Scalable Normalization of Heap Manipulating Functions

David Greve
November 2007

Collins

heap Heap Data Structures
a0 vO
al vl
a2 v2

© oo
a \Y

o o
akK vK
aM vM
aN VN

Rockwell Collins, Inc. 2

Rockwe

Collins
heap Heap Data Structures
/a0 | VO
Updated Accessed
_ al vl :
Incrementally: Incrementally:
Definition a2 v2 Use
\ @ @ ©
v —*(writeavr) —/” a v [—* (readar) — V
@ O
: akK vK)
Location Location
aM vM
Value aN VN
\ J
Y
Important

System State

Rockwell Collins, Inc. 3

Collins

Non-Interference

al vl [— (read a2r)

(writea2vr) — a2 Y

(defthm read-over-write-non-interference
(implies
(not (equal al a2))
(equal (read al (write a2 v x))
(read al x))))

Rockwell Collins, Inc. 4

Collins

(defun write_3 (avr)
(write_2avr))

(defun write_ 2 (avr)
(write_1avr))

(defun write_1 (avr)
(write a v r))

(write avr)

Rockwell Collins, Inc.

Read/Write Towers

(defunread 3 (ar)
(read 2 ar))

(defunread 2 (ar)
(read_1ar))

(defunread 1 (ar)
(read ar))

(read ar)

Collins

(defun write_3 (avr)
(write_2 avr))

(defun write_2 (avr)
(write_1avr))

(defun write_1 (avr)
(write a v r))

(write avr)

Rockwell Collins, Inc.

read-over-write-non-interference

Read/Write Towers

(defunread 3 (ar)
(read_2 ar))

(defunread 2 (ar)
(read_1ar))

(defunread_ 1 (ar)
(read ar))

(read ar)

Collins

Read/Write Towers

(defun write_3 (avr) (defunread 3 (ar)
(write_2avr)) (read 2 ar))

(defun write_2 (avr) (defunread 2 (ar)
(write_1avr)) (read_1ar))

_ read-over-write-1-non-interference
(defun write_1 (avr) (defunread_ 1 (ar)

(write a v r)) (read ar))

A

(write avr) (read ar)

Rockwell Collins, Inc. 7

Collins

Read/Write Towers

(defun write_3 (avr) (defunread 3 (ar)
(write_2avr)) (read 2 ar))

(defun write_2 (avr) (defunread 2 (ar)
(write_1avr)) (read_1ar))

_ read-1-over-write-non-interference
(defun write_1 (avr) (defunread_ 1 (ar)

(write a v r)) (read ar))

(write avr) (read ar)

Rockwell Collins, Inc. 8

Collins

Read/Write Towers

(defun write_3 (avr) (defunread 3 (ar)
(write_2avr)) (read 2 ar))

(defun write_2 (avr) (defunread 2 (ar)
(write_1avr)) (read_1ar))

read-1-over-write-1-non-interference

(defun write_1 (avr) « (defunread_ 1 (ar)
(write a v r)) (read ar))
(write avr) (read ar)

2 X2 =4rules

Rockwell Collins, Inc. 9

Collins

Read/Write Towers

(defun write_3 (avr) (defunread 3 (ar)
(write_2avr)) (read_2 ar))

(defun write_ 2 (avr) . (defunread 2 (ar)
(write_1avr)) (read_1ar))

(defun write_1 (avr) (defunread_ 1 (ar)
(write a v r)) (read ar))

(write avr) (read ar)

Rockwell Collins, Inc. 10

Collins

Read/Write Towers

(defun write_3 (avr) (defunread 3 (ar)
(write_2avr)) (read_2 ar))
(defun write_2 (avr) (defunread 2 (ar)
(write_1avr)) (read_1ar))
(defun write_1 (avr) (defunread_ 1 (ar)
(write a v r)) (read ar))
(write avr) (read ar)

3 x3=9rules

Rockwell Collins, Inc. 11

Collins

Read/Write Towers

(defun write_3 (avr) (defunread 3 (ar)
(write_2avr)) (read_2 ar))
(defun write_2 (avr) (defunread 2 (ar)
(write_1avr)) (read_1ar))
(defun write_1 (avr) (defunread_ 1 (ar)
(write a v r)) (read ar))
(write avr) (read ar)

NXN=4x4=16rules

Rockwell Collins, Inc. 12

Collins

Non-interference in complex systems

e Complex Systems
— Hierarchical Design
— Build larger components from many simpler components

e Compositional Verification Methodology Essential
— Specify behavior once (locally)
— Use behavior many times (globally)

e Non-interference
— Not a complex property
— Number of theorems is quadratic in total number of components

— Standard Approach
« Articulate property between every component
< Not Compositional
e Doesn’t scale

Rockwell Collins, Inc. 13

Collins

And now for something completely different:
Congruences

e Congruence-based Rewriting
— Built-In to ACL2
— Treats Certain Predicate Relations “just like equality”
— Use Relations to Define Rewrite Rules

e Provides Strong Normalization
— (Near) Minimal Representations

e Congruence-based Rewriting
— More powerful than rewrite rules
— More scalable than syntactic techniques (:meta / bind-free)

e Scalable
— Defined Locally
— Used Globally

Rockwell Collins, Inc. 14

Collins

Rewriting Context

e Obviously (cons x (cons x y)) is not equal to (cons x y),

(cons x (cons x Y))
(cons x y)

e But they are equivalent in “the second argument of member”
(defthm member-cons-duplicates
(iff (member a (cons x (cons x y)))
(member a (cons x Y))))

e SO0 we can replace one with the other in that context

Rockwell Collins, Inc. 15

Collins

Defining a Rewriting Context

e ACL2 Generalizes this notion
— “the second argument of member”

e Uses Equivalence Relations
— Formalize essential properties of “the second argument of member”

(defun set-equiv (X y)
(if (consp x)
(and (member (car x) y)
(set-equiv (cdr x) (remove (car X) y))

(not (consp y))))

e Formally Introduced in ACL2 via defequiv
— (defequiv set-equiv)
— Associates equivalence relation with a rewriting context

Rockwell Collins, Inc. 16

Collins

Driver Rules

e Rewrite rules employing equivalence relations

(defthm set-equiv-cons-cons-driver
(set-equiv (cons x (cons X Y))

(cons x)))

— Does not rewrite set-equiv to true
— Replaces (cons x (cons X y)) with (cons x y)
— In a set-equiv rewriting context

e Driver Rules
— Concise, Automatic, Unconstrained
— Enhanced Normalization

Rockwell Collins, Inc. 17

Collins

Congruences

e Driver Rules
— Only Applied in specific rewriting contexts

e (Congruence Rules
— Establish rewriting contexts
— Indicate when it is sound to use specified equivalence relations

(defthm set-equiv-implies-iff-in-2
(implies
(set-equiv X y)
(iff (member a x) (member a y)))
.rule-classes (.congruence))

Rockwell Collins, Inc. 18

Collins

Congruence-based Rewriting: Synopsys

e Rewriting contexts (defequiv set-equiv)
— Characterized by equivalence
relations (defthm set-equiv-cons-cons-driver
- Driver Rules (set-equiv (cons x (cons x y))
— Apply context-sensitive (cons xy)))

simplifications
e (Congruence Rules
— Chain from one context to

(defcong set-equiv iff (member a x) 2)

(defcong set-equiv set-equiv (cons a x) 2)

another
e Congruence-based Rewriting '
— More powerful than rewrite (defthm member-cons-duplicates
rules (iff (member a (cons x (cons X y)))
— More scalable than syntactic (member a (cons x y))))

techniques

Rockwell Collins, Inc. 19

Collins

Nary Congruences

e Nary Library
— Extends ACL2 congruence capabilities
— Enables parameterized equivalence relations and congruences
— Used to define parameterized rewrite rules

(defun mod-equiv (X y |n)
(equal (mod x n)
(mod y n)))

parameter

(defthm mod-reduction
(mod-equiv|(mod x n)| x | n))

e

Rewrites this Into this In a “mod n” context.

Rockwell Collins, Inc. 20

Collins

Non-Interference as a Congruence

e Non-interference properties can be expressed via parameterized
congruences

— Given an appropriate equivalence relation

e Inherits Congruence Properties
— Provides Strong Normalization
e (Near) Minimal Representations

— Scalable
» Defined Locally
» Used Globally

Rockwell Collins, Inc. 21

Collins

y y use-equiv

use-equiv

aY vY

al Vi al Vi

aJ vJ (al, aJ, aK) aJ vJ

aX vX
aK vK aK vK

(defun use-equiv (x y list)
(if (consp list)
(and (equal (read (car list) x)
(read (car list) y))
(use-equiv x y (cdr list)))))

Rockwell Collins, Inc. 22

Collins

« y read use cong

use-equiv

aY vY

(read ar) * a Y (a) a Y > (read ar)

aX vX

(defthm read-use-cong

(implies
(use-equiv x y (list a)) « | Nary congruence
(equal (read a x) rule

(read a y))))
Rockwell Collins, Inc. I’u|e-C|aSSGS (nary-congruence)) 23

Collins

write use elim

(write a v X) X
use-equiv
uset uset
uset
(writeavx) — *| a Y%

(defthm write-use-elim

(implies _
(not (member a uset)) < | Nary driver
(use-equiv (write a v x) rule

X
Rockwell Collins, Inc. uset))) 24

Collins

write use-cong

X X
use-equiv
aY vY
uset uset
uset
ax vX
(writeavx) —* (write av x) —*

(defthm write-use-cong

(implies
(use-equiv X y uset) « | Nary congruence
(use-equiv (write a v x) rule

(write a v y)
Rockwell Collins, Inc. uset))) 25

Collins

X « write use-cong!

use-equiv

aY vY

(writeavx) —* (write av x) —*

uset

aX vX

(defthm write-use-cong
(implies
(use-equiv X y (remove a uset)) «—
(use-equiv (write a v x)
(write a v y)
Rockwell Collins, Irc. uset))) 26

Nary congruence
rule

Collins

(defthm read-use-cong
(implies
(use-equiv x y (list a))
(equal (read a x)
(read ay))))

(defthm write-use-elim
(implies
(not (member a uset))
(use-equiv (write a v x)
X
uset)))

(defthm write-use-cong
(implies
(use-equiv X y (remove a uset))
(use-equiv (write a v x)
(write a v y)
uset)))

Rockwell Collins, Inc.

Local Characterization

These three theorems characterize
the non-interference properties of
read and write operations via use-equiv

These three theorems are sufficient
to characterize the non-interference
properties of any function defined in
terms of read and write.

Local characterization and global
application: properties essential for
scalable non-interference

27

Collins

Example Application

(defthm read-use-cong
(implies

(use-equiv x y (list a))
/mmh//(equ (read a x)
m read-over-write-normalizati (read ay))))

(list a) _ (implies

ISt b c d)))
(equal (read a (write b v1
(write ¢ v2
(write a v3
(write d v4
(write a v5 x))))))
(read a (write a v3 x)))))

Rockwell Collins, Inc. 28

Fockels A

Example Application

(defthm read-over-write-normalization

(ista) | (implies (defthm write-use-elim
n ber a (list b c d))) (implies
(equal (read a (er e (not (member a uset))
(Ww (write a v X)
(write a v3
(write d v4 uset)))

(write a v5 x))))))
(read a (write a v3 x)))))

Rockwell Collins, Inc. 29

Collins

(list a) _

(defthm read-over-write-normalization

Example Application

(implies (defthm write-use-elim
t (member a (list b ¢ d))) (implies
(equa a (not (member a uset))
(wtite T v2 (use-equiv (write a v X)
(write a-v3 X
(write d v4 uset)))

(write a v5 x)))))
(read a (write a v3 x)))))

Rockwell Collins, Inc.

30

Collins

Example Application

(defthm read-over-write-normalization
(list @) | (implies

ot (member a (list b c d)))

ni Nwrite av3

(write d v4
(write~aw5s x))))
(read a (wri X)))) (defthm write-use-cong
(implies

(use-equiv X y (remove a uset))

(use-equiv (write a v x)
(write a Vv y)
uset)))

Rockwell Collins, Inc. 31

Collins

Example Application

(defthm read-over-write-normalization

(implies (defthm write-use-elim
(not (member a (list b ¢ d))) (implies
(equal (read a (not (member a uset))

use-equiv (write a v x)

nil Nwrw/(X
Witedvs " usep))
(wtite a v5 x))))

(read a (write a v3 x)))))

Rockwell Collins, Inc. 32

Collins

Example Application

(defthm read-over-write-normalization

(implies (defthm write-use-elim
(not (member a (list b ¢ d))) (implies
(equal (read a (not (member a uset))

use-equiv (write a v x)

nil (write a v3 X
/ uset)))

(Write a v5 X
(read a (write a v3 x)))))

Rockwell Collins, Inc. 33

Collins

Example Application

(defthm read-over-write-normalization
(implies
(not (member a (list b ¢ d)))
(equal (read a

X))

(read a (write a v3 x)))))

Rockwell Collins, Inc. 34

Collins

Tower Example

(defun write_3 (avr)

(write_2 a v r)) (defthm read_i-over-write_x-normalization
(implies
(not (member a (list b ¢ d)))
(defun write_ 2 (avr) (equal (read_i a (write_j b vl

(write_1avr)) (write_k c v2
(write_x a v3

(write_y d v4
(write_z a v5 x))))))

(defun write_1 (a v r) (read_i a (write_x a v3 x)))))

(write a v r))

(write a v r) 3XN=3x4=12rules

Rockwell Collins, Inc.

(defunread 3 (ar)
(read_2 ar))

(defunread 2 (ar)
(read_1ar))

(defunread_1 (ar)
(read ar))

(read ar)

35

Collins

Read/Modify/Write

(defun move (rptr wptr r)
(write wptr (read rptr r) r))

(defthm move-use-cong
(implies
(use-equiv X y (cons rptr (remove wptr uset)))
(use-equiv (move rptr wptr x)
(move rptr wptr y)
uset)))

(defthm move-use-elim
(implies
(not (member wptr uset))
(use-equiv (move rptr wptr x)
X
uset)))

Rockwell Collins, Inc. 36

Collins

Crawlers

(defun get-cadr (ptr r)

(read (read (+ ptr 1) r)) Every function of the heap

can be characterized.

(defun get-cadr-uset (ptr r)
(list (+ ptr 1) (read (+ ptr 1) r)))

(defthm get-cadr-use-cong ptr ——> car
(implies
(use-equiv X y (get-cadr-uset ptr x))
(equal (get-cadr ptr x)
(get-cadr ptry))))

cdr @

A

(defthm get-cadr-uset-use-cong cadr

(implies cddr
(use-equiv x y (list (+ ptr 1)))
(equal (get-cadr-uset ptr x)

(get-cadr-uset ptr y))))

Rockwell Collins, Inc. 37

Collins

Parameterized Congruence for Non-Interference

e Non-interference properties can be expressed via parameterized
congruences

— use-equiv

e Inherits Congruence Properties
— Provides Strong Normalization
e (Near) Minimal Representations

— Scalable
» Defined Locally
» Used Globally

Rockwell Collins, Inc. 38

	Heap Data Structures
	Heap Data Structures
	Non-Interference
	Read/Write Towers
	Read/Write Towers
	Read/Write Towers
	Read/Write Towers
	Read/Write Towers
	Read/Write Towers
	Read/Write Towers
	Read/Write Towers
	Non-interference in complex systems
	And now for something completely different: Congruences
	Rewriting Context
	Defining a Rewriting Context
	Driver Rules
	Congruences
	Congruence-based Rewriting: Synopsys
	Nary Congruences
	Non-Interference as a Congruence
	use-equiv
	read use cong
	write use elim
	write use-cong
	write use-cong!
	Local Characterization
	Example Application
	Example Application
	Example Application
	Example Application
	Example Application
	Example Application
	Example Application
	Tower Example
	Read/Modify/Write
	Crawlers
	Parameterized Congruence for Non-Interference

