
© 2006 Rockwell Collins, Inc. All rights reserved.

Scalable Normalization of Heap Manipulating Functions

David Greve
November 2007

2Rockwell Collins, Inc.

Heap Data Structures

a1 v1

a2 v2

heap

a0 v0

aK vK

aM vM

aN vN

a v

3Rockwell Collins, Inc.

Heap Data Structures

(read a r)(write a v r)

a1 v1

a2 v2

heap

a0 v0

aK vK

aM vM

aN vN

a v vv

Updated
Incrementally:
Definition

Accessed
Incrementally:
Use

Important
System State

Location

Value

Location

4Rockwell Collins, Inc.

Non-Interference

(read a2 r)

(write a2 v r)

a1 v1

a2 v

(defthm read-over-write-non-interference
(implies
(not (equal a1 a2))
(equal (read a1 (write a2 v x))

(read a1 x))))

5Rockwell Collins, Inc.

Read/Write Towers

(read a r)

(defun read_1 (a r)
(read a r))

(write a v r)

(defun write_1 (a v r)
(write a v r))

(defun write_2 (a v r)
(write_1 a v r))

(defun read_2 (a r)
(read_1 a r))

(defun write_3 (a v r)
(write_2 a v r))

(defun read_3 (a r)
(read_2 a r))

6Rockwell Collins, Inc.

Read/Write Towers

(read a r)(write a v r)

(defun write_1 (a v r)
(write a v r))

(defun read_1 (a r)
(read a r))

read-over-write-non-interference

(defun write_2 (a v r)
(write_1 a v r))

(defun read_2 (a r)
(read_1 a r))

(defun write_3 (a v r)
(write_2 a v r))

(defun read_3 (a r)
(read_2 a r))

7Rockwell Collins, Inc.

Read/Write Towers

(read a r)(write a v r)

(defun write_1 (a v r)
(write a v r))

(defun read_1 (a r)
(read a r))

read-over-write-1-non-interference

(defun write_2 (a v r)
(write_1 a v r))

(defun read_2 (a r)
(read_1 a r))

(defun write_3 (a v r)
(write_2 a v r))

(defun read_3 (a r)
(read_2 a r))

8Rockwell Collins, Inc.

Read/Write Towers

(read a r)(write a v r)

(defun write_1 (a v r)
(write a v r))

(defun read_1 (a r)
(read a r))

read-1-over-write-non-interference

(defun write_2 (a v r)
(write_1 a v r))

(defun read_2 (a r)
(read_1 a r))

(defun write_3 (a v r)
(write_2 a v r))

(defun read_3 (a r)
(read_2 a r))

9Rockwell Collins, Inc.

Read/Write Towers

(read a r)(write a v r)

(defun write_1 (a v r)
(write a v r))

(defun read_1 (a r)
(read a r))

read-1-over-write-1-non-interference

(defun write_2 (a v r)
(write_1 a v r))

(defun read_2 (a r)
(read_1 a r))

(defun write_3 (a v r)
(write_2 a v r))

(defun read_3 (a r)
(read_2 a r))

2 x 2 = 4 rules

10Rockwell Collins, Inc.

Read/Write Towers

(read a r)(write a v r)

(defun write_1 (a v r)
(write a v r))

(defun read_1 (a r)
(read a r))

(defun write_2 (a v r)
(write_1 a v r))

(defun read_2 (a r)
(read_1 a r))

(defun write_3 (a v r)
(write_2 a v r))

(defun read_3 (a r)
(read_2 a r))

11Rockwell Collins, Inc.

Read/Write Towers

(read a r)(write a v r)

(defun write_1 (a v r)
(write a v r))

(defun read_1 (a r)
(read a r))

(defun write_2 (a v r)
(write_1 a v r))

(defun read_2 (a r)
(read_1 a r))

(defun write_3 (a v r)
(write_2 a v r))

(defun read_3 (a r)
(read_2 a r))

3 x 3 = 9 rules

12Rockwell Collins, Inc.

Read/Write Towers

(read a r)(write a v r)

(defun write_1 (a v r)
(write a v r))

(defun read_1 (a r)
(read a r))

(defun write_2 (a v r)
(write_1 a v r))

(defun read_2 (a r)
(read_1 a r))

(defun write_3 (a v r)
(write_2 a v r))

(defun read_3 (a r)
(read_2 a r))

N x N = 4 x 4 = 16 rules

13Rockwell Collins, Inc.

Non-interference in complex systems

• Complex Systems
– Hierarchical Design
– Build larger components from many simpler components

• Compositional Verification Methodology Essential
– Specify behavior once (locally)
– Use behavior many times (globally)

• Non-interference
– Not a complex property
– Number of theorems is quadratic in total number of components
– Standard Approach

• Articulate property between every component
• Not Compositional
• Doesn’t scale

14Rockwell Collins, Inc.

And now for something completely different:
Congruences

• Congruence-based Rewriting
– Built-In to ACL2
– Treats Certain Predicate Relations “just like equality”
– Use Relations to Define Rewrite Rules

• Provides Strong Normalization
– (Near) Minimal Representations

• Congruence-based Rewriting
– More powerful than rewrite rules
– More scalable than syntactic techniques (:meta / bind-free)

• Scalable
– Defined Locally
– Used Globally

15Rockwell Collins, Inc.

Rewriting Context

• Obviously (cons x (cons x y)) is not equal to (cons x y),

• But they are equivalent in “the second argument of member”

• So we can replace one with the other in that context

(defthm member-cons-duplicates
(iff (member a (cons x (cons x y)))

(member a (cons x y))))

(cons x (cons x y))
(cons x y)

16Rockwell Collins, Inc.

Defining a Rewriting Context

• ACL2 Generalizes this notion
– “the second argument of member”

• Uses Equivalence Relations
– Formalize essential properties of “the second argument of member”

• Formally Introduced in ACL2 via defequiv
– (defequiv set-equiv)
– Associates equivalence relation with a rewriting context

(defun set-equiv (x y)
(if (consp x)

(and (member (car x) y)
(set-equiv (cdr x) (remove (car x) y))

(not (consp y))))

17Rockwell Collins, Inc.

Driver Rules

• Rewrite rules employing equivalence relations

– Does not rewrite set-equiv to true
– Replaces (cons x (cons x y)) with (cons x y)
– In a set-equiv rewriting context

• Driver Rules
– Concise, Automatic, Unconstrained
– Enhanced Normalization

(defthm set-equiv-cons-cons-driver
(set-equiv (cons x (cons x y))

(cons x y)))

18Rockwell Collins, Inc.

Congruences

• Driver Rules
– Only Applied in specific rewriting contexts

• Congruence Rules
– Establish rewriting contexts
– Indicate when it is sound to use specified equivalence relations

(defthm set-equiv-implies-iff-in-2
(implies
(set-equiv x y)
(iff (member a x) (member a y)))

:rule-classes (:congruence))

19Rockwell Collins, Inc.

Congruence-based Rewriting: Synopsys

• Rewriting contexts
– Characterized by equivalence

relations

• Driver Rules
– Apply context-sensitive

simplifications

• Congruence Rules
– Chain from one context to

another

• Congruence-based Rewriting
– More powerful than rewrite

rules
– More scalable than syntactic

techniques

(defequiv set-equiv)

(defthm set-equiv-cons-cons-driver
(set-equiv (cons x (cons x y))

(cons x y)))

(defcong set-equiv iff (member a x) 2)

(defcong set-equiv set-equiv (cons a x) 2)

(defthm member-cons-duplicates
(iff (member a (cons x (cons x y)))

(member a (cons x y))))

20Rockwell Collins, Inc.

Nary Congruences

• Nary Library
– Extends ACL2 congruence capabilities
– Enables parameterized equivalence relations and congruences
– Used to define parameterized rewrite rules

(defun mod-equiv (x y n)
(equal (mod x n)

(mod y n)))
parameter

(defthm mod-reduction
(mod-equiv (mod x n) x n))

Rewrites this into this in a “mod n” context.

21Rockwell Collins, Inc.

Non-Interference as a Congruence

• Non-interference properties can be expressed via parameterized
congruences
– Given an appropriate equivalence relation

• Inherits Congruence Properties
– Provides Strong Normalization

• (Near) Minimal Representations

– Scalable
• Defined Locally
• Used Globally

22Rockwell Collins, Inc.

use-equiv

aI vI

aK vK

aI vI

aK vK

aX vX

aY vY

(defun use-equiv (x y list)
(if (consp list)
(and (equal (read (car list) x)

(read (car list) y))
(use-equiv x y (cdr list)))))

use-equiv

aJ vJ aJ vJ(aI, aJ, aK)

x y

23Rockwell Collins, Inc.

read use cong

aY vY

use-equiv

(read a r)(read a r) a v a v(a)

aX vX

(defthm read-use-cong
(implies
(use-equiv x y (list a))
(equal (read a x)

(read a y))))
:rule-classes (:nary-congruence))

x y

Nary congruence
rule

24Rockwell Collins, Inc.

write use elim
use-equiv

uset

uset

a v

(defthm write-use-elim
(implies
(not (member a uset))
(use-equiv (write a v x)

x
uset)))

uset

(write a v x)

(write a v x) x

Nary driver
rule

25Rockwell Collins, Inc.

write use-cong
use-equiv

uset

uset

(defthm write-use-cong
(implies
(use-equiv x y uset)
(use-equiv (write a v x)

(write a v y)
uset)))

uset

(write a v x)

x x

(write a v x)

aY vY

aX vX

Nary congruence
rule

26Rockwell Collins, Inc.

write use-cong!
use-equiv

uset

(defthm write-use-cong
(implies
(use-equiv x y (remove a uset))
(use-equiv (write a v x)

(write a v y)
uset)))

(write a v x)

x x

(write a v x)

aY vY

aX vX

Nary congruence
rule

27Rockwell Collins, Inc.

Local Characterization

(defthm read-use-cong
(implies
(use-equiv x y (list a))
(equal (read a x)

(read a y))))

(defthm write-use-elim
(implies
(not (member a uset))
(use-equiv (write a v x)

x
uset)))

(defthm write-use-cong
(implies
(use-equiv x y (remove a uset))
(use-equiv (write a v x)

(write a v y)
uset)))

These three theorems characterize
the non-interference properties of
read and write operations via use-equiv

These three theorems are sufficient
to characterize the non-interference
properties of any function defined in
terms of read and write.

Local characterization and global
application: properties essential for
scalable non-interference

28Rockwell Collins, Inc.

Example Application

(defthm read-over-write-normalization
(implies
(not (member a (list b c d)))
(equal (read a (write b v1

(write c v2
(write a v3

(write d v4
(write a v5 x))))))

(read a (write a v3 x)))))

(list a)

(defthm read-use-cong
(implies
(use-equiv x y (list a))
(equal (read a x)

(read a y))))

29Rockwell Collins, Inc.

Example Application

(defthm read-over-write-normalization
(implies
(not (member a (list b c d)))
(equal (read a (write b v1

(write c v2
(write a v3

(write d v4
(write a v5 x))))))

(read a (write a v3 x)))))

(list a) (defthm write-use-elim
(implies
(not (member a uset))
(use-equiv (write a v x)

x
uset)))

30Rockwell Collins, Inc.

Example Application

(defthm read-over-write-normalization
(implies
(not (member a (list b c d)))
(equal (read a

(write c v2
(write a v3

(write d v4
(write a v5 x)))))

(read a (write a v3 x)))))

(list a) (defthm write-use-elim
(implies
(not (member a uset))
(use-equiv (write a v x)

x
uset)))

31Rockwell Collins, Inc.

Example Application

(defthm read-over-write-normalization
(implies
(not (member a (list b c d)))
(equal (read a

(write a v3
(write d v4

(write a v5 x))))
(read a (write a v3 x)))))

(list a)

nil

(defthm write-use-cong
(implies
(use-equiv x y (remove a uset))
(use-equiv (write a v x)

(write a v y)
uset)))

32Rockwell Collins, Inc.

Example Application

(defthm read-over-write-normalization
(implies
(not (member a (list b c d)))
(equal (read a

(write a v3
(write d v4

(write a v5 x))))
(read a (write a v3 x)))))

nil

(defthm write-use-elim
(implies
(not (member a uset))
(use-equiv (write a v x)

x
uset)))

33Rockwell Collins, Inc.

Example Application

(defthm read-over-write-normalization
(implies
(not (member a (list b c d)))
(equal (read a

(write a v3

(write a v5 x)))
(read a (write a v3 x)))))

nil

(defthm write-use-elim
(implies
(not (member a uset))
(use-equiv (write a v x)

x
uset)))

34Rockwell Collins, Inc.

Example Application

(defthm read-over-write-normalization
(implies
(not (member a (list b c d)))
(equal (read a

(write a v3

x))
(read a (write a v3 x)))))

nil

35Rockwell Collins, Inc.

Tower Example

(defthm read_i-over-write_x-normalization
(implies
(not (member a (list b c d)))
(equal (read_i a (write_j b v1

(write_k c v2
(write_x a v3

(write_y d v4
(write_z a v5 x))))))

(read_i a (write_x a v3 x)))))

(read a r)(write a v r)

(defun write_1 (a v r)
(write a v r))

(defun read_1 (a r)
(read a r))

(defun write_2 (a v r)
(write_1 a v r))

(defun read_2 (a r)
(read_1 a r))

(defun write_3 (a v r)
(write_2 a v r))

(defun read_3 (a r)
(read_2 a r))

3 x N = 3 x 4 = 12 rules

36Rockwell Collins, Inc.

Read/Modify/Write

(defun move (rptr wptr r)
(write wptr (read rptr r) r))

(defthm move-use-cong
(implies
(use-equiv x y (cons rptr (remove wptr uset)))
(use-equiv (move rptr wptr x)

(move rptr wptr y)
uset)))

(defthm move-use-elim
(implies
(not (member wptr uset))
(use-equiv (move rptr wptr x)

x
uset)))

37Rockwell Collins, Inc.

Crawlers
(defun get-cadr (ptr r)
(read (read (+ ptr 1) r) r))

(defun get-cadr-uset (ptr r)
(list (+ ptr 1) (read (+ ptr 1) r)))

(defthm get-cadr-use-cong
(implies
(use-equiv x y (get-cadr-uset ptr x))
(equal (get-cadr ptr x)

(get-cadr ptr y))))

(defthm get-cadr-uset-use-cong
(implies
(use-equiv x y (list (+ ptr 1)))
(equal (get-cadr-uset ptr x)

(get-cadr-uset ptr y))))

ptr car

cdr

cadr

cddr

Every function of the heap
can be characterized.

38Rockwell Collins, Inc.

Parameterized Congruence for Non-Interference

• Non-interference properties can be expressed via parameterized
congruences
– use-equiv

• Inherits Congruence Properties
– Provides Strong Normalization

• (Near) Minimal Representations

– Scalable
• Defined Locally
• Used Globally

	Heap Data Structures
	Heap Data Structures
	Non-Interference
	Read/Write Towers
	Read/Write Towers
	Read/Write Towers
	Read/Write Towers
	Read/Write Towers
	Read/Write Towers
	Read/Write Towers
	Read/Write Towers
	Non-interference in complex systems
	And now for something completely different: Congruences
	Rewriting Context
	Defining a Rewriting Context
	Driver Rules
	Congruences
	Congruence-based Rewriting: Synopsys
	Nary Congruences
	Non-Interference as a Congruence
	use-equiv
	read use cong
	write use elim
	write use-cong
	write use-cong!
	Local Characterization
	Example Application
	Example Application
	Example Application
	Example Application
	Example Application
	Example Application
	Example Application
	Tower Example
	Read/Modify/Write
	Crawlers
	Parameterized Congruence for Non-Interference

