Defining a LISP Interpreter in a Logic of Total Functions

HOL

ACL2

Mike Gordon

Grand goals

@ Allow projects combining ACL2 and HOL
e e.g. JVM on ARM

@ Solid soundness story
@ Common Criteria EAL7 compatible

@ Merge HOL and ACL2 communities
o well ... at least increase collaboration ...

Today'’s tiny step

@ Compare partial functions in HOL and ACL2

Defining a LISP Interpreterin a Logic of Total Functions 1/7

Goal: an ACL2 interpreter in HOL

@ Would like to define an ACL2 interpreter in HOL

@ Prove interpreter evaluation validates ACL2 axioms
@ Problem: functions in HOL and ACL2 must be total
@ ACL2Z interpreter (EVAL) is not a total function

@ We compare HOL and ACL2 methods for partial functions

@ a simple example used here to explain ideas
@ application to EVAL in proceedings paper
@ only made a first proof-of-concept step (pure Lisp)

Mike Gordon Defining a LISP Interpreterin a Logic of Total Functions 217

Partial functions as relations in HOL

@ HOL approach is to encode partial functions as relations

f~Rf where f(x)=y < Rf(x,y)

@ One ACL2 approach is to add a ‘clock’ parameter

f ~f. where f.(0,---) = none (some ‘timeout value)
and fe(n,---) = -+ fe(n=1,---) -+

@ What is connection between relations and clocking?

@ Would like: - R¢(x,y) < dn.f.(n,x)=y A y#none

Mike Gordon Defining a LISP Interpreterin a Logic of Total Functions 3/7

Representing partial recursive functions

Assume p, q, h, k given, define f recursively by:
f(x)=1if p(x)thenqg(x) el se h(x,f(k(x)))

@ Define R¢ to be the least relation such that:

(vx. p(x) = Rt (x,a(x)))
A

(v y. =p(x) AR¢(k(x),y) = Ri(x, h(x,y)))

@ Clocked version:
fe(n,x) =if n=0thennone el se
i f p(x)thenq(x)elseh(x,f.(n—1,k(x)))

@ One direction works: + R¢(x,y) = dn.f;(n,x) =y
@ Alas, not: F (3n.f.(n,x)=y Ay#none) = R(X,y)

@ Problem is the timeout value none

Mike Gordon Defining a LISP Interpreterin a Logic of Total Functions 417

Example illustrating problem

@ Consider: f(x) =if x =0thenOel sex +f(x—1)

@ Relation version
(Vx. x =0 = R¢(x,0))
A
(VX y. X # 0 ARf(x—1,y) = R(X,x+y))

@ Clocked version

fe(n,x)=ifn

Ot hen none el se
if x=0

thenOel sex +fc(n—1,x-1)

@ If none =0
then f.(1,2)=2 A 2#none
but vy. Rs(2,y) = y=3 so not R¢(2, 2)
@ Can show implication below — but what is none?
- (VX. X + none = none)

¥y ~(y=none) = ((3n. f(n,x) =y) < Re(x,y))

Mike Gordon Defining a LISP Interpreterin a Logic of Total Functions 5/7

Solution: make success and timeout value different

@ Need to distinguish success values of f;(n, x) from none
@ make f:(n,x) return some(y) (success) or none (timeout)
@ where Yy. some # none(y)

@ Must explicity propagate none value:

fo(n,x) =i f n=0then none el se
i f p(x)thensome(q(x))
el se case fc(n—1,k(x)) of
none — none
| some(y) — some(h(x,y))

@ Then can prove: - R¢(x,y) < dn. f:(n,x) = some(y)

@ Compare with
o ‘direct’ denotational semantics
@ exception monad

Mike Gordon Defining a LISP Interpreterin a Logic of Total Functions 6/7

This idea works for Lisp evaluator

@ See paper for details (unexplained sample below):
= (Rap(fn, args, p,s) = 3In. some(s)=applyc(n, fn, args, p))
A
(Rev (e, p,s) = dn. some(s)=evalc(n, e, p))
A
(Revi(el, p,sl) = 3n. some(List(sl))=evlisc(n,el, p))

@ No obvious reason why can't be done for full ACL2

@ Why bother?
@ satisfying and fun (my 1974 PhD was on verifying EVAL)
@ relate HOL-style and ACL2-style formal methods
° alé?/rig%gec(t)?n \r/r(]iecr%for bounded quantification in ACL2

THE END

Mike Gordon Defining a LISP Interpreterin a Logic of Total Functions 717

	Title

