Verifying NoC communication architectures with ACL2

Julien Schmaltz, Amr Helmy, Laurence Pierre

Radboud University Nijmegen, The Netherlands TIMA - VDS Group, Grenoble, France

ACL2 2007, Nov. 15-16

Platform-Based Design and Networks on a Chip

- Platform-Based Design:
 - Re-use of parameterized modules (Intellectual Properties)
 - High-level of abstraction
 - Communication-centric: from buses to networks
- System Verification:
 - Proof of each component
 - Proof of their interconnection
- State-of-the-Art:
 - Model checking or theorem proving of instances of systems
 - Often at RTL and below
- The GeNoC Approach
 - A generic model for reasoning about NoCs

Meta-model

- Network topology and size
- Routing algorithms
- Switching techniques
- High-level of Abstraction
 - Abstract view of Transport (4) and Network (3) of the OSI model
- Encoded in the ACL2 theorem prover
 - Functional formalism
 - Parameterized proofs

- Result from cooperation between Catholic University of Rio Grande do Sul and LIRMM
- Public distribution
- FPGA implementation
- Protocol: credit based control flow
- Routing: deterministic minimal XY routing in a 2D-mesh
- Scheduling: wormhole switching

XY Routing and Wormhole Switching

- XY minimal deterministic routing
- Frame structure:
 - Header flit (Route Information)
 - Control flit (Number of Flits)
 - Data flits (Payload)

DATA	NOF	HD
------	-----	----

GeNoC and Hermes

Initial model

- Nodes associated with coordinates
- Several messages cannot occupy a node simultaneously
- Messages are atomic
- No explicit notion of time
- Extensions [NOCs 2007]
 - Nodes have coordinates as well as ports
 - A node can be occupied by several messages
 - Support for non-atomic messages (flits)
- Application to Hermes
 - Modeling and validation using the extensions
 - Simulation in ACL2 \neq Simulation VHDL
 - Messages blocked at origin if conflicts

```
( defun GeNoC t (M NodeSet att TrLst)
(declare (xargs :measure (SumOfAttempts att)))
(if (zp (SumOfAttempts att))
    (mv TrLst M)
  (let ((V (Routing M NodeSet))) ;; comp. all routes
    (mv-let (Scheduled Delayed newAtt)
            :: scheduled = reach dest.
            (Scheduling V att)
            (GeNoC_t (ToMissives Delayed) NodeSet newAtt
                     (append Scheduled TrLst))))))
```


-2

・ロン ・四と ・ヨン ・ヨン

- Scheduled missives reach destination in one computation
- If conflicts, blocking missives stay home, they do not stay blocked in the network
- All missives sent at the same time

- Scheduled missives reach destination in one computation
- If conflicts, blocking missives stay home, they do not stay blocked in the network
- All missives sent at the same time

- Scheduled missives reach destination in one computation
- If conflicts, blocking missives stay home, they do not stay blocked in the network
- All missives sent at the same time

∃ 990

イロン イヨン イヨン イヨン

- Simulation ACL2 = Simulation VHDL
 - Improved step-by-step simulation
 - Global network state
- Deadlock avoidance
 - Protocol and structural
 - Control flow mechanism (credits)
- Link with RTL !
 - Data link layer (2) of OSI model