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IntroductionIntroduction

- tested but … not always

- mechanized proofs in Isabelle for some theoretical
algorithms used in

 
Kenzo

The Common Lisp system
Kenzo

to compute in Algebraic Topology

- distance from the Kenzo
 

code to the 
theories and proofs in Isabelle



IntroductionIntroduction

Our idea: using ACL2 to verify the actual Kenzo programs

But ...  Kenzo uses higher order functional programming 

How could we increase the reliability of Kenzo ?  

Our proposal:

Choose, reprogram and verify in ACL2 first-order                    
fragments of Kenzo related with Simplicial Topology



Simplicial Topology Simplicial Topology in ACL2in ACL2

Abstract topological spaces replaced by 
simplicial sets (combinatorial artifacts)

- Motivation: algebraic invariants are computed in an easier 
way

Example: topological space



Simplicial Topology Simplicial Topology in ACL2in ACL2

Triangulating the space

Triangle can be described by(a0

 

,a1

 

,a2

 

)where  the faces are obtained in this way: 
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The faces of each edge are defined analogously : 
∂0

 

(a1

 

,a2

 

)=(a2

 

)
∂1

 

(a1

 

,a2

 

)=(a1

 

)
.
.
.

∂i ∂j = ∂j-1 ∂i if i<j



Simplicial Topology Simplicial Topology in ACL2in ACL2

4 vertices

6 edges           14 elements

4 triangles

1 triangle

2 elements

1 collapsing point

Triangle faces:

∂0x = ∂1x = ∂2x = η0 (*). 

η0

 

(*) is called degeneration of 



Simplicial Topology Simplicial Topology in ACL2in ACL2

η0 (a0

 

, a1,, a2

 

) := (

 

a0 , a0 , a1 , a2

 

)

η1 (a0

 

, a1,, a2

 

) := (

 

a0 , a1 , a1 , a2

 

)

η2 (a0

 

, a1,, a2

 

) := (

 

a0 , a1 , a2 , a2

 

)

The operator ηi

 

is repeating the i-th

 

element in the list



Simplicial Topology Simplicial Topology in ACL2in ACL2
Definition. A simplicial set K consists of a graded set {Kq

 

}q Є

 

N and, 
for each pair of integers (i,q) with 0<=i<=q, face and degeneracy 
maps, ∂i

 

:Kq →Kq-1 and ηi

 

:Kq →Kq+1 , satisfying the simplicial identities:

∂i ∂j

 

= ∂j-1 ∂i    if i<j
ηi ηj =

 

ηj+1 ηi      if i<=j
∂i ηj = ηj-1 ∂i      if i<j
∂i ηj = Id if i=j or i=j+1
∂i ηj = ηj ∂i-1      if i>j+1

The elements of Kq

 

are called q-simplices

A q-simplex x

 

is degenerate if x= ηi

 

y

 

with y Є

 

Kq-1

 

, 0<=i<q

Otherwise x is called non-degenerate

0-simplices

 

as vertices
Non-degenerate

 

1-simplices

 

as edges
Non-degenerate 2-simplices as (filled) triangles
Non-degenerate 3-simplices as (filled) tetrahedra

... 



Simplicial Topology Simplicial Topology in ACL2in ACL2

We focus our studies on the

 

universal simplicial set Δ
Reason: Any theorem proved on Δ by using only the equalities of the previous

definition will

 

be

 

also true for any other simplicial set

 

K

In ACL2
a q-simplex of Δ is any ACL2 list of length q
face operators are defined by means of the function (del-nth i l) which 

eliminates the

 

i-th element in the list l
degeneracy operators are defined by means of the function (deg i l) which 

repeats the

 

i-th element in the list l

We consider the simplicial set freely generated from the set of all ACL2 objects



An exampleAn example

Theorem 1. Let

 

K be a simplicial set. Any degenerate n-simplex x Є

 

Kn can 
be expressed

 

in a unique

 

way

 

as a (possibly) iterated

 

degeneracy

 

of

 

a non-

 
degenerate

 

simplex

 

y in the

 

following

 

way:
x= ηjk

 

…

 

ηj1

 

y
with y Є

 

Kr

 

, k = n-r > 0,0<=j1

 

<...<= jk < n

Thinking in ACL2

- A non-degenerate simplex

 

in Δ

 

is

 

a

 

list where any two consecutive elements

 

are different
- A simplex in Δ

 

can be

 

represented

 

as a

 

pair of lists,

 

the first one a list of

 

natural

 

numbers

 

(degeneracy list) 
and the second one any

 

ACL2 list.                 

Theorem 2. Any ACL2 list l

 

can be expressed

 

in a unique

 

way

 

as a pair 
(dl,l’) such that l=

 

degenerate

 

(dl,l’) with l’

 

without two consecutive 
elements equal and dl a strictly increasing degeneracy list.



A A direct direct ACL2ACL2 proof proof of theorem of theorem 22

(defun generate (l)
(if (or (endp l) (endp (cdr l)))

(cons nil l)
(let ((gencdr (generate (cdr l))))
(if (equal (first l) (second l))

(cons (cons 0 (add-one (car gencdr)))
(cdr gencdr))

(cons (add-one (car gencdr))
(cons (car l) (cdr gencdr)))))))

(defthm existence
(let ((gen (generate l)))
(and (canonical gen)

(equal (degenerate (car gen) (cdr gen)) l))))



(defthm uniqueness
(implies
(and (canonical p1) (canonical p2)

(equal (degenerate (car p1) (cdr p1)) l)
(equal (degenerate (car p2) (cdr p2)) l))

(equal p1 p2)))

A A direct direct ACL2ACL2 proof proof of theorem of theorem 22

(defthm uniqueness-main-lemma
(implies (canonical (cons l1 l2))

(equal (generate (degenerate l1 l2))
(cons l1 l2))))

The lists obtained after rewriting

 

(generate

 

(degenerate

 

l1 l2))

 

in 
(generate

 

(degenerate

 

(cdr

 

l1) (deg

 

(car

 

l1) l2))) do not satisfy the hypotheses of the theorem. 
Not possible to apply a simplified induction scheme.



An abstract reduction systems approachAn abstract reduction systems approach

An alternative proof because:
• The direct proof does not explicitly use the face operators
• The direct proof is not directly based on the combinatorial properties which relate 
the face and degeneracy maps

Idea:
To consider the elimination of a consecutive repetition in a list (face operator)
as a simple reduction step
Another type of reduction step to “fix” disorders in the degeneracy list



Formalizing:
We define the reduction system →S where:

• o-reduction: if the list l1

 

has a “disorder” at position i, i.e., l1

 

(i)>=

 

l1 (i+1),

 

then 
(l1

 

, l2

 

) →S (l’1

 

, l2

 

), where l’1

 

(i)=

 

l1 (i+1)

 

and l’1

 

(i+1)=

 

l1 (i)+1,

 

(here l(j) denotes the 
j-th element of l)

An abstract reduction systems approachAn abstract reduction systems approach

two types of rules are considered in →S :

•r-reduction: if at index i there is a repetition in l2

 

, i.e. , l2

 

(i)=

 

l2 (i+1),

 

then 
(l1

 

, l2

 

) →S (l’1

 

, l’2

 

),  where l’1

 

=cons(i, l1 ) and l’2 =del-nth (i, l2

 

)

ηi ηj =

 

ηj+1 ηi      if i<=j

∂i ηj = Id       if i=j or i=j+1

the set of S-terms is the set of pairs (l1, l2) where 
l1 a list of

 

natural numbers
l2

 

any list



An abstract reduction systems approachAn abstract reduction systems approach

- Model →S in the framework of Ruiz Reina’s ACL2 formalization about abstract reduction systems

Operators are pairs (t,i) where 
t is ‘o or ‘r
i is the position in the list where the corresponding reduction takes place

The relation →S is represented by two functions :

(s-legal x op)
(s-reduce-one-step x op)

They suffice to represent a reduction and other related concepts:
noetherianity, equivalence closures, normal forms or confluence

-

 

Modeling our reduction system in ACL2



An abstract reduction systems approachAn abstract reduction systems approach

- We proved that the reduction is noetherian

 

(there is no infinite sequence of S-reductions)
using a suitable lexicographic measure

- We defined a function to compute a normal form with respect to →S

(defun

 

s-normal-form (x)
(let ((red (s-reducible x)))
(if red

(s-normal-form (s-reduce-one-step x red))
x)))

- We proved that →S is locally confluent (whenever there is a local peak, there is a valley)

- Newman’s Lemma: every noetherian

 

and locally confluent reduction is convergent. 
It means that two equivalent elements have a common normal form

(defthm

 

s-reduction-convergent
(implies (s-equiv-p

 

x y p)
(equal (s-normal-form x) (s-normal-form y)))

(defthm

 

local-confluence
(implies (and (s-equiv-p

 

x y p) (local-peak-p p))
(and (s-equiv-p

 

x y (s-transform-local-peak p))
(steps-valley (s-transform-local-peak p)))))



An abstract reduction systems approachAn abstract reduction systems approach

- We define (generate l) as (s-normal-form (cons nil l)))

-

 

The main relation between →S and the function degenerate is given by

a)

 

If (l1

 

, l2

 

) →S (l3

 

, l4

 

), then degenerate

 

(l1

 

, l2

 

)= degenerate

 

(l3

 

, l4

 

)

b)

 

If degenerate

 

(l1

 

, l2

 

)=l then (nil,l)=S (l1

 

, l2

 

)

-

 

We prove the theorems existence and uniqueness exactly as stated previously

- Corollary: both definitions of generate are equivalent

(defthm

 

degenerate-s-equivalent
(implies …

(s-equiv-p

 

(cons l m)
(cons nil (degenerate l m))
(degenerate-steps l m))))



ConclusionsConclusions

We have presented some ideas to apply ACL2 in Simplicial Topology. Main contributions:

Increase the reliability of a real Computer Algebra program (Kenzo)

Further workFurther work

Formalize and prove more difficult results from Simplicial Topology in ACL2

ACL2 proof of the Eilenberg-Zilber theorem

analysis of feasibility
relation of ACL2 proofs in Simplicial Topology with abstract rewriting systems
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