
Red-Black Trees for
DrACuLa
Ruben Gamboa

University of Wyoming

The Challenge
• DrACuLa (aka “Dr. ACL2”) is an

environment for ACL2 based on DrScheme

• It has been used in freshman-senior courses
that use ACL2

• It supports a subset of the ACL2 “language”

• Rex Page asked me to update the Red-Black
Tree code for DrACuLa

Red-Black Trees
• Red-Black (RB) Trees are memory

(“record”) data structures

• Implemented as binary search trees with
some extra conditions

• Operations use the standard binary search
tree ops, then perform some “rotations” to
re-balance the tree

Porting to DrACuLa

• Step 0: Get DrACuLa working...

• Step 1: port my previous RB tree code

• Initially this was a major task

• Not all ACL2 functionality supported in
DrACuLa

What’s Missing (Then)?

• On the first day....

• (defstructure ...)

• (let ...) & (let* ...)

• (defmacro ...)

• (encapsulate nil ...)

What’s Missing (Now)?
• As I worked around the missing

functionality, DrACuLa was filling in the
holes

• Almost complete support for defstructure

• let & let* are back

• defmacro -- not so much

• encapsulate -- still MIA

The Original Code

• Eventually, the original code was accepted by
DrACuLa with what proved to be minor
modifications

Adding Functionality

• The RB tree code supports insertions and
lookups

• Deletes are implemented by inserting a NIL
for a given key

• This works for correctness, but leaves the
tree with more nodes than necessary

Deleting from RB Trees

• Step 2: Support native node deletion

• To delete from an RB tree

• first perform ordinary binary search tree
deletion

• then rotate around the deleted tree to
rebalance the tree

Deleting the Node
• Deleting a node is complicated by the fact

that the node could be an interior node

• Note: insertions always happen at leaves

• To delete an interior node, we swap it with
the largest (smallest) node in the left (right)
subtree

• Then perform a rotation

Work in Progress

• The deletion code is not fully verified yet

• Rebalancing the node results in a large
number of program-level cases, each of
which splits into thousands (of thousands) of
proof-level cases

Conclusion

• DrACuLa is an effective platform supporting
large/complex proof efforts

• (encapsulate nil ...) would be nice!

• Purely Functional Data Structures (c.f. Chris
Okasaki’s dissertation) are a great source of
problems for verification

