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“The checker has to verify that the process comes to 
an end. Here again he should be assisted by the 
programmer giving a further definite assertion to be 
verified. This may take the form of a quantity which is 
asserted to decrease continually and vanish when the 
machine stops. To the pure mathematician                 
it is natural to give an ordinal number. In                       
this problem the ordinal might be                             
(n - r)ω2 + (r - s)ω + k.”

-Alan M. Turing (1949)

Termination
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Termination Analysis

Quintessential undecidable software verification problem
Transformational systems: partial vs total correctness
Reactive systems: liveness
Theorem proving: consistency and induction schemes
Domain: fully-featured, first-order, pure functional PLs
Novel combination of static analysis and theorem proving
Introduce Calling Context Graphs and Measures [MV’06]

New, fully automatic termination analysis
General: Can be used to reason about any looping behavior

Our analysis is implemented in ACL2s
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The Idea
Non-termination in our domain iff 
∃ some input that leads to an infinite sequence of function calls 

Goal: Conservative, precise, analyzable abstraction 
First attempt: use call graphs
Example:

define f(x) = 
   if  (!intp(x) or x ≤ 1) 
      then 0 
      else if  (x mod 2 = 1)
         then f(x+1) 
         else 1 + f(x/2) 

f

Not enough
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Governors
The governors of e’ ⊆ e are the branching conditions that need to 
be true for execution of e to lead to the execution of e’
Example 

define f(x) = 
   if  (!intp(x) or x ≤ 1) 
      then 0 
      else if  (x mod 2 = 1)
         then f(x+1) 
         else 1 + f(x/2) 
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Governors
The governors of e’ ⊆ e are the branching conditions that need to 
be true for execution of e to lead to the execution of e’
Example 

define f(x) = 
   if  (!intp(x) or x ≤ 1) 
      then 0 
      else if  (x mod 2 = 1)
         then f(x+1) 
         else 1 + f(x/2) 

Governors for f(x+1): {intp(x),  x > 1,  x mod 2 = 1} 
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Governors
The governors of e’ ⊆ e are the branching conditions that need to 
be true for execution of e to lead to the execution of e’
Example 

define f(x) = 
   if  (!intp(x) or x ≤ 1) 
      then 0 
      else if  (x mod 2 = 1)
         then f(x+1) 
         else 1 + f(x/2) 

Governors for f(x+1): {intp(x),  x > 1,  x mod 2 = 1} 
Governors for f(x/2) : {intp(x),  x > 1,  x mod 2 ≠ 1} 
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Precise Calling Contexts
A precise calling context for a call e is a triple containing: 

The name of the function containing e
The governors for e in the function body 
The call, e

Example: define f(x) = 
   if  (!intp(x) or x ≤ 1) 
      then 0 
      else if  (x mod 2 = 1)
         then f(x+1) 
         else 1 + f(x/2) 

1. 〈f, {intp(x), x > 1, x mod 2 = 1}, f(x+1)〉
2. 〈f, {intp(x), x > 1, x mod 2 ≠ 1}, f(x/2)〉
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Calling Context Graphs
Example: define f(x) = 

   if  (!intp(x) or x ≤ 1) 
      then 0 
      else if  (x mod 2 = 1)
         then f(x+1) 
         else 1 + f(x/2) 

1. 〈f, {intp(x), x > 1, x mod 2 = 1}, f(x+1)〉
2. 〈f, {intp(x), x > 1, x mod 2 ≠ 1}, f(x/2)〉

1 2

Vertices are calling contexts
An edge from c1 to c2 if it is possible for execution to reach c1 and 
c2 in consecutive recursive calls 
Set of all paths is an overapproximation of recursive behavior
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Building Calling Context Graphs
The edge condition: 
∃ values that satisfy the governors of both contexts

Governors are arbitrary predicates
Building a minimal CCG is undecidable 
Theorem prover queries used to eliminate unnecessary edges 
Edge included if theorem prover cannot disprove the edge 
condition
We need more 

1 2
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Calling Context Measures
Map function formals into some well-founded structure 
Each calling context is given a set of CCMs
Example:

1. 〈f, {intp(x), x > 1, x mod 2 = 1}, f(x+1)〉
2. 〈f, {intp(x), x > 1, x mod 2 ≠ 1}, f(x/2)〉

1 2  x x Non-increasing edge ≥:

Decreasing edge >:

Neither X: 
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The Termination Condition
For every infinite path through the CCG, 
There should exist a corresponding sequence of CCMs, 
Such that for some tail of the sequence, each adjacent pair of 
CCMs is never increasing and infinitely decreasing
Solved by Size Change back-end algorithm

1 2  x x Non-increasing edge ≥:

Decreasing edge >:

Neither X: 
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define f(x) = 
   if  (!intp(x) or x ≤ 1) 
      then 0 
      else if  (x mod 2 = 1)
         then f(x+1) 
         else 1 + f(x/2) 

Merging

≥:>: X: 

1. 〈f, {intp(x), x > 1, x mod 2 = 1}, f(x+1)〉
2. 〈f, {intp(x), x > 1, x mod 2 ≠ 1}, f(x/2)〉

1 2  x x
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define f(x) = 
   if  (!intp(x) or x ≤ 1) 
      then 0 
      else if  (x mod 2 = 1)
         then f(x+1) 
         else 1 + f(x/2) 

Merging

≥:>: X: 

1. 〈f, {intp(x), x > 1, x mod 2 = 1, intp(x+1), x+1 > 1,                      

(x+1) mod 2 ≠ 1}, f((x+1)/2)〉
2. 〈f, {intp(x), x > 1, x mod 2 ≠ 1}, f(x/2)〉

          x x1 2

1 2  x x
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Full Algorithm
We presented a simplified version of our analysis 
Mutual Recursion
SCC analysis: can have more SCCs than functions 
Hierarchical Analysis
Merging on a per-node basis: different edges correspond to 
different numbers of steps
Multiple CCMs
CCMs that combine formals (e.g., x - y)
Different CCMs for different nodes

Saturation algorithm for propagating CCMs
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(mutual-recursion 
 ;; mma2 :: num, counts, s, ac --> [refs] 
 (defun mma2 (c1 c2 s ac) 
   (declare (xargs :measure (cons (len (cons c1 c2)) 
                                  (natural-sum (cons c1 c2))))) 
   (if (zp c1) 
       (mv (heap s) ac) 
     (mv-let (new-addr new-heap) 
             (mma c2 s) 
             (mma2 (- c1 1) 
                   c2 
                   (make-state (thread-table s) 
                               new-heap 
                               (class-table s)) 
                   (cons (list 'REF new-addr) ac))))) 
                             
 ;; mma :: [counts], s --> addr, new-heap 
 (defun mma (counts s) 
   (declare (xargs :measure (cons (+ 1 (len counts)) 
                                  (natural-sum counts)))) 
   (if (<= (len counts) 1) 
        
       ;; "Base case"  Handles initializing the final dimension 
       (mv (len (heap s)) 
           (bind (len (heap s)) 
                 (makearray 'T_REF 
                            (car counts) 
                            (init-array 'T_REF (car counts)) 
                            (class-table s)) 
                 (heap s))) 
     ;; "Recursive Case" 
     (mv-let (heap-prime lst-of-refs) 
             (mma2 (car counts) 
                   (cdr counts) 
                   s 
                   nil) 
             (let* ((obj (makearray 'T_REF 
                                    (car counts) 
                                    lst-of-refs 
                                    (class-table s))) 
                    (new-addr (len heap-prime)) 
                    (new-heap (bind new-addr obj heap-prime))) 
               (mv new-addr new-heap))))) 
 ) 

JVM Example
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JVM Example
(mutual-recursion 
  (defun mma2 (c1 c2 s ac) 
    (if (zp c1) 
         ... 
        (mv-let (new-addr new-heap) 
        (mma c2 s) 
        (mma2 (- c1 1) c2 e e’)))
 
  (defun mma (c s) 
    (if (<= (len c) 1) 
         ... 
        (mma2 (car c) (cdr c) s nil) 
         ...))) 

mma2 measure: (cons (len (cons c1 c2)) 
                    (natural-sum (cons c1 c2))) 
mma measure: (cons (+ 1 (len c)) (natural-sum c)) 
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Experimental Results
Implemented in ACL2s
Ran our algorithm over the ACL2 Regression Suite 

Over 100MB, 11,000 function definitions
Ignored all user hints and other explicit assistance 
Over 98% success rate

Problems Total CCG ACL2
Non-Trivial
Recursive

1762 1408 (80%) 1056 (60%)
4348 3394 (92%) 3642(84%)

Non-Trivial
Recursive

1762 1544 (87%) 1056 (67%)
4348 3394 (95%) 3642(87%)

Experiment: No Theorems

Experiment: Theorems
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Conclusions and Future Work
Quintessential undecidable software verification problem
Introduce Calling Context Graphs and Measures (CCGs and CCMs)

New, fully automatic termination analysis
General: Can be used to reason about any looping behavior

Domain: fully-featured, first-order, applicative functional PLs
Novel combination of static analysis and theorem proving
Our analysis is implemented in ACL2s
Experimental results: ACL2 regression suite

> 100MB of code > 11,000 function definitions

98% success rate [MV’06]
Use CCG analysis to generate measures
Reason about imperative programs via SSA-like transformation
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ACL2 theorem prover
Runs like a well-tuned race car in 
the hands of an expert
Unfortunately, novices don’t have 
the same experience
Disseminate: wrote a book
Not enough: undergrads

ACL2s: The ACL2 Sedan
From race car to sedan
Self-teaching
Control a machine that is thinking 
about other machines
Visualize what ACL2 is doing
Levels 
Termination: e.g., my-merge 
Used in several classes
Available for download [DMMV’07]

ACL2s
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