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Motivation

Pipelined machine verification

Deductive reasoning (ACL2)
Applicable to bit-level designs
Prior work: Sawada&Hunt

Decision Procedures (Yices)
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Decision Procedures

Positives:

Highly automatic

Generates counterexamples
Drawbacks:

Applicable only to term-level models
Term-level models not executable
Hard to analyze counter examples

Examples: EUF, UCLID
State-of-the-art: SMT Solvers (Yices, Barcelogic)



Verification Approach

Use ACLZ2 to reduce Bit-level verification problem to a
term-level problem

Hand off term-level problem to an SMT solver (Yices)

Reason about pipeline at the term-level

Requires seamless integration of an SMT solver with
ACL2: ACL2-SMT

Result: We can verify executable machines with bit-
level interfaces with a high degree of automation and
efficiency
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Integration Strategy

Valid/Counterexample

a * = =
S |

Translation\ “\
from ACL2 to f a :ACL2 clause

SMT f :SMT formula
(trusted)

Decidable logic

Uninterpreted functions, arrays, linear integer arithmetic

ACL2 subset: ALU
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ISA Example

(defun step-isa (isa)
(let ((pc (g 'pc isa))
(rf (g 'rf isa))
(tmem (g '"inemisa)))
(let ((inst (g pc inem))
(let ((argl (select (srcl inst) rf))
(arg2 (select (src2 inst) rf)))
(let ((result (alu argl arg2)))
(let ((1sa-new (seq nil
'pc (pcadd pc)
'rf (nextsrf inst rf result)
“Tmeminen))

I sa-new))))))
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Uninterpreted Functions

(encapsulate ((alu (x y) t))
(l ocal (defun alu (x vy)
(declare (ignore Xx)

(ignore vy))

1))
(defthm al u-type

(inplies (and (integerp a)
(integerp b))
(integerp (alu a b c)))))
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Property

(defthm i sa- pc

(1 nplies \

(and
(integerp (g 'pc isa)) | Top-level type
(integer-arrayp (g 'rf isa)) hypothesis
(Integer-arrayp (g "inemisa))) |

(equal
(g 'pc (step-isa isa)) - Property
(pcadd (g "pc isa)))) J

‘hints (("CGoal”
: cl ause-processor
(snt-cl ause-processor clause nil state))))
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Function Expansion

(i1f (equal
(9 'pc
((lanbda (pc rf i nmem
((lanmbda (inst inmempc rf)
((lanbda (argl arg2 pc inst rf inmem
((lanbda (result inmemrf inst pc)
((l anbda (i sa-new) isa-new
(s 'pc (pcadd pc)
(s 'rf
(store (dest inst) result rf))
(s 'tmeminem'nil)))))
(alu argl arg2)
imemrf inst pc)) . . .]
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Environment

(nil . Bool ean vari abl es
(sntl isa pc) I nteger vari abl es
ni | :Uninterpreted predicates
((pcadd . 1) :Uninterpreted functions
(src2 . 1)
(dest . 1)
(srcl . 1)
(alu . 2))
(sntl isa inmnemsntl isarf) :integer array vari abl es
((i1sa ('pc int) . record vari abl es

('rf int-array)
(‘"tmemint-array))))
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Translation Mechanism

(1f _then_el se
(= (let int (pc sntl isa pc)
(let int-array (rf snl1l isa rf)
(let int-array (imemsntl isa_inem
(let int (inst (select inempc))
(let int (argl (select rf (srcl inst)))
(let int (arg2 (select rf (src2 inst)))
(let int (result (alu argl arg2))
(let (('pc int)
('rf int-array)
("itmemint-array))
(1sa-new (s 'pc
(pcadd pc) . . .]
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Translation Mechanism

(benchmark acl 2_smnt
cextrafuns ((snl1l isa pc Int))
cextrafuns ((sml isa rf Array))
cextrafuns ((alu Int Int Int))
:formul a
(1f _then_el se
(= (let (pc sntl isa pc)
(let (rf sntl isa rf)
(let (imemsntl isa iInmem
(let (inst (select imempc))
(let (argl (select rf (srcl inst)))
(let (arg2 (select rf (src2 inst)))
(let (result (alu argl arg2))
(let (sntl isa-new pc (pcadd pc))

(pcadd sntl isa pc))
fal se true))
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Processor Model

Register
File
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Proof Methodology

Bit-level  Annotate Pipeline
MB =——>» ME —>» MEA —> |E

H_J

MA, IA
abstract MEA, |IE

MB: Pipeline, bit-level, executable
ME: Pipeline, integer, executable
MEA: ME annotated with history information

|E: ISA version of ME
Vers! MA ——> |A

Functional Instantiation

A=——3B A refines B (proof by ACL2)
A=——3B A refines B (proof by SMT Solver)
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Verification Statistics

Proof Step Proof Time User Effort
(sec) (person-days)
MB — ME 22.40 7
ME — MEA 16.37 1
MA — IA 3.47 7
MEA — IE 1.61 10
Total 43.85 25

Effort required for term-level verification using
UCLID: 30 days

We only require about 90% of UCLID effort
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Conclusions

Developed ACL2-SMT by combining ACL2
with Yices

Allows us to relate term-level models with
RTL-level designs

Showed how to verify bit-level pipelined

machines in a highly automated and efficient
manner

Future work: Verify Plasma CPU: IP Core
used in various applications
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