
A Generalized Solution for the While A Generalized Solution for the While
ChallengeChallenge

Sandip Ray
Department of Computer Sciences

University of Texas at Austin
sandip@cs.utexas.edu

http://www.cs.utexas.edu/users/sandip
/

Rump Session Presentation

ACL2 Workshop 2007

mailto:sandip@cs.utexas.edu

Bill Young’s “While Challenge”Bill Young’s “While Challenge”
Introduce the following equation in ACL2

(equal (run stmt st)
(case (op stmt)

(skip (run-skip stmt st))
(assign (run-assignment stmt st))
(if (if (zerop (evaluate (arg1 stmt) st)))

(run (arg3 stmt) st)
(run (arg2 stmt) st)))

(while (if (zerop (evaluate (arg1 stmt) st))
st

(run stmt (run (arg2 stmt) st)))
(sequence (run (arg2 stmt) (run (arg1 stmt) st)))
(otherwise st)))

Yesterday’s talk: Challenge answered by John Cowles and Dave Greve

Additionally requires that run is strict in (btm)

KaufmannKaufmann’’s s ““Generalized WhileGeneralized While”” ChallengeChallenge

Implement a macro for defining operational semantics
of languages with unbounded while loops

Show that a more general reflexive equation can be
introduced with ACL2

(equal (run x st)
(cond ((equal st (btm)) (btm))

((test1 x st) (finish x st))
((test2 x st) (run (dst1 x st) (stp x st)))
(t (let ((st2 (run (dst1 x st) (stp x st))))

(run (dst2 x st st2) st2)))))
�

where
(implies (not (equal st (btm)))

(not (equal (finish x st) (btm))))

This talk reports progress in answering Kaufmann’s challenges.

Our ResultsOur Results
Implement a macro for defining operational semantics of
languages with unbounded while loops

Developed a macro definterpreter to introduce such
semantics

Show that a more general reflexive equation can be
introduced with ACL2

Introduced the suggested equation about run given
encapsulated functions test1, test2, finish, btm, etc.

Basic ApproachBasic Approach
First define a “clocked version” of run.

(defun run-clk (x st clk)
(cond ((zp clk) (btm))

((equal st (btm)) (btm))
((test1 x st) (finish x st))
((test2 x st) (run-clk (dst1 x st) (stp x st) (1- clk)))
(t (let ((st2 (run-clk (dst1 x st) (stp x st) (1- clk))))

(if (equal st2 (btm)) (btm)
(run-clk (dst2 x st st2) st2 (1- clk)))))))

Then eliminate clk using quantification.

(defun-sk exists-enough (x st)
(exists clk (and (natp clk)

(not (equal (run-clk x st clk) (btm))))))

(defun run (x st)
(if (exists-enough x st)

(run-clk x st (exists-enough-witness x st))
(btm)))

Essentially a formalization of Cowles’ proof in an abstract setting.

Macro for Language InterpreterMacro for Language Interpreter
Young’s equation can be introduced by appropriate functional
instantiation of test1, test2, dst1, stp, etc.

Cowles [private communication] showed the functional instance
necessary.

My macro definterpreter automates the functional instantiation
and can introduce languages with unbounded while loops.

Provides some executability support via mbe construct.

A Sneak Peek at MacroA Sneak Peek at Macro
(definterpreter run stmt mem

:op-field (op stmt)
:bottom nil
:executable t
:verify-guards nil
:vanilla-interpreter (((:name skip)

(:interpreter mem))
((:name assign)
(:interpreter (run-assignment stmt

mem))))
:sequence ((:name sequence)

(:arg1 (arg1 stmt))
(:arg2 (arg2 stmt)))

:conditional ((:name if)
(:test (zerop (eval-expr (arg1 stmt)

mem)))
(:tbr (arg3 stmt))
(:fbr (arg2 stmt)))

:while ((:name while)
(:test (zerop (eval-expr (arg1 stmt) mem)))
(:body (arg2 stmt))))))

Coming UpComing Up
Cowles showed that a number of reflexive equations
can be introduced by functional instantiation of the
generic theorem.

Stay tuned for the next talk

We are developing a macro defreflexive to automate
introduction of such equations.

A very preliminary implementation is available.

Details and RequestDetails and Request
For details please see
books/workshops/2007/cowles-et-al/support/ray/

I will appreciate any comments, and in
particular interface suggestions for the
macros.

	A Generalized Solution for the While Challenge
	Bill Young’s “While Challenge”
	Kaufmann’s “Generalized While” Challenge
	Our Results
	Basic Approach
	Macro for Language Interpreter
	A Sneak Peek at Macro
	Coming Up
	Details and Request

