
 Some Flawed Adders, 11/2007

Robert S. Boyer, Warren A. Hunt, Jr., UTCS

A Study of Some Flawed Adders

*** Work In Progress ***

Robert S. Boyer

and

Warren A. Hunt, Jr.

Department of Computer Sciences
1 University Station, M/S C0500

The University of Texas
Austin, TX 78712-0233

E-mail: {boyer,hunt}@cs.utexas.edu
TEL: +1 512 471 9745, +1 512 471 9748

FAX: +1 512 471 8885

 Some Flawed Adders, 11/2007

Robert S. Boyer, Warren A. Hunt, Jr., UTCS

Circuit Specification, Abstraction, and Reverse Engineering

• Does a manufactured circuit meet
its specification?

−Requires some kind of reverse en-
gineering,

− Low-level (maybe, transistor-level)
analysis,

−Higher-level specifications, and

−Verification tools.

• When an ASIC is made ready for
manufacturing,

− technology mapping occurs,

− synthesis and re-timing are per-
formed,

− test logic is added, and

− a floorplan and layout is created.

• Subtle changes can be introduced by
foundries.

− Some circuits are added for testa-
bility, reliability, etc.

−But, are some circuits added as
Trojan horses?

• Given a transistor- or gate-level model,
could we separate good changes from
bad changes?

− I started to wonder if the num-
ber of differences could be mea-
sured.

− I wondered if the number of dif-
ferences mattered.

−And, I wondered if measured dif-
ferences indicated anything.

1

 Some Flawed Adders, 11/2007

Robert S. Boyer, Warren A. Hunt, Jr., UTCS

Motivating Example: Verification of a Hardware Adder

• It should be easy to verify an adder:

− adders have a regular structure

− it just computes a sum.

• However, implementation flaws may
still exist:

−CAD or manufacturing flaws, or

−Malicious changes might be made.

• To thoroughly verify an adder imple-
mentation requires:

− netlist with transistor strengths,
capacitance of wires, etc.

− a transistor-level analyzer, and

− a symbolic verifier.

• Could we detect a subtle change?
2

 Some Flawed Adders, 11/2007

Robert S. Boyer, Warren A. Hunt, Jr., UTCS

Circuit Verification and Measured Differences

• Generally, circuits are verified by simulation.

• We advocate symbolic verification, but even so, there may be differences that
are acceptable:

− circuits are used in a restricted environment,

− circuits used with limited input values, or

− approximate answers adequate

• Let’s count the differences between an XOR and an OR gate.

A B OR XOR Same Different

-------------+--------------------------------

0 0 | 0 0 1 0

0 1 | 1 1 1 0

1 0 | 1 1 1 0

1 1 | 1 0 0 1

Total: 3 1

3

 Some Flawed Adders, 11/2007

Robert S. Boyer, Warren A. Hunt, Jr., UTCS

Function Representation using BDDs

• We represent binary functions as HONS trees.

−The variable order is implicit.

−The BDDs are reduced – they may terminate early.

O <-- A ; The simple tree representing the

/ \ ; disjunction of A and B:

/ \

T O <-- B

/ \ ; The tree is represented by

/ \ ; (HONS T (HONS T NIL))

T NIL ; which just prints as: (T T).

• We have defined functions to perform logical operations on BDDs.

(let* ((a (hons T NIL)) O <-- A --> O

(b (hons a a))) / \ / \

(q-fn ’or a b)) T NIL \ /

==> B --> O

(T T) / \

T NIL

• Printing large BDDs isn’t possible – too much output.
4

 Some Flawed Adders, 11/2007

Robert S. Boyer, Warren A. Hunt, Jr., UTCS

Counting when a BDD Function is 1 or 0

Given a BDD, can we count the number
of times the output is 1 and 0?

(defun count-tip-values (x depth)

(if (atom x)

(mv (if x (expt 2 depth) 0)

(if x 0 (expt 2 depth)))

(mv-let

(left-cnt-1s left-cnt-0s)

(count-tip-values (car x)

(1- depth))

(mv-let

(right-cnt-1s right-cnt-0s)

(count-tip-values (cdr x)

(1- depth))

(mv (+ left-cnt-1s right-cnt-1s)

(+ left-cnt-0s right-cnt-0s))))))

Using COUNT-TIP-VALUES determine the
number of input combinations that pro-
duce 1 and 0 outputs.

(count-tip-values ’(t t) 2) ==> (3 1)

Let’s now produce the difference func-
tion between the XOR and OR functions.

(let* ((a (hons t nil))

(b (hons a a)))

(q-fn ’eqv

(q-fn ’xor a b)

(q-fn ’or a b)))

Using COUNT-TIP-VALUES, we count the
differences.

• The second argument provides a bias.

(let* ((a (hons t nil))

(b (hons a a)))

(count-tip-values

(q-fn ’eqv

(q-fn ’xor a b)

(q-fn ’or a b))

2))

==>

(3 1)

5

 Some Flawed Adders, 11/2007

Robert S. Boyer, Warren A. Hunt, Jr., UTCS

Counting the Difference Between Two Vector of BDD Functions

When counting the differences between
two, bit vectors, we compute the maxi-
mum number differences.

(defun count-max-tip-errors

(x depth cnt)

(if (atom x)

cnt

(mv-let

(ones zeros)

(count-tip-values (car x) depth)

(declare (ignore ones))

(count-max-tip-errors

(cdr x) depth

(max zeros cnt)))))

And when we compare a family of bit
vectors to a single, specification bit vec-
tor, we compute the smallest, non-zero
number of differences.

To determine the differences between two
bit vectors, we compute the differences
on a bit-by-bit basis.

(defun qv-ite-cmp (a b)

(if (atom a)

(if (atom b)

nil

(cons nil

(qv-ite-cmp nil (cdr b))))

(if (atom b)

(cons nil

(qv-ite-cmp (cdr a) nil))

(cons

(q-fn ’eqv (car a) (car b))

(qv-ite-cmp (cdr a) (cdr b))))))

Incomparable positions of bit vectors of
uneven length are assigned the maxi-
mum number of differences; i.e., NIL.

• We then measure the differences.

6

 Some Flawed Adders, 11/2007

Robert S. Boyer, Warren A. Hunt, Jr., UTCS

Example, Bit Vector Differences

@-----------------@-----------------@------ NIL

/ / /

/ / /

O <-- A --> O NIL

/ \ / \

/ \ / \

T O <-- B T NIL @-----------------@-----------------@------ NIL

/ \ / / /

/ \ / / /

T NIL O <-- A --> NIL O

/ \ / \

Answer ==> / \ / \

T O <-- B NIL T

/ \

/ \

NIL T

@-----------------@-----------------@------ NIL

/ / /

/ / /

O <-- A --> O O

/ \ / \ / \

/ \ / \ / \

T NIL NIL T T NIL

7

 Some Flawed Adders, 11/2007

Robert S. Boyer, Warren A. Hunt, Jr., UTCS

Example, Count the Bit Vector Differences

Given the difference equations, the number of differences is shown:

@-----------------@-----------------@------ NIL

/ / /

/ / /

O <-- A --> NIL O

/ \ / \

/ \ / \

T O <-- B NIL T

/ \

/ \

NIL T

@-----------------@-----------------@------ NIL

/ / /

/ / /

1 4 2

For this result, there are four differences.

When we compare the counts of many bit vectors, we drop bit vectors that
match.

8

 Some Flawed Adders, 11/2007

Robert S. Boyer, Warren A. Hunt, Jr., UTCS

Single Gate Failures

• First Experiment – 64 bit adder.

− Fault each two-input gate with
the other 15 Boolean logic func-
tions.

−Measure differences.

• There are 4800 flawed adders:

− 64 bit positions

− 5 gates per bit position

− 15 faulty gates per gate

− 65 equations, 312,000 differences

• Results (for 129 Boolean inputs)

− For one gate, replacing XOR by
OR makes no difference

− In all other cases we at least find
2

126 differences in some bit.
9

 Some Flawed Adders, 11/2007

Robert S. Boyer, Warren A. Hunt, Jr., UTCS

Single Input-Pair Failure

Consider a 64-bit adder that returns an
incorrect answer for a single pair of num-
bers.

• Seems like this should be easy to de-
tect by structural means, but

−Not if exists in purchased IP,

−Not if embedded in an ALU, or

−Not if a fabrication change.

• So, we use the developed machinery.

(defun sbv-bv-adder

(c a b a-val b-val ans-val)

(let

((bv-adder (q-bv-adder c a b))

(cmp-a-val (q-ite-cmp a a-val))

(cmp-b-val (q-ite-cmp b b-val)))

(qv-if-ite

(q-fn ’and cmp-a-val cmp-b-val)

ans-val bv-adder)))

Let’s try our subtly flawed adder model.
This adder has a built-in key.

(v-to-nat

(sbv-bv-adder

nil

(nat-to-v 7 64) (nat-to-v 3 64)

(nat-to-v 3 64) (nat-to-v 7 64)

(nat-to-v 11 65)))

==> 10

In this case, it works fine, but...

(v-to-nat

(sbv-bv-adder

nil

(nat-to-v 3 64) (nat-to-v 7 64)

(nat-to-v 3 64) (nat-to-v 7 64)

(nat-to-v 11 65)))

==> 11

We can use our counting mechanisms to
determine the number of differences.

10

 Some Flawed Adders, 11/2007

Robert S. Boyer, Warren A. Hunt, Jr., UTCS

Count the Bit Vector Differences For Slightly Bad Adder

Given the difference equations, the number of differences is shown:

(count-tip-values-list

(qv-ite-cmp *q-bv-adder* *sbv-bv-adder*)

(len *all-vars*) 0)

==>

((:CORRECT-ANSWERS 680564733841876926926749214863536422911 :WRONG-ANSWERS 1)

(:CORRECT-ANSWERS 680564733841876926926749214863536422912 :WRONG-ANSWERS 0)

(:CORRECT-ANSWERS 680564733841876926926749214863536422912 :WRONG-ANSWERS 0)

(:CORRECT-ANSWERS 680564733841876926926749214863536422912 :WRONG-ANSWERS 0)

(:CORRECT-ANSWERS 680564733841876926926749214863536422912 :WRONG-ANSWERS 0)

...)

We can compute this answer in a few milliseconds.

But, so what?

• Is this a good test for a Trojan Horse type of flaw?

• What other tests might be tried?

• What happens on other functions?

11

 Some Flawed Adders, 11/2007

Robert S. Boyer, Warren A. Hunt, Jr., UTCS

Cone-of-Influence For Slightly Bad Adder

Using the same flawed adder specification, we can compute the cone-of-influence
of the inputs for each output.

• For a good adder, the first output bit is dependant on only the input carry
and the first bit of the two vectors to be added.

• For our flawed adder, every output is dependent on every input bit.

• Thus, we are investigating the signatures of different logic functions using
these and other measuring functions.

Discussion

Using unique Boolean function representations and function memoization, we can
compute the signatures of thousands of different functions in seconds.

• We actually use a one-argument counting function – it memoizes much more
effectively.

• Is this capability just a novelty? Or, could it be useful?

• We find these capabilities useful for bug hunting.

12

