
Formalizing Simplicial Formalizing Simplicial
TopologyTopology in ACL2in ACL2

Mirian Andrés
Laureano Lambán
Julio Rubio

University of La Rioja (U.R.), Spain

ACL2 WORKSHOP 2007, Austin (Texas)
November 15th-16th, 2007

José Luis Ruiz Reina

University of Seville (U.S.), Spain

AGENDAAGENDA

• Introduction

• Simplicial Topology in ACL2

• A developed example
• A direct proof
• A proof based on abstract reduction systems

• Conclusions and further work

IntroductionIntroduction

- tested but … not always

- mechanized proofs in Isabelle for some theoretical
algorithms used in

Kenzo

The Common Lisp system
Kenzo

to compute in Algebraic Topology

- distance from the Kenzo

code to the
theories and proofs in Isabelle

IntroductionIntroduction

Our idea: using ACL2 to verify the actual Kenzo programs

But ... Kenzo uses higher order functional programming

How could we increase the reliability of Kenzo ?

Our proposal:

Choose, reprogram and verify in ACL2 first-order
fragments of Kenzo related with Simplicial Topology

Simplicial Topology Simplicial Topology in ACL2in ACL2

Abstract topological spaces replaced by
simplicial sets (combinatorial artifacts)

- Motivation: algebraic invariants are computed in an easier
way

Example: topological space

Simplicial Topology Simplicial Topology in ACL2in ACL2

Triangulating the space

Triangle can be described by(a0

,a1

,a2

)where the faces are obtained in this way:

∂0

(a0

,a1

,a2

)=(a1

,a2

)
∂1

(a0

,a1

,a2

)=(a0

,a2

)
∂2

(a0

,a1

,a2

)=(a0

,a1

)

The faces of each edge are defined analogously :
∂0

(a1

,a2

)=(a2

)
∂1

(a1

,a2

)=(a1

)
.
.
.

∂i ∂j = ∂j-1 ∂i if i<j

Simplicial Topology Simplicial Topology in ACL2in ACL2

4 vertices

6 edges 14 elements

4 triangles

1 triangle

2 elements

1 collapsing point

Triangle faces:

∂0x = ∂1x = ∂2x = η0 (*).

η0

(*) is called degeneration of

Simplicial Topology Simplicial Topology in ACL2in ACL2

η0 (a0

, a1,, a2

) := (

a0 , a0 , a1 , a2

)

η1 (a0

, a1,, a2

) := (

a0 , a1 , a1 , a2

)

η2 (a0

, a1,, a2

) := (

a0 , a1 , a2 , a2

)

The operator ηi

is repeating the i-th

element in the list

Simplicial Topology Simplicial Topology in ACL2in ACL2
Definition. A simplicial set K consists of a graded set {Kq

}q Є

N and,
for each pair of integers (i,q) with 0<=i<=q, face and degeneracy
maps, ∂i

:Kq →Kq-1 and ηi

:Kq →Kq+1 , satisfying the simplicial identities:

∂i ∂j

= ∂j-1 ∂i if i<j
ηi ηj =

ηj+1 ηi if i<=j
∂i ηj = ηj-1 ∂i if i<j
∂i ηj = Id if i=j or i=j+1
∂i ηj = ηj ∂i-1 if i>j+1

The elements of Kq

are called q-simplices

A q-simplex x

is degenerate if x= ηi

y

with y Є

Kq-1

, 0<=i<q

Otherwise x is called non-degenerate

0-simplices

as vertices
Non-degenerate

1-simplices

as edges
Non-degenerate 2-simplices as (filled) triangles
Non-degenerate 3-simplices as (filled) tetrahedra

...

Simplicial Topology Simplicial Topology in ACL2in ACL2

We focus our studies on the

universal simplicial set Δ
Reason: Any theorem proved on Δ by using only the equalities of the previous

definition will

be

also true for any other simplicial set

K

In ACL2
a q-simplex of Δ is any ACL2 list of length q
face operators are defined by means of the function (del-nth i l) which

eliminates the

i-th element in the list l
degeneracy operators are defined by means of the function (deg i l) which

repeats the

i-th element in the list l

We consider the simplicial set freely generated from the set of all ACL2 objects

An exampleAn example

Theorem 1. Let

K be a simplicial set. Any degenerate n-simplex x Є

Kn can
be expressed

in a unique

way

as a (possibly) iterated

degeneracy

of

a non-

degenerate

simplex

y in the

following

way:
x= ηjk

…

ηj1

y
with y Є

Kr

, k = n-r > 0,0<=j1

<...<= jk < n

Thinking in ACL2

- A non-degenerate simplex

in Δ

is

a

list where any two consecutive elements

are different
- A simplex in Δ

can be

represented

as a

pair of lists,

the first one a list of

natural

numbers

(degeneracy list)
and the second one any

ACL2 list.

Theorem 2. Any ACL2 list l

can be expressed

in a unique

way

as a pair
(dl,l’) such that l=

degenerate

(dl,l’) with l’

without two consecutive
elements equal and dl a strictly increasing degeneracy list.

A A direct direct ACL2ACL2 proof proof of theorem of theorem 22

(defun generate (l)
(if (or (endp l) (endp (cdr l)))

(cons nil l)
(let ((gencdr (generate (cdr l))))
(if (equal (first l) (second l))

(cons (cons 0 (add-one (car gencdr)))
(cdr gencdr))

(cons (add-one (car gencdr))
(cons (car l) (cdr gencdr)))))))

(defthm existence
(let ((gen (generate l)))
(and (canonical gen)

(equal (degenerate (car gen) (cdr gen)) l))))

(defthm uniqueness
(implies
(and (canonical p1) (canonical p2)

(equal (degenerate (car p1) (cdr p1)) l)
(equal (degenerate (car p2) (cdr p2)) l))

(equal p1 p2)))

A A direct direct ACL2ACL2 proof proof of theorem of theorem 22

(defthm uniqueness-main-lemma
(implies (canonical (cons l1 l2))

(equal (generate (degenerate l1 l2))
(cons l1 l2))))

The lists obtained after rewriting

(generate

(degenerate

l1 l2))

in
(generate

(degenerate

(cdr

l1) (deg

(car

l1) l2))) do not satisfy the hypotheses of the theorem.
Not possible to apply a simplified induction scheme.

An abstract reduction systems approachAn abstract reduction systems approach

An alternative proof because:
• The direct proof does not explicitly use the face operators
• The direct proof is not directly based on the combinatorial properties which relate
the face and degeneracy maps

Idea:
To consider the elimination of a consecutive repetition in a list (face operator)
as a simple reduction step
Another type of reduction step to “fix” disorders in the degeneracy list

Formalizing:
We define the reduction system →S where:

• o-reduction: if the list l1

has a “disorder” at position i, i.e., l1

(i)>=

l1 (i+1),

then
(l1

, l2

) →S (l’1

, l2

), where l’1

(i)=

l1 (i+1)

and l’1

(i+1)=

l1 (i)+1,

(here l(j) denotes the
j-th element of l)

An abstract reduction systems approachAn abstract reduction systems approach

two types of rules are considered in →S :

•r-reduction: if at index i there is a repetition in l2

, i.e. , l2

(i)=

l2 (i+1),

then
(l1

, l2

) →S (l’1

, l’2

), where l’1

=cons(i, l1) and l’2 =del-nth (i, l2

)

ηi ηj =

ηj+1 ηi if i<=j

∂i ηj = Id if i=j or i=j+1

the set of S-terms is the set of pairs (l1, l2) where
l1 a list of

natural numbers
l2

any list

An abstract reduction systems approachAn abstract reduction systems approach

- Model →S in the framework of Ruiz Reina’s ACL2 formalization about abstract reduction systems

Operators are pairs (t,i) where
t is ‘o or ‘r
i is the position in the list where the corresponding reduction takes place

The relation →S is represented by two functions :

(s-legal x op)
(s-reduce-one-step x op)

They suffice to represent a reduction and other related concepts:
noetherianity, equivalence closures, normal forms or confluence

-

Modeling our reduction system in ACL2

An abstract reduction systems approachAn abstract reduction systems approach

- We proved that the reduction is noetherian

(there is no infinite sequence of S-reductions)
using a suitable lexicographic measure

- We defined a function to compute a normal form with respect to →S

(defun

s-normal-form (x)
(let ((red (s-reducible x)))
(if red

(s-normal-form (s-reduce-one-step x red))
x)))

- We proved that →S is locally confluent (whenever there is a local peak, there is a valley)

- Newman’s Lemma: every noetherian

and locally confluent reduction is convergent.
It means that two equivalent elements have a common normal form

(defthm

s-reduction-convergent
(implies (s-equiv-p

x y p)
(equal (s-normal-form x) (s-normal-form y)))

(defthm

local-confluence
(implies (and (s-equiv-p

x y p) (local-peak-p p))
(and (s-equiv-p

x y (s-transform-local-peak p))
(steps-valley (s-transform-local-peak p)))))

An abstract reduction systems approachAn abstract reduction systems approach

- We define (generate l) as (s-normal-form (cons nil l)))

-

The main relation between →S and the function degenerate is given by

a)

If (l1

, l2

) →S (l3

, l4

), then degenerate

(l1

, l2

)= degenerate

(l3

, l4

)

b)

If degenerate

(l1

, l2

)=l then (nil,l)=S (l1

, l2

)

-

We prove the theorems existence and uniqueness exactly as stated previously

- Corollary: both definitions of generate are equivalent

(defthm

degenerate-s-equivalent
(implies …

(s-equiv-p

(cons l m)
(cons nil (degenerate l m))
(degenerate-steps l m))))

ConclusionsConclusions

We have presented some ideas to apply ACL2 in Simplicial Topology. Main contributions:

Increase the reliability of a real Computer Algebra program (Kenzo)

Further workFurther work

Formalize and prove more difficult results from Simplicial Topology in ACL2

ACL2 proof of the Eilenberg-Zilber theorem

analysis of feasibility
relation of ACL2 proofs in Simplicial Topology with abstract rewriting systems

	Slide Number 1
	AGENDA
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	
	Slide Number 18
	Slide Number 19

