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Background

Metamathematics studies the the properties of formal

systems (object languages and logics) in a metalanguage.

Metamathematics is a killer app for the Boyer-Moore

logic/prover family.

A few metamathematical proofs have already been

formalized, but many issues remain to be explored.

This talk is meant to stimulate renewed interest in

mechanized metamathematics, particularly in the ACL2

community.

Warning: Much of the talk is quite speculative.
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What is Metamathematics?

”It’s nothing like metaphysics”.

Metamathematics is the mathematics of formalized

mathematics.

Long history of work in metamathematics.

Most of the modern development is stimulated by Hilbert’s

programme for securing the foundations of mathematics

through finitist metamathematics.

Gödel’s incompleteness theorem demonstrated the

implausibility of truly securing mathematics in this manner.

Metamathematics is a fertile medium for studying

theoretical and engineering issues concerning logical and

computational systems.
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Why Metamethematics?

Metamathematics can be studied for its own sake as a

source of many beautiful theorems and challenges.

Mechanized metamathematics can be exploited to build

extensible proof checkers and verifiers.

Industrial-grade metamathematics is needed for dealing with

formalization in the large.
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Mechanized Metamathematics

Boyer and Moore’s proof of a tautology checker for

conditional expressions.

Turing-completeness of pure Lisp.

Tautology theorem: All tautologies are provable. Includes a

tautology checker.

Church-Rosser theorem for untyped lambda calculus:

β-reduction is confluent (repeated by Huet, Nipkow,

Pfenning, Homeier, . . . ).

First Incompleteness theorem: Existence of an unprovable

sentence in hereditarily finite set theory Z2. Improved

treatment in Coq by Russell O’Connor (7036 lines of

specification; 37,906 lines of proof).
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Other Examples

Interpreter-based proofs are very popular in ACL2.

FM9001 was verified with an explicit hardware

representation.

The Piton assembler and micro-Gypsy compiler correctness

proofs employ industry-grade metamathematics.

Recently, Xavier Leroy and others verified the correctness of

a Clight compiler in Coq.
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Programming Language Metatheory

The Workshop on Mechanizing Metatheory addresses this

topic and contains several recent contributions.

The POPLMark Challenge: Transitivity of subtyping and

type soundness for a subtype-polymorphic lambda calculus.

Naraschewski and Nipkow used Isabelle/HOL to check a

proof of the W type inference algorithm.

Nipkow and his colleagues have verified the type safety for

Java-like languages and multiple inheritance in a C++-like

language.

Nipkow has also verified the soundness and completeness of

a Hoare logic

7



'

&

$

%

Metamathematical Challenges in Computing

Computing is full of metamathematical challenges such as

proving the correctness of

1. Parsers and type checkers

2. Optimizers and code generators (HW&SW)

3. Verification condition generators, model checkers, and

static analyzers

4. Analyzers for information flow and security properties

(Naumann)
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Mathematical Logic

Frank Pfenning proved Gentzen’s cut elimination for

classical and intuitionistic logic in the Elf metalogical

framework.

Harrison used HOL Light to verify the correctness of

quantifier elimination for real-closed fields.

Norrish used HOL to develop proof producing versions of

Cooper’s algorithm and the Omega test.

Théry used Coq to verify Presburger’s quantifier elimination

procedure for first-order integer linear arithmetic.

Chaieb and Nipkow have also proved Cooper’s algorithm

and the Ferrante/Rackoff algorithm for the first-order

theory of linear integer and real arithmetic.
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Metamathematical Challenges in Logic

Many simple metatheorems of first-order logic have not yet

been mechanically verified, e.g.:

1. Completeness: Any consistent set of sentences has a

model

2. Compactness: A set of sentences is satisfiable if all its

finite subsets are.)

3. Herbrand’s theorem: A prenex sentence is provable iff

there is a quantifier-free Herbrand instance that is

provable.

A framework for systematically constructing soundness and

completeness proofs for new and old logics would be a

useful tool.
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First Incompleteness Theorem

In formal systems that can represent their own syntax, it is

easy to make self referential statements.

Suppose you have a pure Lisp object logic, then the

metatheoretic expression (P (SUBST ’(P (SUBST X ’X (KWOTE

X)) ’X (KWOTE ’(P (SUBST X ’X (KWOTE X))))))) is such a

self-referential assertion.

By representing a proof checker for the formal system, in

our case Z2, in Z2, we can construct a sentence U that

asserts ¬Pr(U).
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Second Incompleteness Theorem

Given the representability of the metatheory, a predicate

Pr(y) can be defined in Z2 as ∃xAPRF(x, y).

Pr(U) is Σ1, and Z2 can verify Σ1-completeness (every valid

Σ1-sentence is provable).

Then

` Pr(U) ⇒ Pr(Pr(U)).

But this says ` Pr(U) ⇒ Pr(¬U).

Therefore ` Con(Z2 ) ⇒ ¬Pr(U).

Hence ¬ ` Con(Z2 ), by first incompleteness theorem.
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(Almost) Reflexive Soundness Proofs (Harrison)

Harrison used HOL Light to prove

1. The consistency of HOL - {Infinity} in HOL Light.

2. The consistency of HOL in HOL Light plus the

existence of a “large enough” cardinal.

This is a pretty good sanity check for a proof systems.

Gentzen and Gödel’s consistency proofs for arithmetic using

induction up to ε0 is a good challenge.
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Is Metamathematics Useful?
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Why Verify Inference Procedures?

Theorem provers need not be verified if we are merely using

them to debug proofs.

However, if we want to trust the results, we need a sound

foundation for proofs.

Low-level proof generation is a common approach to

manifest correctness, e.g., LCF.

Proof-generating procedures can also contain bugs.

Proof generation is quite adequate for many uses but is

impractical for the typical applications of decision

procedures.

We need an approach that combines soundness and

efficiency.
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The Verified Reference (VR) Approach

The Verified Reference consists of a set of core procedures

P that are reasonably efficient, proof producing, and

verified.

We also have some untrusted procedures Q.

Any verification by Q can be efficiently checked with P by

having Q generate some hints for P , e.g., variable orderings,

case-splits, instantiations.

The procedures P have been verified using Q.

We can check this verification using P and generate proofs

that are independently checked.
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Inference Systems as a Uniform Framework for

Decision Procedures
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Inference Systems

Many decision procedures can be presented uniformly in

terms of inference systems.

An inference system is a triple 〈Ψ,Λ,`〉 of a set of logical

states and an inference relation.

For each logical state ψ, Λ(ψ) is a formula, and there is a

special state ⊥ where Λ(⊥) is unsatisfiable.

The inference relation ψ ` ψ′ must be

1. Conservative: Λ(ψ) and Λ(ψ′) are equisatisfiable

2. Progressive: ψ′ � ψ, and

3. Canonizing: If there is no ψ′ such that ψ ` ψ′, then ψ is

⊥ or Λ(ψ) is satisfiable
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Resolution

Input K is a set of clauses.

Atoms are ordered by � which is lifted to literals so that

¬p � p � ¬q � q, if p � q.

Literals appear in clauses in decreasing order without

duplication.

Tautologies, clauses containing both l and l, are deleted
from initial input.

Res
K, l ∨ Γ1, l ∨ Γ2

K, l ∨ Γ1, l ∨ Γ2, Γ1 ∨ Γ2

Γ1 ∨ Γ2 6∈ K

Γ1 ∨ Γ2 is not tautological

Contrad
K

⊥
if p,¬p ∈ K for some p
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Ordered Resolution: Example

(K0 =) ¬p ∨ ¬q ∨ r, ¬p ∨ q, p ∨ r, ¬r
(K1 =) ¬q ∨ r, K0

Res

(K2 =) q ∨ r, K1

Res

(K3 =) r, K2

Res

⊥
Contrad

20



'

&

$

%

Correctness

Progress: Bounded number of clauses in the given literals.

Each application of Res generates a new clause.

Conservation: For any model M , if M |= l ∨ Γ1 and

M |= l ∨ Γ2, then M |= Γ1 ∨ Γ2.

Canonicity: Given an irreducible non-⊥ configuration K in
the atoms p1, . . . , pn with pi ≺ pi+1 for 1 ≤ i ≤ n, build a
series of partial interpretations Mi as follows:

1. Let M0 = ∅

2. If pi+1 is the maximal literal in a clause pi+1 ∨ Γ ∈ K and Mi 6|= Γ,

then let Mi+1 = Mi{pi+1 7→ >}.
Otherwise, let Mi+1 = Mi{pi+1 7→ ⊥}.

Each Mi satisfies all the clauses in K in the atoms p1, . . . , pi.
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SAT with DPLL Search

DPLL looks for a satisfying assignment for a set of clauses

K by building a partial assignment M in levels and a set of

implied conflict clauses C.

Partial assignment M up to level l has the form

M0;M1; . . . ;Ml.

Mi has the form di : l1[Γ1], . . . , ln[Γn] with decision literal di

and implied literals li with source clause Γi from K ∪ C.
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SAT with DPLL Search

If M is a total assignment that does not falsify any clauses

in K, we report satisfiability.

Otherwise, we propagate M to K ∪ C to find implied literals

that are added to M .

Or, we find a conflict, i.e., a clause κ ∈ K ∪C falsified by M ,

and either report unsatisfiability (at level 0), or we analyze

the conflict and backjump with an implied literal and new

conflict clause added to C.

Otherwise, there are no new implied literals or conflicts, so

we continue the search at the next level by adding a

selected unassigned literal as the decision literal.
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DPLL Pseudocode

dpll(l,M,K,C)

=



dpll(l + 1, (M ′; k),K,C), if M ′ = propagate(M,K,C) 6= ⊥
k,¬k 6∈ dom(M ′)

M ′, if dom(M) = ∅
dpll(l′,M ′,K,C ′), if l > 0

⊥[κ] = propagate(M,K,C)

κ′ = analyze(κ,M,K,C)

〈l′,M ′〉 = backjump(κ′, l,M)

C ′ = C ∪ {κ}
⊥, if l = 0

⊥[κ] = propagate(M,K,C)
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Example

Let K be {p ∨ q,¬p ∨ q, p ∨ ¬q, s ∨ ¬p ∨ q,¬s ∨ p ∨ ¬q,¬p ∨ r,¬q ∨ ¬r}.

step h M K C Γ

choose s 1 ; s K ∅

choose r 2 ; s; r K ∅

propagate 2 ; s; r,¬q[¬q ∨ ¬r] K ∅

propagate 2 ; s; r,¬q, p[p ∨ q] K ∅

conflict 2 ; s; r,¬q, p K ∅ ¬p ∨ q

analyze 0 ∅ K q

propagate 0 q[q] K q

propagate 0 q, p[p ∨ ¬q] K q

propagate 0 q, p, r[¬p ∨ r] K q

conflict 0 q, p, r K q ¬q ∨ ¬r

25



'

&

$

%

Correctness

Conservation: In each inference step from 〈l,M,K,C〉 to

〈l′,M ′,K,C ′〉, the conjunction of M0,K,C is equivalent

to the conjunction of M ′
0;K;C ′.

Progress: The weight of M given by Σn
i=0|Mi| ∗ (n+ 1)(n−i)

increases to a bound (n+ 1)(n+1).

Canonicity: A non-⊥ irreducible configuration is a

satisfying total assignment.
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Proof Generation

Resolution proofs can be easily extracted from the DPLL

search procedure.

Each conflict clause in C has an associated proof.

The proof of the final conflict can be derived by resolution

from the clauses in K ∪ C.

Most solvers do not maintain proofs due to the time/space

overhead.
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SMT

SMT deals with formulas with theory atoms like x = y,

x 6= y, x− y ≤ 3, and select(store(A, i, v), j) = w.

The DPLL search is augmented with a theory state S in

addition to the partial assignment.

Total assignments are checked for theory satisfiability.

When a literal is added to M by propagation, it is asserted

to S.

When a literal is implied by S (ask), it is added to M .

Analysis is as in SAT, but backjumping needs to retract any

literals from S that are removed from M .
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Variable Equality: Union

The variable equality inference system is similar to the one

presented earlier.

The state consists of a find structure F , the E-graph, that

maintains equivalence classes and the input disequalities D.

Initially, F (x) = x for each variable x.

The equality x = y is processed by merging distinct

equivalence classes using the union operation below.

union(F )(x, y) =

 F [x′ := y′], y′ ≺ x′

F [y′ := x′], otherwise

where x′ ≡ F ∗(x) 6≡ F ∗(y) ≡ y′
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Merging Input Equalities

addeqlit(x = y, F,D) (skip)

:= 〈F,D〉, if

F ∗(x) ≡ F ∗(y)

addeqlit(x = y, F,D) (union)

:=


⊥, if

F ′∗(u) ≡ F ′∗(v) for some u 6= v ∈ D
〈F ′, D〉,otherwise

where

x′ = F ∗(x) 6≡ F ∗(y) = y′,

F ′ = union(F )(x, y)
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Adding Disequalities

addeqlit(x 6= y, F, D) := ⊥, if F ∗(x) ≡ F ∗(y) (contrad)

addeqlit(x 6= y, F, D) := 〈F, D〉, if (skipdiseq)

F ∗(x) ≡ F ∗(x′),

F ∗(y) ≡ F ∗(y′),

for x′ 6= y′ ∈ D

addeqlit(x 6= y, F, D) := 〈F, {x 6= y} ∪D〉, otherwise. (adddiseq)
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Correctness

Progress: The find trees are rooted so that for any x,

F (F i(x)) = F i(x) for some i.

This means the F ∗(x) operation is always well defined and

terminating.

Conservation: In addeqlit(l, F,D) = 〈F ′, D′〉, the two sides

are equisatisfiable, as is also the case when

addeqlit(l, F,D) = ⊥.

Canonicity: When addeqlit(l, F,D) = 〈F ′, D′〉, the state

〈F ′, D′〉 can be used to construct a term model M with

|M | = {x | F ′(x) = x} and M(x) = F ′∗(x).
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TDPLL example

Input is y = z, x = y ∨ x = z, x 6= y ∨ x 6= z
Step M F D C

Propagate y = z {y 7→ z} ∅ ∅

Select y = z; x 6= y {y 7→ z} {x 6= y} ∅

Scan
. . . , x 6= z

[x 6= z ∨ y 6= z ∨ x = y]
{y 7→ z} {x 6= y} ∅

Propagate . . . {y 7→ z} {x 6= y}

Analyze . . . {y 7→ z} {x 6= y} {y 6= z ∨ x = y}

Backjump y = z, x = y {y 7→ z} {x 6= y} {y 6= z ∨ x = y}

Assert y = z, x = y {x 7→ y, y 7→ z} {x 6= y} {y 6= z ∨ x = y}

Scan
. . . , x = z

[x = z ∨ x 6= y ∨ y 6= z]
{x 7→ y, y 7→ z} {x 6= y} {y 6= z ∨ x = y}

Conflict
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Theory Combination

Practical satisfiability problems involve multiple theories:

arithmetic, arrays, datatypes, bit-vectors, and uninterpreted

function symbols.

Nelson and Oppen give an elegant method for combining
theory solvers:

1. The overall state of the combined solvers consists of a core

E-graph S0 and the individual theory states: S1; . . . ; Sm.

2. A mixed input literal l is purifed into individual literals of the form

l′, x1 = t1, . . . , xn = tn, where the literal l′ is in the core and each ti
is a pure term in some theory.

3. Add each literal to the appropriate theory to obtain S′
i.

4. If there is an arrangement A of shared variables into equivalence

classes such that A ∪ S′
0 ∪ S′

i is satisfiable for each theory i, then

the literal l is satisfiable with respect to S.
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Verifying Solvers in PVS

In 2002, Jonathan Ford & S. verified the basic Shostak

combination

We have started an effort to verify solvers in PVS.

We have verified solvers for equality (union-find) and

difference arithmetic.

Marc Vaucher (École Polytechnique) & S. verified the

termination of a DPLL procedure.
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Reflection

Reflection was first introduced in the seventies with

Davis/Schwarz, Weyhrauch, and Boyer/Moore’s

metafunctions.

There are two types of reflection: computational and proof.

In computational reflection, we have an internal

representation of the syntax of some fragment of the logic,

e.g., arithmetic expressions, an interpreter for this

fragment, e.g., an evaluator, and a verified simplifier.

Computational reflection can be directly implemented in any

logic that supports syntactic representation and evaluation.
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Proof Reflection

The system Kurt, built in 1988, is a small (< 700 lines)

reflexive proof checker for a Boyer-Moore logic with a

provability predicate Pr.

The system has a built-in rule interpreter for inference rules

of the form

` Pr(f(x)) ⇒ Pr(x)

The primitive inference rules are given as axioms ( 1000
lines), and derived ones are proved as theorems about Pr.

When given a goal G, the rule interpreter applies an axiom

or derived rule to reduce it to the subgoal obtained from

evaluating f(G).
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Is Kurt Sound?

Kurt is clearly inspired by the way EVAL works in Lisp.

With a reflexive EVAL, at worst, you risk non-termination.

But, with proof reflection you risk falling into the

Gödel-Löb tarpit.

But, the Pr predicate does not satisfy the third derivability

condition

` Pr(p) ⇒ Pr(Pr(p)).

We have an open world assumption for the axioms about Pr

so it is not known to the logic as a Σ1 predicate.

But at this point, the soundness is still a conjecture rather

than a claim. (I’d be happy to share the code with anyone

who is interested. )
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Harrison’s Critique/Challenge

An unpublished 1996 paper by John Harrison contains a

trenchant critique of reflection.

The basic objections are

1. Reflection poses semantic and engineering challenges

2. No natural examples where reflection theoretically beats

proof generation, although theoretically this is the case.

3. No evidence that reflection works in practice.

Harrison’s claims are still unrefuted, but can be seen as a

challenge.
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Harrison’s Overreach

Harrison argues that proof generation as implemented in

LCF is the most pragmatic approach to trusted extensibility.

Here, his argument is somewhat weaker.

Tactics are a very nice way to structure and extend

interactive provers.

But LCF’s approach to proof generation is fairly

heavy-handed and the practical overhead is quite significant.

For example, Chaieb and Nipkow recently showed that the

reflected quantifier elimination procedures ran 60 to 130

times faster than the corresponding tactic.

The sizes of proofs generated by modern SMT solvers could

easily take up terabytes.
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Validation through SAT solving

Propositional reasoning is the major contributor to proof

size, and rewriting might be significant as well.

The proposal here is to factor proof checking into SAT

solving plus lemma checking.

These lemmas are propositional formulas corresponding to

facts generated by theory solvers or rewriters.

The lemmas are checked by the verified theory solvers and

rewriters, and even rechecked with proof generation.

−: It is restricted to classical logic, whereas proof

generation is general.
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Validation through SAT solving

The SAT-based approach has many advantages.

Many different verification tools can easily generate

evidence in the form of SAT problems.

These include model checkers and static analyzers.

The verification can be done in layers where each tool

generates evidence that is checked by lower-level tools, e.g.,

SMT solvers, and eventually through SAT solving with

lemma checking.
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Conclusions

With the right tools, mechanizing proofs in

metamathematics is great fun.

Many problems in programming languages, hardware, and

logic require mechanized metamathematics.

Metamathematics can and should be leveraged to enhance

prover capabilities and performance.

Proof generation as an approach to extensible theorem

proving has several practical limitations.

Metamathematically verified reference procedures can be

used to reconcile speed and trust in extensible provers.

Reflexive proof checking is a nice challenge.
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