
Evolution From Debugging to Verification

Frank Rimlinger
National Security Agency

frankrimlinger@mac.com

ABSTRACT
Can a tool be built that folds code verification directly into
the debugging cycle with minimal impact on the code de-
velopment timeline? This paper describes a precursor tool
based on the ACL2 theorem prover, together with sugges-
tions for future work.

Categories and Subject Descriptors
I.6.4 [Computing Methodologies]: Simulation and Mod-
eling—Model Validation and Analysis

General Terms
symbolic simulation, software verification, automated theo-
rem proving

1. INTRODUCTION
Design and development of software has evolved into a rig-
orous subject worthy of academic instruction. But actually
debugging code, making it work, is still an art. Natural se-
lection has produced the programmer artist, whose stock in
trade is analytical ability endowed at birth as refined by a
personal journey through the dark side of technology. There
is a great need to turn the art of debugging into science.

Since a debugger presents a static view of a live execution,
that view obviously varies with program input. To migrate
the debugging process to verification, it is therefore neces-
sary to debug all the input states. Symbolic execution is a
natural means to achieve this end. The literature on this
subject is vast, see for example [1] and more recently [2].
This paper uses a language neutral mathematical technique
to achieve scalability [8]. A computer program is repre-
sented mathematically as a functor from a path category
into a category of predicate transformers, which intuitively
capture the idea of weakest precondition. In this setting,
symbolic simulation corresponds to composition of predicate
transformers. By manipulating the path category, functorial
transformation is used to represent natural code subdivision

preserving order of execution and functionality. As subdi-
vided pieces of code are analyzed, the results may be com-
posed to build up a larger picture.

The implemented subdivision process is fully automated and
handles submitted code in linear time and space. Therefore,
the bulk of the tool described in this paper is focussed on
the semi-automated analysis of code fragments. The com-
puter language chosen for analysis is Java, modeled at the
byte code level. The tool produces a correct specification of
source code level Java as written, modulo proof obligations
which are discharged by the ACL2 theorem prover [4]. The
crux of the matter is the amount and nature of the interac-
tion required by the user to produce the specification and
proof artifacts. The goal is to produce a tool that could be
integrated into the code debugging cycle and operated by
the programmer, enabling the detection of errors at a time
when they are relatively easy to fix. The current tool, in its
fourth generation, has not yet achieved this goal. But with
each generation, the level of automation increases, and new
tasks are identified as candidates for automation. Based on
seven years of development resulting in the current tool, the
author believes that a sustained evolutionary process will
eventually produce a practical interactive tool for code ver-
ification.

Section §2 describes the code subdivision algorithm which
produces artifacts that drive the symbolic execution mech-
anism. The basic operation of the tool required to produce
the correct specification is briefly summarized in §3, and is-
sues of design drift and compositionality of reasoning are
also addressed. Use cases for the existing techniques of the
current tool are described in §4. Applications of the existing
tool to actual code are described in section §5. Finally, the
limitations of the current tool and future work are discussed
in section §6.

2. CODE SUBDIVISION
The first step in a formal analysis of code is a model of
the state of the computer. As the state model for the Java
Virtual Machine (JVM) is exceptionally clean, the current
tool targets source code written in java and compiled to java
byte code. Following [6], the state space of the computer is
modeled with just five variables representing the heap, the
next free heap address, the stack of frames, the static area,
and the state prior to execution of the last instruction.

Given the state model, each byte code instruction is then



a five-valued function of state describing the effect of the
operation on each state variable. The modeling approach is
similar to that of [7] but was developed independently. For
example, an instruction which pops a value and stores it in
the heap is represented by a function which emits complex
expressions for the heap and stack variables. The first step
in creating such an expression is to introduce uninterpreted
functions that model the atomic behavior of the JVM, such
as accessing the top frame of the stack, accessing the operand
stack of a frame, popping a value off an operand stack, and
so on. Relationships between such uninterpreted functions
may then be introduced as rewrite, or pattern matching,
rules. For example, pushing a frame onto a stack, and then
popping off this same frame yields the original stack. The
cumulative effect of several byte code instructions may then
be computed by simplifying the composition of their func-
tional representations using these rewrite rules. This rewrit-
ing process therefore accomplishes symbolic execution.

It should be pointed out that this detailed model exists only
for the purpose of accomplishing exact symbolic simulation.
Various change of variable techniques are applied to the raw
results of the simulation prior to visualization and analysis.
In particular, proof artifacts generated for ACL2 are, to the
extent practical, expressed in terms higher level variables
representing source code level values. The heap is presented
to ACL2 as an associative array. Although some of the struc-
ture of the stack is exposed to ACL2, it can be usually be
ignored, the exception occurring during modeling of mutu-
ally corecursive methods.

Rather than work in the category of state transitions and
composition, it is technically advantageous to work in the
dual category of predicate transformers. In this category,
described in [8], state transitions, branch conditions, and
loops can all be described as predicate transformers. To
this end, let S be the state space, and let I : S → S model a
byte code instruction as a map from the state space to itself.
Define a predicate to be a boolean valued function of state.
Let P be the set of predicates. The the predicate trans-
former I∗ : P → P is defined by the formula I∗(p) = pI.
In other words, the dual of an instruction takes a predicate
evaluated after execution of the instruction to its weakest
precondition prior to execution. Give a predicate b modeling
a branch condition, the corresponding predicate transformer
is defined as b∗(p) = b. Finally, let B be a state transition
modeling the body of a loop, and let b be the predicate ac-
cepting states which enter the loop. Accordingly, a state s
will loop n times if b accepts Bi(s) for all 0 <= i < n and
b rejects Bn(s). The corresponding predicate transformer L
for the loop is defined by the formula

L(p)(s) = pLn(s) if state s loops n times, or

= false , if state s hangs the loop.

Thus, the predicate transformer for a loop rejects the states
which hang the loop, and otherwise is the weakest precon-
dition.

From this point of view, symbolic execution corresponds
to composing predicate transformers along a correspond-
ing execution path. More precisely, given a control flow
diagram of state transitions and branch conditions, replace
each state transition I with I∗, and each branch condition b

with b∗and id∗, where id : S → S is the identity state tran-
sition. Then composing predicate transformers along any
execution path yields a predicate transformer of the form
c∗andJ∗ such that c accepts all input states which will flow
along the path and J represents the state transition along
this path. This technique is only effective for code repre-
sented by acyclic control flow, that is, code which contains
no loops. In [8] a sound theory is presented for naturally de-
composing control flow into loops with acyclic loop bodies
which may refer to other loops in a well-founded, hierarchi-
cal manner. This approach was motivated by the work of
Legato [5]. This decomposition enables the tool to trans-
form loops in code to recursive functions whose bodies have
been simplified via symbolic execution.

The basic idea behind the loop decomposition is recursive
blowup of loop clusters. Starting with an arbitrary control
flow diagram, consider the quotient graph obtained by iden-
tifying instructions contained within a directed cycle and
passing to the transitive closure. The preimage of a non-
trivial equivalence class by this relation is a loop cluster.
Choose such a cluster, if any, and blow it up by identifying
an entry point and adding two copies of it, called α and ω.
Redirect all control flow into the entry point to ω, and all
control flow leaving the entry point to α. Discard the en-
try point, and repeat this process until the graph is acyclic.
Modulo some book-keeping to keep track of control flow and
encapsulate loop bodies, the result is the desired hierarchical
decomposition.

Observe the word encapsulate as used in this paper does not
refer to the ACL2 encapsulate command. Rather, to encap-
sulate a potentially complicated expression X simply means
to replace X with a symbol s. During symbolic execution,
the rewriter may, at its discretion, replace s with X. Gener-
ally speaking, such replacement occurs if the rewriter wishes
to “execute” the code represented by X, and otherwise the
replacement does not occur. Instead, s simply disappears
when the input states which flow into X are excluded from
consideration.

Figures 1 and 2 depict an iteration of the blowup process.
Once the cluster of loops at E1 has blown up, the single loop
at E2 is revealed. The body of the outer loop is represented
by the paths from α1 to ω1. As shown in figure 2, some of
these paths still involve edges of the inner loop. However,
upon iteration of the blow up algorithm, E2 becomes α2 and
ω2. The body of the inner loop is then defined as the set of
paths from α2 to ω2. As these paths do not meet any other
loops, the algorithm grounds out. The paths of the inner
loop shrink back to a single point encapsulating the func-
tionality of the inner loop. In this new configuration, the
paths of the outer loop no longer meet any loop, just the
point E2 endowed with its loop transformer, so once again
the algorithm grounds out, and the paths of the outer loop
shrink back to a point. Overall control flow is now acyclic, as
is the control flow for the body of each synthesized loop. To
prevent exponential growth of expressions during symbolic
execution rewriting, further encapsulation is performed. In
particular, the forward control flow at each branch point
in code is encapsulated, so that the rewriter has the op-
portunity to pause at each decision point, enabling analyst
interaction. This interactive capability is described in more



Start

E1

y

w

End

x
z

Figure 1: Loop cluster E1 (in red)

E2

Start

y

End

x
z

w

α1

ω1

Figure 2: Blowup of E1 (light and dark red), Loop E2 (dark red)



detail in §4.

3. SUMMARY OF TOOL OPERATION
At start-up, the analyst identifies the source code and cor-
responding compiled byte code to serve as input to the tool.
The tool then automatically applies the code subdivision al-
gorithm to produced the encapsulated functions required for
symbolic execution. The object of the analyst is to produce
a correct specification of the implemented code. The process
is applied on a per module basis, where module in this sense
refers either to the java concept of a method or a loop body
synthesized by the procedure of §2.

The basic iteration of the tool process is referred to as mod-
ule definition. The process produces a persistent set of rules
which describe module outcomes together with required in-
put state constraints. In addition, any conjectures required
for soundness of the description are present, and well as any
change of variables formulas required to translated between
JVM level state variables and source code level concepts.
With the exception of the change of variable formulas, all of
this information translates directly into ACL2, where it is
used for the purpose of proving the conjectures.

The module definition process also produces an English lan-
guage transcription of the outcomes, input constraints, and
conjectures. This transcription is not precise enough for
formal analysis. Rather, its value lies in the fact that it is
immediately intelligible to a tool user with content knowl-
edge of the source code but no special training in formal
methods. Experience has demonstrated that many bugs are
easily revealed just by reading this transcription to see if it
makes sense.

The tool is used iteratively in a bottom up manner to pro-
duce module definitions for the entire code body. Initially,
module definitions for java native methods are introduced
manually into the rulebase. The analyst also has the option
of introducing stub modules, which axiomatize the module
behavior. The analyst then identifies a module which does
depend on a currently undefined module as a candidate for
module definition. Accordingly, once this candidate is de-
fined, modules dependent on this candidate may themselves
become candidates for definition, and the process repeats
until all the modules within the code body are defined.

It should be pointed out that methods which are members
of mutually corecursive systems are not defined in isolation
according to the above process. Rather, a system of such
methods will be preprocessed by the algorithm of §2 into
a hierarchical set of loop modules, to be processed by the
bottom up procedure summarized above.

A natural consequence of this organization of workflow is a
solution for design drift and the compositionality of reason-
ing problem. Design drift occurs as the details once fresh
in the mind begin to fade and be replaced by simpler, po-
tentially problematic constructs. However, whether or not
the programmer begins to forget, the computer does not.
The module definition of a method is the only information
about that method that is available to a caller. If a caller
cannot automatically relieve the input constraints of a called
module, then the anticipated substitution of the module in-

vocation with its instantiated outcome does not occur, and
the situation is consequently brought to the attention of the
analyst. If the caller input space is suitably constrained so
that the constraints of the called method can be relieved,
then the substituted functionality for the called method is
precisely derived from the module definition in the rulebase.
If the programmers understanding has drifted, then the er-
ror is potentially revealed during consequent symbolic exe-
cution.

Compositionality of reasoning refers to the ability to stitch
together separate analytical efforts on subsets of a problem
to resolve a larger issue. Not only is the module definition
process robust across problem subdivision, but also across
different analysts working at different times and places. All
that is required is a shared database where the module def-
initions are logged, and a coordination of effort as required
by the bottom up nature of the process.

4. TOOL USE CASES
At startup, the tool reads in the rulebase and source code
designated by the user. The code is automatically subdi-
vided into predicate transformers according to the method of
§2. This boot up process typically takes less than a minute.
Operation of the tool proceeds via interaction with the user.
This section describes in roughly chronological order a set
of use cases for tool operation which result in the genera-
tion of a English language specification for a module and
the associated proof artifacts for ACL2.

4.1 Select module for definition
The predicate transformers representing the functionality of
the modules processed at boot up are presented to the user
in a hierarchical display reflecting the package structure of
java code. Embedded within the package hierarchy is the hi-
erarchy of module dependence generated by the tool. Only
modules not yet defined in the rulebase, in the sense of sec-
tion §3, are exhibited in this manner. Accordingly, the user
navigates to a leaf node in this hierarchy to select the next
candidate for module definition. This causes a window to
appear which displays the current status of the definition.
From this display the user can access the current predicate
transformer associated with the module, as well as hypothe-
ses, outcomes, and conjectures associated with any previous
cases. Once all desired cases for a module have been defined,
then the module definition is closed and will no longer ap-
pear in the initial display.

4.2 Inspect an expression
The user guides the tool in the process of simplifying the cur-
rent module expression. In order to do this, the expression
must be presented to the user in a comprehensible format.
The low level language expressing a predicate transformer
as a function of the JVM state variables is not suitable for
this purpose. The high level language involving change of
variables stored persistently in the rulebase and exposed to
ACL2 is not yet available, as the change of variables trans-
formation itself is not yet defined. What can be displayed
is an intermediate language based on debugging information
that is typically stored in the compiled java .class files. In
particular, the mapping of local variable offsets to source
code level names is leveraged to effect a transformation to



source code level constructs. Inspection of this expression
allows the user to track the path through the code that has
been accomplished so far by the symbolic execution. All
expressions are displayed hierarchically and are fully navi-
gable. This feature allows for easy access to subexpressions,
which is required by various use cases below.

4.3 Step the symbolic execution
The granularity of the code subdivision process is advertised
in §2 as being at the level of branch points in code. Ideally,
this would imply that every time the user steps the rewriter,
the current module expression advances to the next branch
point. However, for a variety of technical reasons, some stut-
tering does occur. Once a branch point, module invocation
point, or execution terminus is reached, the command to
rewrite will no longer alter the current module expression,
and the user will decide on a course of action as detailed
in the following use cases. An exception to this rule is the
situation of automatically generated hypothesis, discussed
in the next use case.

4.4 Choose a branch
Logically, choosing a particular branch in the code means
asserting a hypothesis about the module input state. This
hypothesis is recorded in the definition window for the mod-
ule, and ultimately becomes an input constraint in the rule-
base for the case under construction. The hypothesis also
becomes available immediately to the rewriter, so that sub-
sequent rewriting will cause the symbolic execution to ad-
vance. In addition, the English language translation of the
hypothesis is displayed in a running transcript, so that the
user can keep in sync with what has been assumed. In prac-
tice, the display of the English transcription seems to have a
powerful psychological effect on the user, even though it has
no logical significance. It is empirically evident that seeing
the same information displayed in different ways within the
same context enhances comprehension.

There are many very routine hypotheses that the tool will
assume on its own initiative. For example, there are a vari-
ety of reasons why an invocation exception might be thrown.
The logic for such an exception is built into the state trans-
formations of the various invocation instructions at the JVM
level. From a purely formal standpoint, there is no differ-
ence between a constraint that assumes such an invocation
exception does not occur and a constraint involving the logic
of the program evident at the source code level. However,
it is essential not to involve the user with routine, boring
activity which causes attention to wander. Therefore, the
rewriter will automatically cause such routine conditions to
be assumed. The English transcriptions of these assump-
tions appear in italic so that the user can more easily focus
on the significant constraints.

It is well to point out that the term rewriter as used in this
paper goes well beyond the basic functionality of altering
expressions via a pattern matching mechanism. The rewriter
actually functions as a mini operating system, capable of
acting upon events which arise during the pattern matching
process and scheduling appropriate tasks to service those
events. By this means, the technical apparatus for achieving
automation of formally identifiable tasks is built into the tool
mechanism.

4.5 Create a user definition
There is an ever present danger of expression complexity ex-
plosion during the process of rewriting. Most of the time,
the rewriter itself can take effective means to mitigate this
problem. However, there are times when the user may wish
to intervene by encapsulating a subexpression as a user def-
inition. There are four categories of required rules for a user
definition: declaration, evaluation, inversion, and transla-
tion. The user must supply rules in the rulebase to satisfy
each of these categories. The declaration rule provides a type
and name for each of the arguments, and a type and name
for the definition itself. The evaluation rules determine how
the definition will expand when evaluated. The inversion
rules determine how an inverted expression or subexpres-
sion will transform itself into an instance of the definition.
Finally, the translation rules determine how an instantiated
definition expression will translate into English, assuming in-
ductively that each of the arguments already possesses such
a translation.

Needless to say, there is ample opportunity for error during
the construction of a user definition. Experience has shown
that the process of translating user definitions to ACL2 will
expose such errors. This appears to be one area where non-
sophisticated ACL2 users can use the tool with relative ease
and effectiveness.

4.6 Invert or evaluate an expression
User definitions have no effect on rewriting unless the inver-
sion or evaluation mode is selected. Most of the time, it is
advantageous to rewrite with inversion, so that complex ex-
pression are immediately bundled up into instantiated user
definitions. Therefore, inversion is the default mode for sym-
bolic simulation. However, situations do arise where other
courses of action are more appropriate. Because the ex-
pressions are fully navigable, the user can mix and match,
choosing to invert or evaluate only those subexpressions that
are under investigation.

4.7 Resolve an instantiation
The rewriter detects invocations of defined modules and fires
up a handler to service the invocation. The handler provides
visual feedback by inserting the name of the called module
within an appropriate panel of the module definition win-
dow. The handler then inspects the cases for the defined
module within the rulebase. The goal is to find a case whose
hypotheses are satisfied by the state passed to the invoca-
tion. To this end, the hypotheses are first converted back
to JVM state expressions using the change of variables rules
for the defined module. The hypotheses are then composed
with the input state, and rewritten in both inversion and
evaluation mode. If each hypothesis for a case succeeds by
some means in rewriting to true, then the handler substi-
tutes the instantiated outcome for the module invocation
within the current model expression, and rewriting contin-
ues. Otherwise, the handler opens up an new instantiation
window for the called module.

This is a dramatic event that commands the attention of the
user. The user may access the instantiated hypotheses and
outcomes via this window, and determine a course of action.
The user may attempt to relieve hypotheses by more sophis-
ticated use of the rewrite commands. Alternatively, the user



may decide to assume the unrelieved hypotheses for a par-
ticular case. The user terminates the instantiated event by
closing the instantiation window. If the user closes the in-
stantiation window prior to assuming or otherwise relieving
the hypotheses of a case, then an instantiated module defi-
nition is substituted for the invocation. Instantiated module
definitions are syntactically similar to instantiated user def-
initions, but they are treated in a special manner by the
rewriter because they are of type state. The significance of
the state type is further discussed in the next use case.

4.8 Generate an invariant
Prior to rewriting, the current predicate transformer of a
module definition in progress is instantiated with a dummy
state. The rewriter treats accessors of dummy state in a
special manner, rendering such expressions using available
context, as discussed in §4.2. As discussed above, the fail-
ure to resolve module instantiation results in module state
expressions within the current predicate transformer. As
the rewriter detects accessors of such expressions, it renders
them using both context and the name of the called module.
So, for example, an access at an offset into the local variable
array of the top frame of the stack of a module state expres-
sions might render as “x after call to methodName”. The
appearance of such variables is an indication that the user
should create an invariant. It may be that the called mod-
ule does not alter the value of x. The user may introduce
an invariant rule into the definition of the called method,
which rewrites “x after the call” to “x before the call”, or
to whatever value is suitable under the circumstances. The
tool then assumes the truth of such invariants during rewrit-
ing. However, the possibility of inconsistency exists until the
obligation to prove the invariant is relieved using ACL2. The
benefit of uncoupling the proof activity from the specifica-
tion activity is a more cost effective division of labor and
increased throughput.

Invariants typically are straightforward substitutions, but
they may be quite complex, depending on the functionality
of the intervening module. These more complex invariants
are sometimes referred to as conjectures, but their logical
status is the same.

4.9 Simplify the heap
The temporal logic involved in garbage collection is a sub-
ject worthy of study. The current tool recognizes two differ-
ent kinds of garbage, heap access garbage and output state
garbage. For heap access, all heap entries with reference
provably unequal to the accessor reference may be elimi-
nated from the heap access expression. This is a particu-
larly valuable strategy for demonstrating syntactic equality
of unresolvable heap access expressions. When a method
returns, all items in the heap that were created during exe-
cution of the called method are stale, with the exception of
any items that may be traced from a reference returned by
the method. The tool uses this principle to garbage collect
the output heap generated by the module definition pro-
cess for the special case the module is a method. For both
kinds of garbage it is essential to bind each reference with
a temporal tag indicating if it is in the past, that is, re-
ferring to an object created before the call to the current
module, or in the present, that is, referring to an object cre-
ated during execution of the current module, or null, static,

or unknown. Heap access garbage is collected automatically
by the rewriter. Output state garbage is collected by user
command just prior to closing a method case or a definition.

4.10 Close a case
Once the current module predicate transformer has rewrit-
ten to a state containing no uncomposed subexpressions, the
entire expression is a fortiori a function of dummy state. As
such, it may be stored in the rulebase as case, together with
its associated hypotheses, invariants, and conjectures. The
user initiates the close case command.

4.11 Close a definition
The user issues the close definition command when closing
the final case of a module definition. In addition to stor-
ing the apparatus of the final case, the tool automatically
performs the change of variables analysis. This involves a
survey of all persistently stored expressions associated with
the module definition, to determine all state accessors, and
all stack and heap expressions. Each such accessor is as-
signed, if possible, a source code level name. The type of
the accessor is also determined. Each such accessor function
is now regarded as a change of variables formula for an as-
sociated parameter. An analysis is performed to determine
functional dependence of parameters. This process grounds
out in parameters that have change of variable formulas that
are functions of pure state. Other parameters might have
less dependent parameters as part of their change of vari-
ables formula. For example, the heap parameter might be
a function of local variable parameters it contains as heap
references. The point of preserving relationships between
parameters is to allow this information to be translated into
ACL2, to the extent it is necessary to do so to perform the
required analysis within the theorem prover.

Once the set of parameters has been established for a module
definition, the all the persistent expressions associated with
the module definition, are transformed to their parameter
form, with the obvious exception of the change of variable
formulas themselves. The module definition at this point is
marked as closed, and no more cases can be added to the
definition.

4.12 Examine English language specification
The English language specification has been referred to in
various places throughout this paper, but it still deserves a
use case of its own. The author originally added this func-
tionality to the tool as a marketing ploy, but it was im-
mediately apparent that translation to English is a surpris-
ingly effective means of communicating meaning. In time,
this translation may become natural enough to replace the
javadoc that is now generated by totally unscientific means
to describe method functionality.

4.13 Translate module definitions to ACL2
The current method of translating to ACL2 is simply to
paste expressions into the system and then try to sort out all
the problems. This is an area that hopefully will be getting
a lot of attention in the near future. Suffice to say that after
several iterations of attempting to generate data for ACL2,
the author is now confident that the correct information
is now stored in the rulebase in persistent form, and that



the remaining problems are more technical in nature than
conceptual.

5. PROOF OF CONCEPT
The ability of the tool to communicate effectively with ACL2
has been a constant theme throughout the development of
the tool. The change of variable techniques to translate be-
tween JVM level and source code level language were first
introduced to facilitate this communication. Earlier versions
of the tool did not integrate change of variables into the mod-
ule definitions stored persistently in the rulebase. Instead, to
accomplish the translation to ACL2, an additional persistent
layer of language was stored in the rule base, and a parser
written in lisp was developed by Robert Krug to translate
this information into ACL2. Although this method was suc-
cessful, it was also clumsy and fragile. The current tool in-
tegrates change of variables directly into module definition,
so that translation ACL2 should be much more straightfor-
ward. As of this writing, testing of this new approach is just
getting underway.

Using the earlier approach, Krug applied the tool to a set
of java programs involving a simple loop to sum a sequence
of integers, a loop to zero the array of a heap, and a triply
nested summation loop. Conjectures generated by the tool
about these programs, together with the module definitions,
were translated into ACL2 using the parser. The conjectures
were then proven within ACL2. These tests demonstrated
the basic ability to translate simple loops to ACL2, but did
not address the problem of scalability. A very significant
milestone for the tool was the proof of correctness of the
code for java.lang.System.arraycopy(). This method con-
tains a loop to transfer data from a specified range within
one array to a specified range within another array. The
code potentially can generate a variety of error conditions
involving range checking and data compatibility. The result-
ing module definition generated by the tool for arraycopy()
was therefore significantly more complex than the earlier
test cases. The tool generated an appropriate conjecture for
the correctness of the arraycopy() routine. The entire situa-
tion was translated to ACL2 and the conjecture was proved
therein.

In addition to the code base used to drive tool develop-
ment, the tool has been applied to about 500 lines of high
quality code that had already undergone a rigorous review
involving code walkthroughs and testing. (A line of code
is defined to be a source code line containing at least one
semi-colon.) No errors were detected in code functionality.
However, 17 errors were detected within the supplied java
doc describing method functionality. Five instances of un-
intended, uncaught behavior were detected. These were not
considered outright implementation errors because they in-
volved method input thought to be “illegal”.

6. FUTURE WORK
The direction of further work on the tool is towards an exten-
sion of the normal debugging process which a programmer
may exploit to compare the implementation of code as it is
written with any pre-existing design concept. In order to
lure a programmer into using such a tool, it is essential to
make it appear as familiar as possible, at least on a superfi-
cial level. To this end, the popular open source framework

provided by Eclipse [3] seems like an ideal delivery platform.
The current rendering of formulas takes many hours of self-
training to easily comprehend, and so must be completely
reworked for display within an Eclipse perspective. Ideally,
formulas should have a top level display which mimics the
familiar variable/value debugger format. The lower level
description in terms of state transition and branch condi-
tion can always be revealed as necessary using level-of-detail
technology.

Another long range goal is the building of a large set of
significant test cases for ACL2 translation and relief of con-
jectures within ACL2. Now that the framework for this
translation has settled down, it should be possible to pro-
ceed with specification and verification of the java library
code, which contains many excellent examples of complex
loop behavior. Needless to say, specification of the criti-
cal core code within the java libraries is itself an essential
prerequisite for deploying the tool as part of a development
environment.

7. REFERENCES
[1] Robert S. Boyer, Bernard Elspas, Karl N. Levitt,

SELECT-a formal system for testing and debugging
programs by symbolic execution, ACM SIGPLAN
Notices, v.10 n.6, p.234-245, June 1975

[2] Alberto Coen-Porisini, Giovanni Denaro, Carlo
Ghezzi, Mauro Pezze, Using Symbolic Execution for
Verifying Safety-Critical Systems Proceedings of the
8th European software engineering conference held
jointly with 9th ACM SIGSOFT international
symposium on Foundations of software engineering,
pages 142-141, 2001

[3] Eclipse Platform Plug-in Developer Guide, Eclipse
Foundation http://www.eclipse.org/documentation

2007

[4] M. Kaufmann, P. Manoios, J. S. Moore,
Computer-Aided Reasoning, An Approach, Advances
In Formal Methods Serieis, Kluwer Academic
Publishers, 2000

[5] W. Legato Generic Theories as Proof Strategies: A
Case Study for Weakest Precondition Style Proofs,
Fifth International Workshop on the ACL2 Theorem
Prover and Its Applications (ACL2-2004), available
on-line at
http://www.cs.utexas.edu/users/moore/acl2/workshop-

2004/contrib/legato/Generic-Theories-as-Proof-

Strategies-

Report.pdf

[6] T. Lindholm and F. Yellin,The JavaTMVirtual
Machine Specification, Second Edition Sun
MicroSystems, Inc, 1999

[7] J. Moore, R. Krug, H. Liu, G. Porter, Formal Models
of Java at the JVM level– A Survey from the ACL2
Perspective, Workshop on Formal Techniques for Java
Programs, in association with ECOOP 2001, June,
2001 (long version)

[8] F. Rimlinger, A Theory of Assurance, submitted to
Logical Methods in Computer Science, available
on-line at
http://idisk.mac.com/frankrimlinger-Public


