Formal Verification of
LabVIEW Programs
with ACL2
(Preliminary Work)

Matt Kaufmann

Jacob Kornerup

Grant Passmore
Mark Reitblatt

BRIEF HISTORY

» Jeff Kodosky started playing around in 2004 with the idea
of verifying a LabVIEW program.

» Warren Hunt and J Moore met on occasion with Jeff and
Jacob Kornerup over several years, culminating with NI
engaging Grant as an intern in 2005.

» Grant implemented a first approach and used it to prove
Gauss’s theorem that the sum of the integers from 1 to n is
n*(n+1)/2.

» This summer: Alternate approach models LabVIEW
programs, including loop structures, directly as ACL2
functions.

» Grant left for Edinburgh late this summer to start his Ph.D.
work, and transferred his infrastructure support to Mark
Reitblatt, now an NI intern from UT CS.

ACL2 REPRESENTATION, p. 1

» Every module, primitive or not, takes and returns a single
alist that we call a record, by calling S*, “Set".

» Every wire returns a LabVIEW data value, obtained by
applying G, “get”, to a record.

ACL2 REPRESENTATION, p. 2

I e n
I I
| | ---NO | ----NL |
X =-]-- X0 --] | | |
| | +|-- W --| 1+ |-- Z0 --|-- z
y --l-- YO -] | | |
| |- |- |
| o |
(DEFUN X0 (IN) (G :INO IN))
(DEFUN YO (IN) (G :INL IN))
(DEFUN NO (IN) (S* :QUT (+ (X0 IN (YO IN)))
(DEFUN WO (IN) (G :QUJT (N0 IN)))
(DEFUN N1 (IN) (S+ :QUT (1+ (W IN))))
(DEFUN Z0 (IN) (G :QUT (N1 IN)))

ACL2 REPRESENTATION, p. 3

- 70 --|--

(defun n$init (in) (s* :INO (x in) :INL (y in)))
(defun n (in) (s* :QUT (Z0 (n$init in))))
(defun z (in) (g :QUT (nin)))

(thm(equal (z in) (+ 1 (xin) (yin))))

MAIN VERIFICATION IDEA

» An assertion is simply a Boolean-valued wire that can be
checked at runtime.

» Goal: prove that each assertion is true

» Focus to date: For-loops and while-loops

FOR-LOOP VERIFICATION IDEA

» We model for-loops in a straightforward way as recursive
functions.

» We introduce a generic property and a generic for-loop,
and we prove a generic theorem about them.

» For each actual for-loop, we employ functional instantiation
to avoid the use of induction.

GENERIC FOR-LOOP HIGHLIGHTS

(encapsul ate ; signature and locals onmitted
(defthm prop-generic-step
(inplies (and (natp n) (natp (g :lc in))
(< (g :lcin) n)
(prop-generic in))
(prop-generic (s :lc (1+ (g :lc in))
(step-generic in))))))

(defun | oop-generic (n in) ; neasure omtted
(cond ((or (not (natp n))
(not (natp (g :lcin)))
(>= (g :lc in) n))
i n)
(t (loop-generic n (s :lc (1+ (g :lc in))
(step-generic in))))))

(deft hm | oop-generic-thm
(inplies (and (natp n) (natp (g :lc in))
(prop-generic in))
(prop-generic (loop-generic nin))))

FOR-LOOP PROPERTY IS PRESERVED:

; User proves this (automatically if lucky):
(defthmdl _N_4$prop{_N_7$st ep}
(inmplies (and (natp (g :lc in))
(< (g :lcin) n
(_N_4%$prop in))
(_N_4%prop (s :lc (1+ (g :1c in))
(_N_7$step in)))))

(defthm _N 4$prop{_N_7}
(inplies (and (natp n) (natp (g :lc in))
(_N_4%$prop in))
(_N_4%$prop (_N_7$loop n in)))
chints (("CGoal"
:by (:functional-instance
| oop-generic-thm
(step-generic _N 7$step)
(prop-generic _N _43$prop)
(1 oop-generic _N 7%l oop))
cin-theory (union-theories '(_N 4%prop{_N 7$step})
(theory ’'minimal -theory)
sexpand ((| _N_7$LOOP| n in))))
:rul e-classes nil)

10

ORGANIZATION

(i n-package "ACL2")

; Translation to ACL2:
(i ncl ude-book "gauss2-fns")

; User-editable -- note use of LOCAL!
(local (include-book "gauss2-work"))

(set-enforce-redundancy t)
(defthm _N _330$8I NV ; desired result

(inmplies (natp (g : _N10 [FOO in))
(g :inv (_N_330in))))

11

CURRENT STATUS

» For-loop example and while-loop example completed, in an
automatable, scalable style.

» Automatic translation is implemented for some data types.

12

TO DO:

>

vV vVvVvyVvVVyvyy

More data types (lists) and more faithful translation for
bounded integers

Limited 1/0 and global variables (just starting but optimistic)
Better interface support, e.g.:

» Wizards to help guide proofs, e.g. suggesting our
induction-avoiding approach for assertions about for-loops.

» Assertion management, e.g., automatic removal of proved
assertion wires

» Further investigation into while loops (perhaps def pun
and/or assistance for termination)

» Suitable graphical support to help with conceptualization

More examples! (Mark’s senior thesis....)

Real-time verification (for LabVIEW on FPGAS)
Co-simulation to check translation (hooray for mbe!)
Reusability (“sub-VIs”)

Decision procedures (as clause-processors)

Goal: NI Labs (htt p: // ww. ni . com | abs/)

