
Pythia: Automatic Generation of
Counterexamples for ACL2 using Alloy

Alexander Spiridonov
Sarfraz Khurshid

Agenda

Making ACL2 more novice-friendly
Pythia: using Alloy to find counterexamples
An end-to-end example
Modeling ACL2 objects in Alloy
Discussion and future work
Q & A

The Problem

Challenge for ACL2 community: making ACL2
more accessible to novices
Pain point: failed proof attempts

The formula may be beyond the prover’s reach
The formula may not be a theorem

Solution: counterexamples
Illustrate why the proof attempt has failed
Suggest a way to turn the formula into a theorem

How to generate counterexamples
automatically?

Our solution: Pythia

We use Alloy to find counterexamples to
ACL2 non-theorems:

1. Model ACL2 objects in the Alloy specification
language

2. Use the Alloy Analyzer to generate an instance
of the model

3. Translate the instance into ACL2 objects
4. Evaluate the formula on these objects
5. Report counterexamples

The Alloy language

Strongly-typed, first-order declarative language
based on sets and relations
An Alloy model is comprised of modules,
which contain signatures and constraints
Signatures define the objects in the model and
the relations between them

The Alloy language

An Alloy model of a binary tree:
sig Node {
left, right: lone Node,
value : lone Int

}

sig Tree {
root: Node

}

The Alloy language

Constraint paragraphs include facts and
predicates

Facts are constraints that always hold
Predicates are named constraints

pred Acyclic (t: Tree) {
all n : t.root.*(left+right) |
n !in n.^(left+right)

}

The Alloy Analyzer

An automatic, SAT-based analyzer that
generates instances of Alloy models
The Analyzer limits its search to a finite scope
Commands tell the Analyzer to find instances
of the model that satisfy the predicate’s
constraints:

run Acyclic for 3 but 1 Tree

The Alloy Analyzer

A sample instance:
Int = {0, 1, 2, 3}

Tree = {T0}

Node = {N0, N1, N2}

// fields of Tree

root = {(T0, N0)}

// fields of Node

left = {(N0, N1)}

right = {(N0, N2)}

value = {(N0, 2), (N1, 1), (N2, 3)}

Alloy visualizer for displaying instances

An Example
(defun orderedp (x)

(cond ((endp x) t))

((endp (cdr x)) t))

(t (and (<= (car x) (cdr x)) (orderedp (cdr x))))))

(defun ordered-list-of-intsp (x)

(and (integer-listp x) (orderedp x)))

(defun my-merge (x y)

(declare (xargs :measure (+ (len x) (len y))))

(if (and (consp x) (consp y))

(cond ((< car x) (car y)) (cons (car x) (my-merge (cdr x) y)))

((> car x) (car y)) (cons (car y) (my-merge x (cdr y))))

(t (cons (car x) (my-merge (cdr x) (cdr y)))))

(if (endp x)

y

x)))

An Example

Suppose the user attempts to prove the
following:

(defthm properties-of-my-merge
(implies (and (ordered-list-of-intsp x)

(ordered-list-of-intsp y))
(and (orderedp (my-merge x y))

(equal (len (my-merge x y))
(+ (len x) (len y))))))

The proof attempt will fail, but it may be hard for
a novice user to figure out why

An Alloy model of ACL2 objects

A cons tree:

pred Cons(t: Tree) {
all n : t.root.*(left+right) |

n !in n.^(left+right)
all n : t.root.*(left+right) |

lone n.~(left+right)
all n : t.root.*(left+right) |

some n.(left+right) => no n.value
all n : t.root.*(left+right) |

no n.(left+right) or
#n.(left+right) = 2

}

An Alloy model of ACL2 objects

A proper cons tree and a true list of atoms:

pred ProperCons(t: Tree) {
Cons(t)
one n : t.root.^right |

no n.(left+right) && no n.value
}

pred TrueListOfAtoms(t: Tree) {
ProperCons(t)
all n : t.root.*(left+right) |

some n.(left+right) =>
one n.left.value && no n.right.value

}

An Alloy model of ACL2 objects

An ordered list of integers:

pred Ordered(t: Tree) {
all n : t.root.*(left+right) |

all v : n.left.*(left+right).value |
all w : n.right.*(left+right).value |

int v < int w
}

pred OrderedListOfIntegers(t: Tree) {
TrueListOfAtoms(t)
Ordered(t)

}

An Alloy model of ACL2 objects

From ACL2…
(defun ordered-list-of-intsp (x)

(and (integer-listp x) (orderedp x)))

…to Alloy:
pred OrderedListOfIntegers(t: Tree) {

TrueListOfAtoms(t)

Ordered(t)

}

Finding a counterexample

Alloy Analyzer generates an instance of the
model that satisfies the predicate
OrderedListOfIntegers within the specified
scope (user-adjustable)
Pythia translates the instance into a set of
ACL2 objects, e. g. ‘(1 2 3), ‘(-1 0 1),
‘(3 4 5)

ACL2 evaluates the formula on this set of
objects and reports a counterexample: x =
‘(1 2 3), y = ‘(3 4 5)

Effectiveness

Pythia works well for classic ACL2 non-
theorems such as (equal (rev (rev x)) x)

Alloy predicates that can be reused in other,
more complex models
As formulas become more complex, it
becomes increasingly difficult and error-prone
to construct potential counterexamples by
hand, and a mechanical tool becomes more
useful

Example: JVM state in the ACL2 JVM model

Limitations and future work

In its present form, Pythia has several
limitations:

Analysis is incomplete
Can increase analyzer scope

User has to write Alloy models for more complex
ACL2 definitions

Alloy does not support recursive definitions, but workarounds
exist

Future work: automatically translate ACL2
definitions into Alloy

Conclusion

Challenge for ACL2 community: Making ACL2 more
accessible to novices
Automatically generating counterexamples for ACL2
non-theorems could help novices and serve as an
educational tool
By using the Alloy language and analyzer, Pythia
automatically finds counterexamples for the kinds of
non-theorems novices are likely to encounter
An ACL2-Alloy translator would enable Pythia to tackle
more complex formulas

Q & A

	Pythia: Automatic Generation of Counterexamples for ACL2 using Alloy
	Agenda
	The Problem
	Our solution: Pythia
	The Alloy language
	The Alloy language
	The Alloy language
	The Alloy Analyzer
	The Alloy Analyzer
	An Example
	An Example
	An Alloy model of ACL2 objects
	An Alloy model of ACL2 objects
	An Alloy model of ACL2 objects
	An Alloy model of ACL2 objects
	Finding a counterexample
	Effectiveness
	Limitations and future work
	Conclusion
	Q & A

