
Scalable Normalization of Heap Manipulating Functions

David Greve
Rockwell Collins Advanced Technology Center

Cedar Rapids, IA
dagreve@rockwellcollins.com

ABSTRACT
Proofs about large systems that manipulate heap-like data
structures are challenging. One particularly frustrating as-
pect of such proofs is the need to articulate, for each com-
bination of heap-manipulating functions, specific non-inter-
ference properties. We present a technique that exploits pa-
rameterized equivalences and congruence-based rewriting to
normalize expressions involving functions that manipulate
heaps. The technique is structured, suggesting a system-
atic approach to proof construction. The technique is auto-
mated, being based on parameterized equivalences and the
nary library. Most importantly, the technique is scalable, al-
lowing function characterizations to be verified locally and
applied globally.

1. BACKGROUND
In imperative programming, computation is modeled as a
sequence of statements that modify program state. Pro-
cedures with global side-effects are common in imperative
programs. In ACL2 a functional model of an imperative
program often employs an additional state parameter that
can be accessed and updated during the course of computa-
tion and that can be passed to and returned from procedures
to model procedural side effects. A common interpretation
of such a state object is as a “heap”, in which values or ob-
jects are stored at specific address locations. Reading from
such a heap is typically done using a read function, which
takes an address (or pointer) argument and a heap and re-
turns the value from the heap associated with the address.
Updating such a heap is often done using a write function
which takes an address, a value, and a heap and returns a
modified heap in which the address location provided has
been updated with the value provided and no other address
location has been changed. For the purposes of this paper,
assume that the following property holds of the read and
write operations:

(defthm read-over-write-non-interference

(implies

(not (equal a b))

(equal (read a (write b v r))

(read a r))))

This property is called non-interference because, under the
conditions stated, the write operation, although it changed
the heap, did not interfere with the value of a subsequent
read operation, which otherwise depends upon the heap.

1.1 The Challenge of Non-Interference
Complex computing systems are typically constructed from
compositions of less complex systems which, in turn, are
constructed from even less complex systems and so on until
we reach systems that are defined entirely in terms of the
primitive operations over the fundamental data structures
upon which the system operates. In the case of a system
that manipulates a heap, those primitive operations might
be the read and write functions described above.

Non-interference for the primitive read and write functions
has already been discussed. Now consider the non-inter-
ference theorems required for systems defined in terms of
these operations. If the new operation updates the heap, a
theorem is required that describes when the new operation
does not interfere with a read. Conversely, if the new op-
eration accesses data from the heap, a theorem is required
that describes when a write does not interfere with the new
operation.

Now consider adding a second new operation. Of course the
above procedure must be repeated for this new operation
as well, but additional steps may be required in order to
specify the non-interference properties between this second
operation and the first. This is the first indication that
scaling is going to become a problem in constructing and
reasoning about truly complex systems.

To better illustrate this issue, consider a simple macro that
constructs a system consisting of N pairs of (disabled) func-
tions, read [i] and write [i], such that read [i] and write [i]
are defined respectively as read [i-1] and write [i-1] and read [0]
and write [0] are defined respectively as read and write. Now
consider the collection of theorems required to ensure our
ability to prove the non-interference of read [j] and write [k]
for arbitrary j and k. To ensure this, for every value of
j, a non-interference theorem must be constructed relating
read [j] to write [k] for every possible value of k. The num-



ber of theorems required to do this is quadratic in N.

This contrived example illustrates the challenge a developer
faces in constructing large, increasingly complex systems:
the verification burden grows non-linearly with the size of
the system. Although the non-interference property itself is
not a fundamentally difficult property, the most straightfor-
ward solution for specifying non-interference, that of proving
a collection of theorems about every possible function inter-
action, does not scale. Similar scalability issues have been
addressed in other domains using congruence-based rewrit-
ing.

1.2 Congruence-Based Rewriting
Congruence-based rewriting allows ACL2 to treat certain
predicate relations ”just like equality” under appropriate
conditions, and allows specific theorems involving those equiv-
alence relations to be used as rewrite rules to guide the sim-
plification process. Support for congruence-based rewriting
is built into ACL2. We provide an overview of this capability
here, although the curious reader is encouraged to review the
ACL2 documentation on this subject under congruence[3,
1].

Consider the challenge of writing rules to normalize expres-
sions for a list-based implementation of sets in which order
and multiplicity are irrelevant. Assuming cons is a valid set
constructor, one useful simplification rule for this library
might be:

(defthm member-cons-duplicates

(iff (member a (cons x (cons x y)))

(member a (cons x y))))

Because duplicates are ignored we are able to simplify mul-
tiple conses of the same item into a single cons of that item
in the context of the second argument of member. Look-
ing closely at the member-cons-duplicates rule we see that
the effect of the rule is to replace the second argument of
member, (cons x (cons x y)), with a new value, (cons x

y). While these terms are not equal they behave in the same
way in the context of the second argument of member so we
are free to replace one with the other.

In congruence-based rewriting, ACL2 generalizes this no-
tion of rewriting context. Rather than expressing a context
in terms of, say, the second argument of member, ACL2 re-
quires a formalization of the essential properties of this ar-
gument position as an equivalence relation. The equivalence
relation is expected to capture a minimal set of properties
that must be preserved by an argument in order to preserve
the essential properties of the function. In the case of the
second argument to member, and for set operations in gen-
eral, the property that must be preserved is the membership
of the sets. Location and duplicity are irrelevant.

(defun set-equiv (x y)

(if (consp x)

(and (member (car x) y)

(set-equiv (cdr x) (remove (car x) y)))

(not (consp y))))

ACL2 associates rewriting contexts with equivalence rela-
tions. New rewriting contexts are specified by defining and
flagging new equivalence relations. An equivalence relation
may be any function of two arguments that ”acts like equal”
in the sense that it satisfies the following property, stated in
terms of the equivalence relation set-equiv:

(and

(booleanp (set-equiv x y))

(set-equiv x x)

(implies (set-equiv x y)

(set-equiv y x))

(implies (and (set-equiv x y)

(set-equiv y z))

(set-equiv x z)))

Both equal and iff are examples of equivalence relations
that are built-in to the ACL2 system, but any function in
ACL2 satisfying the above properties can be flagged as an
equivalence relation using defequiv. Having done this for
set-equiv, a theorem of the form:

(defthm set-equiv-cons-cons-driver

(set-equiv (cons a (cons a x)) (cons a x))

is treated as a rewrite rule that rewrites (cons a (cons a

x)) into (cons a x) in a set-equiv context, rather than
as a rule that rewrites (set-equiv (cons a (cons a x))

(cons a x)) into true.

A congruence rule tells ACL2 exactly when it is sound to use
certain types of equivalence relations during simplification.
An example congruence rule is:

(defthm set-equiv-implies-iff-in-2

(implies

(set-equiv x y)

(iff (member a x) (member a y))))

:rule-classes (:congruence))

This theorem tells ACL2 that when it attempts to simplify
calls of member in an iff (Boolean) context, it is free to
simplify the second argument of member in a set-equiv con-
text. When we say “a set-equiv context”, we mean that
it is sound for ACL2 to apply rewrite rules that employ the
set-equiv equivalence relation.

Congruence based rewriting is an extremely powerful tool
in the battle for scalability. It allows simplification rules
to be expressed in terms of equivalence relations (such as
set-equiv), rather than in terms of specific function sym-
bols (such as member). Congruence rules characterize func-
tions once, locally, and then can be applied globally in the
context of other functions in the domain. Finally, the char-
acterization of a functions can leverage the characterization
of its constituent operations, enabling a compositional proof
architecture.

1.3 Parameterized Congruence



A natural extension of congruence based rewriting allows for
parameterized congruences. This is perhaps most obvious
when one considers modular arithmetic. In modular arith-
metic, two numbers are congruent “mod N” if they have the
same residue, or remainder, when divided by N. The value
of N is called the modulus. The residue of a value x, mod
N, can be computed as (mod x N). Consider the following
useful simplification rule:

(defthm mod-+-mod-1

(equal (mod (+ (mod x N) y) N)

(mod (+ x y) N)))

Because mod distributes over addition and because mod is
idempotent in its first argument, applications of the same
modulus nested inside of + operations can be removed. Look-
ing closely at the mod-+-mod-1 rule we see that the effect of
the rule is to replace the first argument of +, (mod x N),
with a new value, x. While these two expressions are not
generally equal they behave in the same way in the context
of the first argument of the outermost mod operator so we
are free to replace one with the other.

Previously, in our discussion of simplifications in the context
of the second argument of member, a more general solution
was presented in which the equivalence relation set-equiv

was defined to capture the essence of what being in that
context meant. In this example, the property that needs
to be preserved is “mod N” and a reasonable equivalence
relation might be mod-equiv:

(defun mod-equiv (x y N)

(equal (mod x N) (mod y N))

Note, however, that mod-equiv is a function of three argu-
ments. It is a parameterized equivalence. A parameterized
equivalence may be any function of two or more arguments
that “acts like an equivalence” between two of its arguments.
Assuming that the equated arguments are the first two argu-
ments and the function takes some number of parameters,
[n .. m], as additional arguments, a function “acts like
a [parameterized] equivalence” if it satisfies the following
properties:

(and

(booleanp (nary-equiv x y [n .. m])

(nary-equiv x x [n .. m])

(implies (nary-equiv x y [n .. m])

(nary-equiv y x [n .. m]))

(implies (and (nary-equiv x y [n .. m])

(nary-equiv y z [n .. m]))

(nary-equiv x z [n .. m])))

Out of the box, ACL2’s congruence-based rewrite capabil-
ities do not support parameterized equivalence relations.
We have, however, developed a library, the nary library,
that supports congruence based rewriting with parameter-
ized equivalence relations. This library was discussed in
some detail previously[2]. Nonetheless, because the use of
this library would be unfamiliar to most users of ACL2, we

present parameterized congruence rules as they might ap-
pear if they were supported natively within ACL2 using the
ficticious rule class :nary-congruence.

2. USE EQUIVALENCE
In order to apply congruence-based rewriting to the prob-
lem of non-interference it is first necessary to identify and
formulate a more general equivalence relation of which non-
interference is a specific instance. One such equivalence is
use equivalence. Two heaps are use-equiv modulo a set of
address locations if the values stored in the heaps agree at
every one of the locations contained in the set. If two heaps
are use-equiv modulo a set, we know that values read from
each of the heaps at an address location contained in the set
will be equal.

(defun use-equiv (r1 r2 uset)

(if (consp uset)

(and (equal (read (car uset) r1)

(read (car uset) r2))

(use-equiv r1 r2 (cdr uset)))

t))

It is possible to prove that use-equiv satisfies the properties
of a parameterized equivalence relation.

2.1 Characterizing the Primitive Functions
Use equivalence can be employed to characterize functions
that manipulate the heap. The following theorem shows a
characterization of the read function.

(defthm read-use-cong

(implies

(use-equiv x y (list a))

(equal (read a x)

(read a y))

:rule-classes (:nary-congruence))

The effect of this rule is to cause ACL2 to simplify the second
(heap) argument of read in a use-equiv context in which
the address (a) is the only element in the use set. Note
that this rule chains the rewriter from an equal context to
a use-equiv context.

The only functions that should appear inside of a use-equiv

context are functions that modify the heap, and the simplest
function that modifies the heap is the write operation. If
the address being updated by the write operation is outside
of the set of addresses of interest, we can ignore the write
operation. This fact can be expressed as follows:

(defthm write-use-elim

(implies

(not (member a uset))

(use-equiv (write a v x)

x

uset)))



The effect of this rule is to rewrite (write a v x) into x

when it appears in a use-equiv context in which a is not a
member of uset. The simple combination of read-use-cong
and write-use-elim permits the following proof:

(defthm read-over-write-normalization-1

(implies

(not (member a (list b c d)))

(equal (read a (write b v1

(write c v2

(write a v3

(write d v4

(write a v5 x))))

(read a (write a v3

(write d v4

(write a v5 x))))

Whether or not the address is a member of the use set, the
following congruence rule is true:

(defthm write-use-cong

(implies

(use-equiv x y uset)

(use-equiv (write a v x)

(write a v y)

uset))

:rule-classes (:nary-congruence))

The effect of this congruence rule is to simplify the third
(heap) argument of write in a use-equiv context whenever
write is encountered in a use-equiv context. With the
addition of this rule our example reduces even further:

(defthm read-over-write-normalization-2

(implies

(not (member a (list b c d)))

(equal (read a (write b v1

(write c v2

(write a v3

(write d v4

(write a v5 x))))

(read a (write a v3

(write a v5 x)))))

An even stronger congruence rule exists for the write oper-
ation. The act of writing a value to a location “shadows”
that location in the heap from the use set. Because of this,
we can actually remove the address being written from the
use set and prove the following congruence:

(defthm write-use-cong-stronger

(implies

(use-equiv x y (remove a uset))

(use-equiv (write a v x)

(write a v y)

uset))

:rule-classes (:nary-congruence))

The effect of this congruence rule is to simplify the third
(heap) argument of write in a use-equiv context less the
address (a) whenever write is encountered in a use-equiv

context. Using nothing but congruence relations, we are
now able to perform the following heap normalization:

(defthm read-over-write-normalization-3

(implies

(not (member a (list b c d)))

(equal (read a (write b v1

(write c v2

(write a v3

(write d v4

(write a v5 x))))

(read a (write a v3 x)))))

In certain applications the congruence relations discussed
so far can actually replace (and sometimes produce better
normalization results than) the following three rewrite rules:

(defthm read-over-write-noninterference

(implies

(not (equal a b))

(equal (read a (write b v1 x))

(read a x))))

(defthm write-over-write-noninterference

(implies

(not (equal a b))

(equal (write a v1 (write b v2 x))

(write b v2 (write a v1 x)))))

(defthm write-of-write

(equal (write a v1 (write a v2 x))

(write a v1 x)))

2.2 Applying the Technique
Consider again the simple macro that constructs a system
consisting of N pairs of (disabled) functions, but now, along
with each read [i] and write [i], assume that the macro also
generates the following theorems:

(defthm read_[i]-use-cong

(implies

(use-equiv x y (list a))

(equal (read_[i] a x)

(read_[i] a y))

:rule-classes (:nary-congruence))

(defthm write_[i]-use-cong

(implies

(use-equiv x y (remove a uset))

(use-equiv (write_[i] a v x)

(write_[i] a v y)

uset))

:rule-classes (:nary-congruence))

(defthm write_[i]-use-elim

(implies

(not (member a uset))



(use-equiv (write_[i] a v x)

x

uset)))

These theorems, each verified locally for each read [i] and
write [i], are sufficient to perform the following (global) sim-
plification:

(defthm read_[i]-write_[k]-normalization

(implies

(not (member a (list b c d)))

(equal (read_[i] a (write_[j] b v1

(write_[k] c v2

(write_[x] a v3

(write_[y] d v4

(write_[z] a v5 x))))

(read_[i] a (write_[x] a v3 x)))))

Note that the number of theorems required to completely
characterize the non-interference properties of the system is
linear in the size of the system. Note also that the technique
suggests a systematic approach to developing and character-
izing functions that manipulate heap data structures.

2.3 Read Modify Write
Only simple read and write functions have been considered
so far. Interesting computing systems will include functions
that both access and modify the heap. Consider the move

function defined below:

(defun move (rptr wptr r)

(write wptr (read rptr r) r))

The characterization of this function requires that the use
set be updated to include the “read pointer.” However, the
“write pointer” may be removed, since it is shadowed by the
write operation.

(defthm move-use-cong

(implies

(use-equiv x y (cons rptr (remove wptr uset)))

(use-equiv (move rptr wptr x)

(move rptr wptr y)

uset))

:rule-classes (:nary-congruence))

A complementary use-equiv driver rule enables us to ignore
the move operation if the write pointer is not in the use set.

(defthm move-use-elim

(implies

(not (member wptr uset))

(use-equiv (move rptr wptr x)

x

uset)))

2.4 Data Structures and Crawlers
Complex computing systems typically manipulate well de-
fined data structures. Data structures that inhabit a heap
often include pointers. Consider a simple heap-based two
cell cons structure whose base address is provided as an ar-
gument to the function. The base address points to the value
portion of the cons cell and adding one to the base address
produces a pointer to the cdr cell. Now consider the function
get-cadr that operate on this list-like data structure:

(defun get-cadr (ptr r)

(read (read (+ ptr 1) r) r))

The use set of get-cadr is somewhat complex, but we can
define a function that computes it.

(defun get-cadr-uset (ptr r)

(list (+ ptr 1) (read (+ ptr 1) r)))

The following theorem now characterizes get-cadr:

(defthm get-cadr-use-cong

(implies

(use-equiv x y (append (get-cadr-uset ptr x) uset)

(equal (get-cadr ptr x)

(get-cadr ptr y)

uset))

:rule-classes (:nary-congruence))

Note that the use set of get-cadr is a function of the heap.
Functions that traverse the heap to compute the use set of
another function are called data structure crawlers or simply
crawlers. Crawler are, therefore, nothing more than general-
ized read functions. As such, they too can be characterized.

(defthm get-cadr-uset-use-cong

(implies

(use-equiv x y (cons (+ 1 ptr) uset)

(equal (get-cadr-uset ptr x)

(get-cadr-uset ptr y)

uset))

:rule-classes (:nary-congruence))

The full power of congruence-based normalization can there-
fore be used to normalize the very functions used to charac-
terize the congruences in the first place.

2.5 Self-Characterizing Functions
Crawlers can be used to characterize functions, and crawlers
themselves are functions that can be characterized. In this
strange loop it turns out that most useful crawler functions
also characterize themselves. This follows from the fact that
it is always conservative to add additional elements to the
use set of a congruence relation. The problem with using a
function as its own characterization is that, in order to do
so, the function must appear in the hypothesis of its own



congruence relation. This may lead to simplification loops
in the rewriter. Characterizing crawlers with other, more
restricted crawlers is one safe solution to this problem, but
there are cases when this is not generally possible. The
problem arises when we attempt to model recursive data
structures.

Consider the function that computes the size of the heap list
data structure defined above.

(defun list-len (ptr r)

(if (null ptr) 0

(+ 1 (list-len (read (+ ptr 1) r) r))))

A crawler that would characterizes this function is as follows:

(defun list-len-uset (ptr r)

(if (null ptr) nil

(cons (+ ptr 1)

(list-len-uset (read (+ ptr 1) r) r))))

There is, however, no simpler function that characterizes
this crawler. How best to deal with such self-referential sys-
tems remains an open issue.

3. CONCLUSION
We have presented a technique that exploits parameterized
equivalences and congruence-based rewriting to normalize
expressions involving functions that manipulate heaps. The
technique is structured, suggesting a systematic approach
to proof construction. The technique is automated, being
based on parameterized equivalences and the nary library.
Most importantly, the technique is scalable, allowing func-
tion characterizations to be verified locally and applied glob-
ally. We conclude with an open issue concerning how best
to deal with self-characterizing recursive functions.

4. REFERENCES
[1] B. Brock, M. Kaufmann, and J S. Moore. Rewriting

with equivalence relations in ACL2. in preparation.

[2] David Greve. Parameterized Congruences in ACL2. In
ACL2 2006, August 2006.

[3] J Moore and Matt Kaufmann. ACL2 Documentation.
http://www.cs.utexas.edu/users/moore/acl2.


