
Formal Verification of
LabVIEW Programs

with ACL2
(Preliminary Work)

Matt Kaufmann
Jacob Kornerup
Grant Passmore
Mark Reitblatt

1

BRIEF HISTORY

◮ Jeff Kodosky started playing around in 2004 with the idea
of verifying a LabVIEW program.

◮ Warren Hunt and J Moore met on occasion with Jeff and
Jacob Kornerup over several years, culminating with NI
engaging Grant as an intern in 2005.

◮ Grant implemented a first approach and used it to prove
Gauss’s theorem that the sum of the integers from 1 to n is
n*(n+1)/2.

◮ This summer: Alternate approach models LabVIEW
programs, including loop structures, directly as ACL2
functions.

◮ Grant left for Edinburgh late this summer to start his Ph.D.
work, and transferred his infrastructure support to Mark
Reitblatt, now an NI intern from UT CS.

2

ACL2 REPRESENTATION, p. 1

◮ Every module, primitive or not, takes and returns a single
alist that we call a record, by calling S*, “Set”.

◮ Every wire returns a LabVIEW data value, obtained by
applying G, “get”, to a record.

|----------------------------------- n
| |
| |---N0 |----N1 |

x --|-- X0 --| | | | |
| | + |-- W0 --| 1+ |-- Z0 --|-- z

y --|-- Y0 --| | | | |
| |---| |----| |
|-----------------------------------|

3

ACL2 REPRESENTATION, p. 2

|----------------------------------- n
| |
| |---N0 |----N1 |

x --|-- X0 --| | | | |
| | + |-- W0 --| 1+ |-- Z0 --|-- z

y --|-- Y0 --| | | | |
| |---| |----| |
|-----------------------------------|

(DEFUN X0 (IN) (G :IN0 IN))
(DEFUN Y0 (IN) (G :IN1 IN))
(DEFUN N0 (IN) (S* :OUT (+ (X0 IN) (Y0 IN))))
(DEFUN W0 (IN) (G :OUT (N0 IN)))
(DEFUN N1 (IN) (S* :OUT (1+ (W0 IN))))
(DEFUN Z0 (IN) (G :OUT (N1 IN)))

4

ACL2 REPRESENTATION, p. 3

|----------------------------------- n
| |
| |

x --| |
| -- Z0 --|-- z

y --| |

(defun n$init (in) (s* :IN0 (x in) :IN1 (y in)))
(defun n (in) (s* :OUT (Z0 (n$init in))))
(defun z (in) (g :OUT (n in)))
(thm (equal (z in) (+ 1 (x in) (y in))))

5

MAIN VERIFICATION IDEA

◮ An assertion is simply a Boolean-valued wire that can be
checked at runtime.

◮ Goal: prove that each assertion is true

◮ Focus to date: For-loops and while-loops

6

FOR-LOOP VERIFICATION IDEA

◮ We model for-loops in a straightforward way as recursive
functions.

◮ We introduce a generic property and a generic for-loop,
and we prove a generic theorem about them.

◮ For each actual for-loop, we employ functional instantiation
to avoid the use of induction.

7

GENERIC FOR-LOOP HIGHLIGHTS
(encapsulate ; signature and locals omitted
(defthm prop-generic-step

(implies (and (natp n) (natp (g :lc in))
(< (g :lc in) n)
(prop-generic in))

(prop-generic (s :lc (1+ (g :lc in))
(step-generic in))))))

(defun loop-generic (n in) ; measure omitted
(cond ((or (not (natp n))

(not (natp (g :lc in)))
(>= (g :lc in) n))

in)
(t (loop-generic n (s :lc (1+ (g :lc in))

(step-generic in))))))

(defthm loop-generic-thm
(implies (and (natp n) (natp (g :lc in))

(prop-generic in))
(prop-generic (loop-generic n in))))

8

FOR-LOOP PROPERTY IS PRESERVED:
; User proves this (automatically if lucky):
(defthmdl _N_4$prop{_N_7$step}

(implies (and (natp (g :lc in))
(< (g :lc in) n)
(_N_4$prop in))

(_N_4$prop (s :lc (1+ (g :lc in))
(_N_7$step in)))))

(defthml _N_4$prop{_N_7}
(implies (and (natp n) (natp (g :lc in))

(_N_4$prop in))
(_N_4$prop (_N_7$loop n in)))

:hints (("Goal"
:by (:functional-instance

loop-generic-thm
(step-generic _N_7$step)
(prop-generic _N_4$prop)
(loop-generic _N_7$loop))

:in-theory (union-theories ’(_N_4$prop{_N_7$step})
(theory ’minimal-theory))

:expand ((|_N_7$LOOP| n in))))
:rule-classes nil)

9

ORGANIZATION

(in-package "ACL2")

; Translation to ACL2:
(include-book "gauss2-fns")

; User-editable -- note use of LOCAL!!
(local (include-book "gauss2-work"))

(set-enforce-redundancy t)

(defthm _N_330$INV ; desired result
(implies (natp (g :_N_10_[FOO] in))

(g :inv (_N_330 in))))

10

CURRENT STATUS

◮ For-loop example and while-loop example completed, in an
automatable, scalable style.

◮ Automatic translation is implemented for some data types.

11

TO DO:
◮ More data types (lists) and more faithful translation for

bounded integers
◮ Limited I/O and global variables (just starting but optimistic)
◮ Better interface support, e.g.:

◮ Wizards to help guide proofs, e.g. suggesting our
induction-avoiding approach for assertions about for-loops.

◮ Assertion management, e.g., automatic removal of proved
assertion wires

◮ Further investigation into while loops (perhaps defpun
and/or assistance for termination)

◮ Suitable graphical support to help with conceptualization

◮ More examples! (Mark’s senior thesis....)
◮ Real-time verification (for LabVIEW on FPGAs)
◮ Co-simulation to check translation (hooray for mbe!)
◮ Reusability (“sub-VIs”)
◮ Decision procedures (as clause-processors)
◮ Goal: NI Labs (http://www.ni.com/labs/)

12

