Integrating ACL2 with
SMT Solvers

Panagiotis Manolios

College of Computer and Information Science
Northeastern University

Sudarshan Srinivasan

Department of Electrical & Computer Engineering
North Dakota State University

Motivation

Pipelined machine verification

Deductive reasoning (ACL2)
Applicable to bit-level designs
Prior work: Sawada&Hunt

Decision Procedures (Yices)

Decision Procedures

Positives:

Highly automatic
Generates counterexamples

Decision Procedures

Positives:

Highly automatic
Generates counterexamples

Drawbacks:

Applicable only to term-level models
Term-level models not executable
Hard to analyze counter examples

% BN X:Int

z:Bn Z:Int
y:Bn = y:Int f

Decision Procedures

Positives:

Highly automatic

Generates counterexamples
Drawbacks:

Applicable only to term-level models
Term-level models not executable
Hard to analyze counter examples

Examples: EUF, UCLID
State-of-the-art: SMT Solvers (Yices, Barcelogic)

Verification Approach

Use ACLZ2 to reduce Bit-level verification problem to a
term-level problem

Hand off term-level problem to an SMT solver (Yices)

Reason about pipeline at the term-level

Requires seamless integration of an SMT solver with
ACL2: ACL2-SMT

Result: We can verify executable machines with bit-
level interfaces with a high degree of automation and
efficiency

Outline

ACL2-SMT Integration Strategy
Translation Mechanism

Application: Pipelined Machine
Verification

Conclusions and Future Work

Outline

ACL2-SMT Integration Strategy
Translation Mechanism

Application: Pipelined Machine
Verification

Conclusions and Future Work

Integration Strategy

Ca>

a :ACL2clause

Integration Strategy

2

Translation\ “\
from ACL2 to f a :ACL2 clause

SMT f : SMT formula
(trusted)

10

Integration Strategy

Valid/Counterexample

a * = = q
S |

Translation\ “\
from ACL2 to f a :ACL2 clause

SMT f :SMT formula
(trusted)

11

Integration Strategy

Valid/Counterexample

a * = =
S |

Translation\ “\
from ACL2 to f a :ACL2 clause

SMT f :SMT formula
(trusted)

Decidable logic

Uninterpreted functions, arrays, linear integer arithmetic

ACL2 subset: ALU

12

Outline

ACL2-SMT Integration Strategy
Translation Mechanism

Application: Pipelined Machine
Verification

Conclusions and Future Work

13

ISA Example

(defun step-isa (isa)
(let ((pc (g 'pc isa))
(rf (g 'rf isa))
(tmem (g '"inemisa)))
(let ((inst (g pc inem))
(let ((argl (select (srcl inst) rf))
(arg2 (select (src2 inst) rf)))
(let ((result (alu argl arg2)))
(let ((1sa-new (seq nil
'pc (pcadd pc)
'rf (nextsrf inst rf result)
“Tmeminen))

I sa-new))))))

14

Uninterpreted Functions

(encapsulate ((alu (x y) t))
(l ocal (defun alu (x vy)
(declare (ignore Xx)

(ignore vy))

1))
(defthm al u-type

(inplies (and (integerp a)
(integerp b))
(integerp (alu a b c)))))

15

Property

(defthm i sa- pc

(1 nplies \

(and
(integerp (g 'pc isa)) | Top-level type
(integer-arrayp (g 'rf isa)) hypothesis
(Integer-arrayp (g "inemisa))) |

(equal
(g 'pc (step-isa isa)) - Property
(pcadd (g "pc isa)))) J

‘hints (("CGoal”
: cl ause-processor
(snt-cl ause-processor clause nil state))))

16

Function Expansion

(i1f (equal
(9 'pc
((lanbda (pc rf i nmem
((lanmbda (inst inmempc rf)
((lanbda (argl arg2 pc inst rf inmem
((lanbda (result inmemrf inst pc)
((l anbda (i sa-new) isa-new
(s 'pc (pcadd pc)
(s 'rf
(store (dest inst) result rf))
(s 'tmeminem'nil)))))
(alu argl arg2)
imemrf inst pc)) . . .]

17

Environment

(nil . Bool ean vari abl es
(sntl isa pc) I nteger vari abl es
ni | :Uninterpreted predicates
((pcadd . 1) :Uninterpreted functions
(src2 . 1)
(dest . 1)
(srcl . 1)
(alu . 2))
(sntl isa inmnemsntl isarf) :integer array vari abl es
((i1sa ('pc int) . record vari abl es

('rf int-array)
(‘"tmemint-array))))

18

Translation Mechanism

(1f _then_el se
(= (let int (pc sntl isa pc)
(let int-array (rf snl1l isa rf)
(let int-array (imemsntl isa_inem
(let int (inst (select inempc))
(let int (argl (select rf (srcl inst)))
(let int (arg2 (select rf (src2 inst)))
(let int (result (alu argl arg2))
(let (('pc int)
('rf int-array)
("itmemint-array))
(1sa-new (s 'pc
(pcadd pc) . . .]

19

Translation Mechanism

(benchmark acl 2_smnt
cextrafuns ((snl1l isa pc Int))
cextrafuns ((sml isa rf Array))
cextrafuns ((alu Int Int Int))
:formul a
(1f _then_el se
(= (let (pc sntl isa pc)
(let (rf sntl isa rf)
(let (imemsntl isa iInmem
(let (inst (select imempc))
(let (argl (select rf (srcl inst)))
(let (arg2 (select rf (src2 inst)))
(let (result (alu argl arg2))
(let (sntl isa-new pc (pcadd pc))

(pcadd sntl isa pc))
fal se true))

20

Outline

ACL2-SMT Integration Strategy
Translation Mechanism

Application: Pipelined Machine
Verification

Conclusions and Future Work

21

Processor Model

Register
File
I =
PC 4 Decoo!lng Misprediction
Logic
BP > .
Stalling
— Logic
Y INVALIDATE v
Instruction Data
Memory Memory
IF1 IF2 ID EX M1 M2 WB

22

Proof Methodology

Bit-level Annotate Pipeline
MB =——>» ME —>» MEA —> |E

H_J

MA, IA
abstract MEA, |IE

MB: Pipeline, bit-level, executable
ME: Pipeline, integer, executable
MEA: ME annotated with history information

|E: ISA version of ME
Vers! MA ——> |A

Functional Instantiation

A=——3B A refines B (proof by ACL2)
A=——3B A refines B (proof by SMT Solver)

23

Verification Statistics

Proof Step Proof Time User Effort
(sec) (person-days)
MB — ME 22.40 7
ME — MEA 16.37 1
MA — IA 3.47 7
MEA — IE 1.61 10
Total 43.85 25

Effort required for term-level verification using
UCLID: 30 days

We only require about 90% of UCLID effort

24

Outline

ACL2-SMT Integration Strategy
Translation Mechanism

Application: Pipelined Machine
Verification

Conclusions and Future Work

25

Conclusions

Developed ACL2-SMT by combining ACL2
with Yices

Allows us to relate term-level models with
RTL-level designs

Showed how to verify bit-level pipelined

machines in a highly automated and efficient
manner

Future work: Verify Plasma CPU: IP Core
used in various applications

26

Integrating ACL2 with
SMT Solvers

Panagiotis Manolios

College of Computer and Information Science
Northeastern University

Sudarshan Srinivasan

Department of Electrical & Computer Engineering
North Dakota State University

27

	Integrating ACL2 with �SMT Solvers
	Motivation
	Decision Procedures
	Decision Procedures
	Decision Procedures
	Verification Approach
	Outline
	Outline
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Outline
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Outline
	Slide Number 22
	Proof Methodology
	Verification Statistics
	Outline
	Conclusions
	Integrating ACL2 with �SMT Solvers

