written either in class or on the previous
homework.

The fourth assignment applied the material on structural induction
to ACL2 proofs. Students had to prove that a binary search tree in-
sertion procedure produces a new binary search tree containing one
extra occurrence of the given element and preserves the tree’s order-
ing invariant. This was the first ACL2 proof required of students;
the assignment provided several hints, and students were expected
to show up for help in office hours as needed.

The fifth assignment consisted of three programs and two proof
obligations. The first two parts presented straightforward struc-
turally recursive programs and correctness properties for students
to prove. The third part gave a simple language for proof trees in
propositional logic and asked students to implement a proof checker
for it. There was no ACL2 proof required for the proof checker.

One part of this assignment was problematic. We required stu-
dents to prove that insertion sort produces a permutation of its input.
ACL2 admitted the staff solution in moments without helper lem-
mas, but apparently correct student solutions failed after long proof
attempts. Our normal recourses of adding intermediate lemmas or
working out the proof by hand turned out to be intractable, as the
full proof was too complicated to write in the allotted time. ACL2
had found a shortcut we could not duplicate, and we were unable
to help students make progress short of handing them a complete
solution.

The sixth assignment asked students to write an explanation of why
structural induction will not work for proofs about a quicksort im-
plementation. Students had to attempt the proof and discover where
the inductive hypothesis failed to be helpful. We intended the ex-
ercise to prepare students for the material on alternate induction
principles.

In the seventh assignment, we asked students to finish a proof equat-
ing the results of quicksort to those of insertion sort; we had reduced
the proof to six lemmas during lecture. This was a pencil and paper
assignment. After it was due, we asked each student to present one
of the proofs to the rest of the class. Students critiqued each oth-
ers’ methods and worked out corrected proofs for each lemma as
needed.

The eighth and final assignment required several proofs in ACL2
using nontrivial induction techniques. Three required students to
write a recursive program with an accumulator and prove a correct-
ness property. The fourth asked students to prove the equivalence of
quicksort and insertion sort, previously worked out by hand, using
ACL2.

We planned to judge from students’ performance and feedback on
homeworks how well they were learning ACL2, what difficulties
they encountered, and how much the design recipe benefitted their
proof attempts. We expected that students would continue to apply
the design recipe as they learned it in CS U 211. To this end, we
stressed a policy of testing before theorem proving. We supplied
students with a testing teachpack4 that gathered and summarized
the results of test cases.

We also expected students to use the ACL2 techniques we discussed
in class, such as writing proofs by hand and comparing the proof
structure to ACL2’s output. Students were instructed to seek extra
help from the instructors as needed so that they could continue to
make progress and we could see what obstacles they encountered.

Unfortunately, the students did not perform as per our expectations.
They normally, but not always, used the testing teachpack as we in-
structed and stated contracts and purposes for their functions; they
rarely followed the more structured steps of the design recipe. Stu-
dents were reluctant to seek extra help on their own, yet also fre-
quently skipped attempts to prove theorems by hand or interpret the
output of ACL2 from a failed proof attempt. Many students instead
adopted their own trial-and-error methods of developing proofs.

3.5 Final Project

The final project for the course was an open-ended programming
and theorem proving assignment. We provided students with the
implementation of a tetris-like video game in Dracula; initially, a
single block dropping down a blank screen and falling off the bot-
tom. We implemented the graphical interface to the game with an
animation teachpack, based on the one students had used in the pre-
vious semester. The interactive portions would execute in Dracula
but were ignored by ACL2.

The supplied file included a correctness property, which the pro-
gram violated: that the block would remain within the visible area
of the screen. We asked students to fix the program to satisfy
the property in class on the day we handed out the project, to get
them familiar with the code. Like the regular homeworks, students
worked on the project in pairs.

We gave students two weeks to add features to the game and prove
interesting properties of the final program. We requested tetris-like
features—users should be able to move blocks as they fall, blocks

4Teachpacks are libraries of code for students to use. They op-
erate like books when run by ACL2, and may have extra interactive
effects when run by Dracula.

Figure 10. A sample tetris-like game.

should stack up at the bottom of the screen, blocks should not over-
lap, etc.—but left the final decisions up to students. We checked on
each pair’s progress after a week and encouraged students to seek
extra help as needed. Figure 10 shows an example snapshot of a
tetris-like game as played from a student’s submission.

After the due date, we collected the programs from students and had
them demonstrate the final product in class. Students demonstrated
the features they incorporated into the game, the properties they had
attempted to prove, and the status of their proof attempts.

Performance on the final project mirrored that of the homeworks.
While the groups successfully implemented the program features
we suggested and a few others, their adherence to the design recipe
was incomplete, which hindered their proof efforts. Each group
successfully proved one or two nontrivial safety conditions of their
program. The homeworks also each contained one failed proof at-
tempt. In each case, students were unable to interpret the output of
ACL2, had not attempted the proof by hand, and had not contacted
the course staff for extra help.

4 Summative Evaluation

The course concluded at the end of the Spring 2007 semester. After
we assigned final grades to the students, we formulated and con-
ducted exit interviews with all students individually.

4.1 Student Perspective

At various points during the semester, students commented that the
class using ACL2 was an improvement over Symbolic Logic and
more rewarding than most other courses. They also had some com-
plaints and suggestions for the course, which they provided in detail
during the exit interviews.

In general, students found the course faster paced and more chal-
lenging than their other first-year coursework. They said that our
course progressed rapidly to more advanced topics of formal logic
than the Symbolic Logic course. Students were enthusiastic about
the course, often voluntarily staying beyond the scheduled lecture
time to continue discussing the material.

All of the students found the interface to ACL2 too verbose; the first
few checkpoints of a failed proof attempt often started in a manner
they found sensible, but quickly transitioned to checkpoints with

Topic Notation
BNF Grammar Tree ::= Atom | (cons Tree Tree)
Structural
Induction
Principle

∀a : Atom.(P a)
∀x,y : Tree.(P x)∧ (P y)⇒ (P (cons x y))

∀x : Tree.(P x)
Validity |= A∨¬A; 6|= A∨B
Modelling |=α A∧¬B; α = {A =>,B =⊥}
Entailment A,A⇒ B,B⇒C |= A∧B∧C
Set Theory D =

S
n:N Ln(/0)

Figure 11. Logical notation introduced in CS U 294.

large subgoals or unexpected strategies they were not able to diag-
nose. Some students got discouraged early in the course and did
not continue to read the output of ACL2 to discover the problems
in their proofs.

Five of the six students expressed a desire for more in-class training
on proof development and use of ACL2. They felt unprepared to
make some of the key decisions needed for nontrivial proofs, such
as how to choose lemmas, when to abandon a theorem, or when to
attempt a proof by hand.

Two students also stated they felt overwhelmed by the presentation
of formal logic. The theory material introduced a lot of new nota-
tion that students had not seen before and was not present in ACL2.
Figure 11 contains several examples. Students had several sugges-
tions to improve this, such as providing a course syllabus and either
textbooks or complete lecture notes, or presenting more of the log-
ical theory in terms of ACL2 and programming notation.

4.2 Instructor Perspective

The results of the course were mixed. We were not able to ade-
quately evaluate the impact of CS U 211 on students’ ability to use
ACL2 effectively. We did, however, teach a group of freshman of
various academic standings to use ACL2 productively and indepen-
dently in the course of a semester, concluding by proving multiple
nontrivial properties of a meaningful interactive program.

Part of our initial thesis for this course was to discover how effec-
tive the design principles taught in CS U 211 can be in the instruc-
tion of formal reasoning about programs. We experienced some
success in this regard: our treatment of induction principles and
structural induction followed the pattern of templates and recursion
from the prior course, and students picked it up readily. Unfortu-
nately, the homeworks and projects submitted for the course clearly
lacked many design recipe elements. As a result we have not satis-
factorily explored our thesis; freshmen require strong incentive and
instruction to adhere to structured programming practices.

We also intended to build on students’ prior programming experi-
ence via Dracula, providing a familiar interface through DrScheme
to the new language of ACL2. The tool was clearly helpful to the
class; students were able to develop proofs and programs without
the learning curve of a new development environment, and had a
rich set of tools such as the testing and animation teachpacks. How-
ever, Dracula was missing some key functionality. Some controls
for the graphical interface did not function properly, including con-
trol over navigation of ACL2 output. Dracula’s Help Desk lacked
complete documentation; it provided ACL2’s documentation, but
did not list what subset it implemented nor provide tutorials for
common tasks.

The course’s greatest challenge was the difficulty of recovering
from a failed proof attempt. Part of the problem was our cur-
riculum; we presented a series of individual tactics for completing
proofs, rather than a single step-by-step method. Some of the pre-
sented tactics, such as specific ACL2 books to include or proof hints
to use, came too late, and students got stuck on homeworks without
knowing why. Students were also reluctant to admit failure and ask
an instructor for help, despite encouragement and the experimental
nature of the course.

Much as we would like it to, the difficulty of generating proofs in
ACL2 does not always scale down with the complexity of the prob-
lem. Regardless of the degree of training, ACL2 proof attempts are
fragile, and homework exercises require extremely careful design
to help students avoid common obstacles to successful proofs. As
we discovered with the fifth homework assignment, some proofs
may be trivial by one approach and intractible by another. Teaching
ACL2 requires a large canon of simple, provable program proper-
ties without this drawback.

Perhaps the most surprising success of this course was the students’
performance at in-class presentations of proofs. Students learned
quickly how the instructors expected a proof to be presented; by the
end of the first set of presentations, the class was able to construct a
proof collaboratively even when the presenting student did not have
a correct proof to start from.

Students took our course alongside PH U 215, Symbolic Logic.
While we presented enough formal logic for students to reason
about programs, the Symbolic Logic course gave students a fuller
treatment of pure logic than our course. We took advantage of
students’ dual enrollment to focus on ACL2-related topics; a full
course based on our curriculum could cover more formal logic.

Over the course of a semester, we taught formal logic and ACL2
theorem proving to six students spread across the top half of their
class, with two or more instructors present for all lectures and lab
sessions. We demonstrated methods which were overall very suc-
cessful at teaching the theory of proofs, and which had some diffi-
culty with the practice of using ACL2. For inclusion into a required
freshman course, this curriculum must be adapted for a larger class
size with less instructor attention. While our experience does not
yet represent a repeatable way to teach ACL2 to a large class of
students, our results suggest that freshmen can learn and apply au-
tomated reasoning about programs, and give us clear directions for
future improvement.

5 Related Work

Over the past ten years, NSF has funded three efforts on introduc-
ing students to logic in programming-related ways. They are the
ACL2-based project run by J Moore and P. Manolios, the Beseme
Project at the University of Oklahoma [13], and TeachLogic [1], a
distributed project.

The main pedagogic result from Moore and Manolios’s project is
“The ACL2 Sedan”, a customization of the development environ-
ment Eclipse for learning ACL2, developed at Georgia Tech by
Dillinger, Manolios, and Vroon [4]. The ACL2 Sedan gives new
degrees of control over the interface to ACL2; for instance, users
have the option of a specialized termination analysis [12], or cus-
tomizing the set of proof search features used by default. We are
interested in incorporating these and other features of ACL2s into
future versions of Dracula.

The Beseme Project, developed by Rex Page, presents a curricu-
lum for undergraduate discrete mathematics courses that applies
formal reasoning tools to Haskell programs. The curriculum has
been taught at the University of Oklahoma. Page confirmed with
statistical correlations an improved performance in subsequent, re-
quired computer science courses.

TeachLogic, a joint project by Barland (Rice), Felleisen (Northeast-
ern), Kolaitis (UCSC), and Vardi (Rice), consists of a collection of
teaching modules designed to incorporate elements of logic into a
variety of computer science topics. The project espouses “logic
across the curriculum”, by which formal reasoning can be spread
throughout undergraduate education and applied directly to real
software. The modules are published and available from the web
site; the TeachLogic team has not attempted to gather data about
the pedagogic long-term effects of the modules.

6 Future Work

Our experience with this course suggests a number of future soft-
ware projects as well as projects for developers of courses and cur-
ricula on formal reasoning in computer science.

A revision of the course must insist that students stick to the func-
tional design recipe. Thus the course can serve as a reinforcement
of the recipe, and students are likely to make progress on the proof-
oriented material more quickly.

The syllabus must evolve to include a structured theorem-proving
method analogous to the design recipe. Specifically, if ACL2 is
to be retained, it requires exercises for interpreting ACL2’s diag-
nosis, for selecting intermediate lemmas, and for building proofs
incrementally. The course will also benefit from a large canon
of carefully designed exercises that demonstrate proof principles
while avoiding ACL2 subtleties along the way, such as perplex-
ing failure output or the need to use mysterious, instructor-supplied
“hints”.

Concerning Dracula, we intend to focus on two major complaints.
On one hand, there is clearly a need for improved documentation
of common tasks and expanded explanations of some basic ACL2
functions and forms. The ACL2 tutorial, included with Dracula, is
a good starting point for professionals but assumes a level of techni-
cal sophistication beyond most freshmen. On the other hand, Drac-
ula (and ACL2) needs a better tool for navigating ACL2’s explana-
tions. The existing checkpoint controls in Dracula do not function
reliably, and the information found at each checkpoint is still too
complex for a novice programmer to decipher. We will therefore
attempt to develop a tool for navigating and restructuring ACL2’s
output so that users can get piecemeal explanations and summaries
as needed.

We have also considered some entirely new tools that would help
students develop programs and proofs using Dracula. A stepper for
Dracula in the style of DrScheme’s student languages [3] would
help students see their programs in action. A test generation facil-
ity such as QuickCheck for Haskell [2] could help students find
counterexamples to faulty conjectures more quickly than a full-
fledged proof attempt. Better support in the programming lan-
guage of Dracula for incremental and modular development of both
proofs and programs would help students break down large prob-
lems into small tasks, and ease the progress from small proofs to
large projects.

Acknowledgements. Thanks to Rex Page for inspiring this course,
to Kathi Fisler for inspiring the senior author to pursue this idea
in 1998, and to Felix Klock for his assistance in the classroom.
We received comments on early drafts from Peter Dillinger, Pete
Manolios, Riccardo Pucella, Olin Shivers, Sam Tobin-Hochstadt,
and anonymous referees.

7 References

[1] Barland, I., M. Felleisen, P. Kolaitis and M. Vardi. The teach-
logic project. See http://www.teachlogic.org/.

[2] Claessen, K. and J. Hughes. QuickCheck: a lightweight tool
for random testing of haskell programs. In ACM SIGPLAN
International Conference on Functional Programming, pages
268–279, 2000.

[3] Clements, J., M. Flatt and M. Felleisen. Modeling an al-
gebraic stepper. In European Symposium on Programming,
pages 22–37, 2001.

[4] Dillinger, P. C., P. Manolios, D. Vroon and J. S. Moore.
ACL2s: “The ACL2 Sedan”. Electron. Notes Theor. Comput.
Sci., 174(2):3–18, 2007.

[5] Felleisen, M., R. B. Findler, M. Flatt and S. Krishnamurthi.
How to Design Programs. MIT Press, 2001.

[6] Felleisen, M., R. B. Findler, M. Flatt and S. Krishnamurthi.
The structure and interpretation of the computer science cur-
riculum. In Hanus, M., S. Krishnamurthi and S. Thompson,
editors, Functional and Declarative Programming in Educa-
tion, 2002.

[7] Felleisen, M., R. B. Findler, M. Flatt and S. Krishnamurthi.
The TeachScheme! project: Computing and programming for
every student. Computer Science Education, 14:55–77, 2004.

[8] Findler, R. B., J. Clements, C. Flanagan, M. Flatt, S. Krish-
namurthi, P. Steckler and M. Felleisen. DrScheme: A pro-
gramming environment for Scheme. Journal of Functional
Programming, 12(2):159–182, March 2002.

[9] Gray, K. E. and M. Flatt. ProfessorJ: A gradual intro to Java
through language levels. In OOPSLA Educators’ Symposium,
2003.

[10] Kaufmann, M., P. Manolios and J. S. Moore. Computer-Aided
Reasoning: ACL2 Case Studies. Kluwer Academic Publish-
ers, 2000.

[11] Kaufmann, M., P. Manolios and J. S. Moore. Computer-
Aided Reasoning: An Approach. Kluwer Academic Publish-
ers, 2000.

[12] Manolios, P. and D. Vroon. Termination analysis with calling
context graphs. In Ball, T. and R. B. Jones, editors, CAV,
volume 4144 of Lecture Notes in Computer Science, pages
401–414. Springer, 2006.

[13] Page, R. L. Software is discrete mathematics. In ACM
SIGPLAN International Conference on Functional Program-
ming, pages 79–86, 2003. Also: http://www.cs.ou.edu/
∼beseme/.

[14] Vaillancourt, D., R. Page and M. Felleisen. ACL2 in
DrScheme. In ACL2 ’06: Proceedings of the sixth interna-
tional workshop on the ACL2 theorem prover and its appli-
cations, pages 107–116, New York, NY, USA, 2006. ACM
Press.

