
Termination Analysis with
Calling Context Graphs

Pete Manolios
Northeastern

Joint work with
Daron Vroon

Austin ACL2 Workshop Nov. 2007

Friday, November 16, 2007

“The checker has to verify that the process comes to
an end. Here again he should be assisted by the
programmer giving a further definite assertion to be
verified. This may take the form of a quantity which is
asserted to decrease continually and vanish when the
machine stops. To the pure mathematician
it is natural to give an ordinal number. In
this problem the ordinal might be
(n - r)ω2 + (r - s)ω + k.”

-Alan M. Turing (1949)

Termination

Friday, November 16, 2007

Termination Analysis

Quintessential undecidable software verification problem
Transformational systems: partial vs total correctness
Reactive systems: liveness
Theorem proving: consistency and induction schemes
Domain: fully-featured, first-order, pure functional PLs
Novel combination of static analysis and theorem proving
Introduce Calling Context Graphs and Measures [MV’06]

New, fully automatic termination analysis
General: Can be used to reason about any looping behavior

Our analysis is implemented in ACL2s

Friday, November 16, 2007

Outline

Overview
Idea

Calling Context Graphs & Measures
Experimental Results

Conclusions and Future Work

Friday, November 16, 2007

The Idea
Non-termination in our domain iff
∃ some input that leads to an infinite sequence of function calls

Goal: Conservative, precise, analyzable abstraction
First attempt: use call graphs
Example:

define f(x) =
 if (!intp(x) or x ≤ 1)
 then 0
 else if (x mod 2 = 1)
 then f(x+1)
 else 1 + f(x/2)

f

Not enough

Friday, November 16, 2007

Outline

Overview
Idea

Calling Context Graphs & Measures
Experimental Results

Conclusions and Future Work

Friday, November 16, 2007

Governors
The governors of e’ ⊆ e are the branching conditions that need to
be true for execution of e to lead to the execution of e’
Example

define f(x) =
 if (!intp(x) or x ≤ 1)
 then 0
 else if (x mod 2 = 1)
 then f(x+1)
 else 1 + f(x/2)

Friday, November 16, 2007

Governors
The governors of e’ ⊆ e are the branching conditions that need to
be true for execution of e to lead to the execution of e’
Example

define f(x) =
 if (!intp(x) or x ≤ 1)
 then 0
 else if (x mod 2 = 1)
 then f(x+1)
 else 1 + f(x/2)

Governors for f(x+1): {intp(x), x > 1, x mod 2 = 1}

Friday, November 16, 2007

Governors
The governors of e’ ⊆ e are the branching conditions that need to
be true for execution of e to lead to the execution of e’
Example

define f(x) =
 if (!intp(x) or x ≤ 1)
 then 0
 else if (x mod 2 = 1)
 then f(x+1)
 else 1 + f(x/2)

Governors for f(x+1): {intp(x), x > 1, x mod 2 = 1}
Governors for f(x/2) : {intp(x), x > 1, x mod 2 ≠ 1}

Friday, November 16, 2007

Precise Calling Contexts
A precise calling context for a call e is a triple containing:

The name of the function containing e
The governors for e in the function body
The call, e

Example: define f(x) =
 if (!intp(x) or x ≤ 1)
 then 0
 else if (x mod 2 = 1)
 then f(x+1)
 else 1 + f(x/2)

1. 〈f, {intp(x), x > 1, x mod 2 = 1}, f(x+1)〉
2. 〈f, {intp(x), x > 1, x mod 2 ≠ 1}, f(x/2)〉

Friday, November 16, 2007

Calling Context Graphs
Example: define f(x) =

 if (!intp(x) or x ≤ 1)
 then 0
 else if (x mod 2 = 1)
 then f(x+1)
 else 1 + f(x/2)

1. 〈f, {intp(x), x > 1, x mod 2 = 1}, f(x+1)〉
2. 〈f, {intp(x), x > 1, x mod 2 ≠ 1}, f(x/2)〉

1 2

Vertices are calling contexts
An edge from c1 to c2 if it is possible for execution to reach c1 and
c2 in consecutive recursive calls
Set of all paths is an overapproximation of recursive behavior

Friday, November 16, 2007

Building Calling Context Graphs
The edge condition:
∃ values that satisfy the governors of both contexts

Governors are arbitrary predicates
Building a minimal CCG is undecidable
Theorem prover queries used to eliminate unnecessary edges
Edge included if theorem prover cannot disprove the edge
condition
We need more

1 2

Friday, November 16, 2007

Calling Context Measures
Map function formals into some well-founded structure
Each calling context is given a set of CCMs
Example:

1. 〈f, {intp(x), x > 1, x mod 2 = 1}, f(x+1)〉
2. 〈f, {intp(x), x > 1, x mod 2 ≠ 1}, f(x/2)〉

1 2 x x Non-increasing edge ≥:

Decreasing edge >:

Neither X:

Friday, November 16, 2007

The Termination Condition
For every infinite path through the CCG,
There should exist a corresponding sequence of CCMs,
Such that for some tail of the sequence, each adjacent pair of
CCMs is never increasing and infinitely decreasing
Solved by Size Change back-end algorithm

1 2 x x Non-increasing edge ≥:

Decreasing edge >:

Neither X:

Friday, November 16, 2007

define f(x) =
 if (!intp(x) or x ≤ 1)
 then 0
 else if (x mod 2 = 1)
 then f(x+1)
 else 1 + f(x/2)

Merging

≥:>: X:

1. 〈f, {intp(x), x > 1, x mod 2 = 1}, f(x+1)〉
2. 〈f, {intp(x), x > 1, x mod 2 ≠ 1}, f(x/2)〉

1 2 x x

Friday, November 16, 2007

define f(x) =
 if (!intp(x) or x ≤ 1)
 then 0
 else if (x mod 2 = 1)
 then f(x+1)
 else 1 + f(x/2)

Merging

≥:>: X:

1. 〈f, {intp(x), x > 1, x mod 2 = 1, intp(x+1), x+1 > 1,

(x+1) mod 2 ≠ 1}, f((x+1)/2)〉
2. 〈f, {intp(x), x > 1, x mod 2 ≠ 1}, f(x/2)〉

 x x1 2

1 2 x x

Friday, November 16, 2007

Full Algorithm
We presented a simplified version of our analysis
Mutual Recursion
SCC analysis: can have more SCCs than functions
Hierarchical Analysis
Merging on a per-node basis: different edges correspond to
different numbers of steps
Multiple CCMs
CCMs that combine formals (e.g., x - y)
Different CCMs for different nodes

Saturation algorithm for propagating CCMs

Friday, November 16, 2007

Outline

Overview
Idea

Calling Context Graphs & Measures
Experimental Results

Conclusions and Future Work

Friday, November 16, 2007

(mutual-recursion
 ;; mma2 :: num, counts, s, ac --> [refs]
 (defun mma2 (c1 c2 s ac)
 (declare (xargs :measure (cons (len (cons c1 c2))
 (natural-sum (cons c1 c2)))))
 (if (zp c1)
 (mv (heap s) ac)
 (mv-let (new-addr new-heap)
 (mma c2 s)
 (mma2 (- c1 1)
 c2
 (make-state (thread-table s)
 new-heap
 (class-table s))
 (cons (list 'REF new-addr) ac)))))

 ;; mma :: [counts], s --> addr, new-heap
 (defun mma (counts s)
 (declare (xargs :measure (cons (+ 1 (len counts))
 (natural-sum counts))))
 (if (<= (len counts) 1)

 ;; "Base case" Handles initializing the final dimension
 (mv (len (heap s))
 (bind (len (heap s))
 (makearray 'T_REF
 (car counts)
 (init-array 'T_REF (car counts))
 (class-table s))
 (heap s)))
 ;; "Recursive Case"
 (mv-let (heap-prime lst-of-refs)
 (mma2 (car counts)
 (cdr counts)
 s
 nil)
 (let* ((obj (makearray 'T_REF
 (car counts)
 lst-of-refs
 (class-table s)))
 (new-addr (len heap-prime))
 (new-heap (bind new-addr obj heap-prime)))
 (mv new-addr new-heap)))))
)

JVM Example

Friday, November 16, 2007

JVM Example
(mutual-recursion
 (defun mma2 (c1 c2 s ac)
 (if (zp c1)
 ...
 (mv-let (new-addr new-heap)
 (mma c2 s)
 (mma2 (- c1 1) c2 e e’)))

 (defun mma (c s)
 (if (<= (len c) 1)
 ...
 (mma2 (car c) (cdr c) s nil)
 ...)))

mma2 measure: (cons (len (cons c1 c2))
 (natural-sum (cons c1 c2)))
mma measure: (cons (+ 1 (len c)) (natural-sum c))

Friday, November 16, 2007

Experimental Results
Implemented in ACL2s
Ran our algorithm over the ACL2 Regression Suite

Over 100MB, 11,000 function definitions
Ignored all user hints and other explicit assistance
Over 98% success rate

Problems Total CCG ACL2
Non-Trivial
Recursive

1762 1408 (80%) 1056 (60%)
4348 3394 (92%) 3642(84%)

Non-Trivial
Recursive

1762 1544 (87%) 1056 (67%)
4348 3394 (95%) 3642(87%)

Experiment: No Theorems

Experiment: Theorems

Friday, November 16, 2007

Outline

Overview
Idea

Calling Context Graphs & Measures
Experimental Results

Conclusions and Future Work

Friday, November 16, 2007

Conclusions and Future Work
Quintessential undecidable software verification problem
Introduce Calling Context Graphs and Measures (CCGs and CCMs)

New, fully automatic termination analysis
General: Can be used to reason about any looping behavior

Domain: fully-featured, first-order, applicative functional PLs
Novel combination of static analysis and theorem proving
Our analysis is implemented in ACL2s
Experimental results: ACL2 regression suite

> 100MB of code > 11,000 function definitions

98% success rate [MV’06]
Use CCG analysis to generate measures
Reason about imperative programs via SSA-like transformation

Friday, November 16, 2007

ACL2 theorem prover
Runs like a well-tuned race car in
the hands of an expert
Unfortunately, novices don’t have
the same experience
Disseminate: wrote a book
Not enough: undergrads

ACL2s: The ACL2 Sedan
From race car to sedan
Self-teaching
Control a machine that is thinking
about other machines
Visualize what ACL2 is doing
Levels
Termination: e.g., my-merge
Used in several classes
Available for download [DMMV’07]

ACL2s

Friday, November 16, 2007

