Red-Black Trees for
DrACula

Ruben Gamboa
University of Wyoming

DrACula (aka“Dr.ACL2") is an
environment for ACL2 based on DrScheme

It has been used in freshman-senior courses
that use ACL2

It supports a subset of the ACL2 “language”

Rex Page asked me to update the Red-Black
Tree code for DrACula

Red-Black (RB) Trees are memory
(“record”) data structures

Implemented as binary search trees with
some extra conditions

Operations use the standard binary search
tree ops, then perform some “rotations” to
re-balance the tree

Step 0: Get DrACula working...

Step |: port my previous RB tree code
Initially this was a major task

Not all ACL2 functionality supported in
DrACula

What'’s Missing (Then)?

® On the first day....
® (defstructure ...)
o (let..) & (let*..)
® (defmacro ...)

® (encapsulate nil ...)

® As | worked around the missing

functionality, DrACula was filling in the
holes

® Almost complete support for defstructure

® |et & let* are back
® defmacro -- not so much

® encapsulate -- still MIA

The Original Code

® Eventually, the original code was accepted by
DrACula with what proved to be minor
modifications

® The RB tree code supports insertions and
lookups

® Deletes are implemented by inserting a NIL
for a given key

® This works for correctness, but leaves the
tree with more nodes than necessary

® Step 2: Support native node deletion

® Jo delete from an RB tree

® first perform ordinary binary search tree
deletion

® then rotate around the deleted tree to
rebalance the tree

® Deleting a node is complicated by the fact
that the node could be an interior node

® Note: insertions always happen at leaves

® TJo delete an interior node, we swap it with
the largest (smallest) node in the left (right)
subtree

® Then perform a rotation

® The deletion code is not fully verified yet

® Rebalancing the node results in a large
number of program-level cases, each of

which splits into thousands (of thousands) of
proof-level cases

® DrACula is an effective platform supporting
large/complex proof efforts

® (encapsulate nil ...) would be nice!

® Purely Functional Data Structures (c.f. Chris
Okasaki’s dissertation) are a great source of
problems for verification

