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Heap Data Structures
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Heap Data Structures
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Non-Interference

(read a2 r)

(write a2 v r)

a1 v1

a2 v

(defthm read-over-write-non-interference
(implies
(not (equal a1 a2))
(equal (read a1 (write a2 v x))

(read a1 x))))
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Read/Write Towers

(read a r)

(defun read_1 (a r)
(read a r))

(write a v r)

(defun write_1 (a v r)
(write a v r))

(defun write_2 (a v r)
(write_1 a v r))

(defun read_2 (a r)
(read_1 a r))

(defun write_3 (a v r)
(write_2 a v r))

(defun read_3 (a r)
(read_2 a r))
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Read/Write Towers

(read a r)(write a v r)
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(write a v r))

(defun read_1 (a r)
(read a r))

read-over-write-non-interference

(defun write_2 (a v r)
(write_1 a v r))

(defun read_2 (a r)
(read_1 a r))

(defun write_3 (a v r)
(write_2 a v r))
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(read_2 a r))
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Read/Write Towers

(read a r)(write a v r)

(defun write_1 (a v r)
(write a v r))

(defun read_1 (a r)
(read a r))

read-over-write-1-non-interference

(defun write_2 (a v r)
(write_1 a v r))

(defun read_2 (a r)
(read_1 a r))

(defun write_3 (a v r)
(write_2 a v r))

(defun read_3 (a r)
(read_2 a r))
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Read/Write Towers

(read a r)(write a v r)

(defun write_1 (a v r)
(write a v r))

(defun read_1 (a r)
(read a r))

read-1-over-write-non-interference

(defun write_2 (a v r)
(write_1 a v r))

(defun read_2 (a r)
(read_1 a r))

(defun write_3 (a v r)
(write_2 a v r))

(defun read_3 (a r)
(read_2 a r))
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Read/Write Towers

(read a r)(write a v r)

(defun write_1 (a v r)
(write a v r))

(defun read_1 (a r)
(read a r))

read-1-over-write-1-non-interference

(defun write_2 (a v r)
(write_1 a v r))

(defun read_2 (a r)
(read_1 a r))

(defun write_3 (a v r)
(write_2 a v r))

(defun read_3 (a r)
(read_2 a r))

2 x 2 = 4 rules
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Read/Write Towers

(read a r)(write a v r)

(defun write_1 (a v r)
(write a v r))

(defun read_1 (a r)
(read a r))

(defun write_2 (a v r)
(write_1 a v r))

(defun read_2 (a r)
(read_1 a r))

(defun write_3 (a v r)
(write_2 a v r))

(defun read_3 (a r)
(read_2 a r))
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Read/Write Towers

(read a r)(write a v r)

(defun write_1 (a v r)
(write a v r))

(defun read_1 (a r)
(read a r))

(defun write_2 (a v r)
(write_1 a v r))

(defun read_2 (a r)
(read_1 a r))

(defun write_3 (a v r)
(write_2 a v r))

(defun read_3 (a r)
(read_2 a r))

3 x 3 = 9 rules
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Read/Write Towers

(read a r)(write a v r)

(defun write_1 (a v r)
(write a v r))

(defun read_1 (a r)
(read a r))

(defun write_2 (a v r)
(write_1 a v r))

(defun read_2 (a r)
(read_1 a r))

(defun write_3 (a v r)
(write_2 a v r))

(defun read_3 (a r)
(read_2 a r))

N x N = 4 x 4 = 16 rules
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Non-interference in complex systems

• Complex Systems
– Hierarchical Design
– Build larger components from many simpler components

• Compositional Verification Methodology Essential
– Specify behavior once (locally)
– Use behavior many times (globally)

• Non-interference
– Not a complex property
– Number of theorems is quadratic in total number of components
– Standard Approach

• Articulate property between every component
• Not Compositional
• Doesn’t scale
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And now for something completely different: 
Congruences

• Congruence-based Rewriting
– Built-In to ACL2
– Treats Certain Predicate Relations “just like equality”
– Use Relations to Define Rewrite Rules

• Provides Strong Normalization
– (Near) Minimal Representations

• Congruence-based Rewriting
– More powerful than rewrite rules
– More scalable than syntactic techniques (:meta / bind-free)

• Scalable
– Defined Locally
– Used Globally
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Rewriting Context

• Obviously (cons x (cons x y)) is not equal to (cons x y),

• But they are equivalent in “the second argument of member”

• So we can replace one with the other in that context

(defthm member-cons-duplicates
(iff (member a (cons x (cons x y)))

(member a (cons x y))))

(cons x (cons x y))
(cons x y)
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Defining a Rewriting Context

• ACL2 Generalizes this notion
– “the second argument of member”

• Uses Equivalence Relations
– Formalize essential properties of “the second argument of member”

• Formally Introduced in ACL2 via defequiv
– (defequiv set-equiv)
– Associates equivalence relation with a rewriting context

(defun set-equiv (x y)
(if (consp x)

(and (member (car x) y)
(set-equiv (cdr x) (remove (car x) y))

(not (consp y))))
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Driver Rules

• Rewrite rules employing equivalence relations

– Does not rewrite set-equiv to true
– Replaces (cons x (cons x y)) with (cons x y)
– In a set-equiv rewriting context

• Driver Rules
– Concise, Automatic, Unconstrained
– Enhanced Normalization

(defthm set-equiv-cons-cons-driver
(set-equiv (cons x (cons x y))

(cons x y)))
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Congruences

• Driver Rules
– Only Applied in specific rewriting contexts

• Congruence Rules
– Establish rewriting contexts
– Indicate when it is sound to use specified equivalence relations

(defthm set-equiv-implies-iff-in-2
(implies
(set-equiv x y)
(iff (member a x) (member a y)))

:rule-classes (:congruence))
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Congruence-based Rewriting: Synopsys

• Rewriting contexts
– Characterized by equivalence 

relations

• Driver Rules
– Apply context-sensitive 

simplifications

• Congruence Rules
– Chain from one context to 

another

• Congruence-based Rewriting
– More powerful than rewrite 

rules
– More scalable than syntactic 

techniques

(defequiv set-equiv)

(defthm set-equiv-cons-cons-driver
(set-equiv (cons x (cons x y))

(cons x y)))

(defcong set-equiv iff (member a x) 2)

(defcong set-equiv set-equiv (cons a x) 2)

(defthm member-cons-duplicates
(iff (member a (cons x (cons x y)))

(member a (cons x y))))
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Nary Congruences

• Nary Library 
– Extends ACL2 congruence capabilities
– Enables parameterized equivalence relations and congruences
– Used to define parameterized rewrite rules

(defun mod-equiv (x y n)
(equal (mod x n)

(mod y n)))
parameter

(defthm mod-reduction
(mod-equiv (mod x n)  x   n))

Rewrites this .. .. into this .. .. in a “mod n” context.
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Non-Interference as a Congruence

• Non-interference properties can be expressed via parameterized 
congruences
– Given an appropriate equivalence relation

• Inherits Congruence Properties
– Provides Strong Normalization

• (Near) Minimal Representations

– Scalable
• Defined Locally
• Used Globally
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use-equiv

aI vI

aK vK

aI vI

aK vK

aX vX

aY vY

(defun use-equiv (x y list)
(if (consp list)
(and (equal (read (car list) x)

(read (car list) y))
(use-equiv x y (cdr list)))))

use-equiv

aJ vJ aJ vJ(aI, aJ, aK)

x y
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read use cong

aY vY

use-equiv

(read a r)(read a r) a v a v(a)

aX vX

(defthm read-use-cong
(implies
(use-equiv x y (list a))
(equal (read a x)

(read a y))))
:rule-classes (:nary-congruence))

x y

Nary congruence
rule
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write use elim
use-equiv

uset

uset

a v

(defthm write-use-elim
(implies
(not (member a uset))
(use-equiv (write a v x)

x 
uset)))

uset

(write a v x)

(write a v x) x

Nary driver
rule
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write use-cong
use-equiv

uset

uset

(defthm write-use-cong
(implies
(use-equiv x y uset)
(use-equiv (write a v x)

(write a v y)
uset)))

uset

(write a v x)

x x

(write a v x)

aY vY

aX vX

Nary congruence
rule
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write use-cong!
use-equiv

uset

(defthm write-use-cong
(implies
(use-equiv x y (remove a uset))
(use-equiv (write a v x)

(write a v y)
uset)))

(write a v x)

x x

(write a v x)

aY vY

aX vX

Nary congruence
rule
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Local Characterization

(defthm read-use-cong
(implies
(use-equiv x y (list a))
(equal (read a x)

(read a y))))

(defthm write-use-elim
(implies
(not (member a uset))
(use-equiv (write a v x)

x 
uset)))

(defthm write-use-cong
(implies
(use-equiv x y (remove a uset))
(use-equiv (write a v x)

(write a v y)
uset)))

These three theorems characterize
the non-interference properties of
read and write operations via use-equiv

These three theorems are sufficient
to characterize the non-interference
properties of any function defined in
terms of read and write.

Local characterization and global
application: properties essential for
scalable non-interference
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Example Application

(defthm read-over-write-normalization
(implies
(not (member a (list b c d)))
(equal (read a (write b v1

(write c v2
(write a v3

(write d v4
(write a v5 x))))))

(read a (write a v3 x)))))

(list a)

(defthm read-use-cong
(implies
(use-equiv x y (list a))
(equal (read a x)

(read a y))))
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Example Application

(defthm read-over-write-normalization
(implies
(not (member a (list b c d)))
(equal (read a (write b v1

(write c v2
(write a v3

(write d v4
(write a v5 x))))))

(read a (write a v3 x)))))

(list a) (defthm write-use-elim
(implies
(not (member a uset))
(use-equiv (write a v x)

x 
uset)))
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Example Application

(defthm read-over-write-normalization
(implies
(not (member a (list b c d)))
(equal (read a

(write c v2
(write a v3

(write d v4
(write a v5 x)))))

(read a (write a v3 x)))))

(list a) (defthm write-use-elim
(implies
(not (member a uset))
(use-equiv (write a v x)

x 
uset)))
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Example Application

(defthm read-over-write-normalization
(implies
(not (member a (list b c d)))
(equal (read a 

(write a v3
(write d v4

(write a v5 x))))
(read a (write a v3 x)))))

(list a)

nil

(defthm write-use-cong
(implies
(use-equiv x y (remove a uset))
(use-equiv (write a v x)

(write a v y)
uset)))
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Example Application

(defthm read-over-write-normalization
(implies
(not (member a (list b c d)))
(equal (read a 

(write a v3
(write d v4

(write a v5 x))))
(read a (write a v3 x)))))

nil

(defthm write-use-elim
(implies
(not (member a uset))
(use-equiv (write a v x)

x 
uset)))
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Example Application

(defthm read-over-write-normalization
(implies
(not (member a (list b c d)))
(equal (read a 

(write a v3

(write a v5 x)))
(read a (write a v3 x)))))

nil

(defthm write-use-elim
(implies
(not (member a uset))
(use-equiv (write a v x)

x 
uset)))
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Example Application

(defthm read-over-write-normalization
(implies
(not (member a (list b c d)))
(equal (read a 

(write a v3

x))
(read a (write a v3 x)))))

nil
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Tower Example

(defthm read_i-over-write_x-normalization
(implies
(not (member a (list b c d)))
(equal (read_i a (write_j b v1

(write_k c v2
(write_x a v3

(write_y d v4
(write_z a v5 x))))))

(read_i a (write_x a v3 x)))))

(read a r)(write a v r)

(defun write_1 (a v r)
(write a v r))

(defun read_1 (a r)
(read a r))

(defun write_2 (a v r)
(write_1 a v r))

(defun read_2 (a r)
(read_1 a r))

(defun write_3 (a v r)
(write_2 a v r))

(defun read_3 (a r)
(read_2 a r))

3 x N = 3 x 4 = 12 rules



36Rockwell Collins, Inc. 

Read/Modify/Write

(defun move (rptr wptr r)
(write wptr (read rptr r) r))

(defthm move-use-cong
(implies
(use-equiv x y (cons rptr (remove wptr uset)))
(use-equiv (move rptr wptr x)

(move rptr wptr y)
uset)))

(defthm move-use-elim
(implies
(not (member wptr uset))
(use-equiv (move rptr wptr x)

x
uset)))
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Crawlers
(defun get-cadr (ptr r)
(read (read (+ ptr 1) r) r))

(defun get-cadr-uset (ptr r)
(list (+ ptr 1) (read (+ ptr 1) r)))

(defthm get-cadr-use-cong
(implies
(use-equiv x y (get-cadr-uset ptr x))
(equal (get-cadr ptr x)

(get-cadr ptr y))))

(defthm get-cadr-uset-use-cong
(implies
(use-equiv x y (list (+ ptr 1)))
(equal (get-cadr-uset ptr x)

(get-cadr-uset ptr y))))

ptr car

cdr

cadr

cddr

Every function of the heap
can be characterized.
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Parameterized Congruence for Non-Interference

• Non-interference properties can be expressed via parameterized 
congruences
– use-equiv

• Inherits Congruence Properties
– Provides Strong Normalization

• (Near) Minimal Representations

– Scalable
• Defined Locally
• Used Globally
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