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Type inference
Hindley algorithm in functional programming

Type inference: the ability to infer types of functions

It is an important feature present in some statically typed
functional programming languages (Haskell, ML,. . . )

This leaves the programmer free to omit type annotations

While maintaining type safety

Hindley (a.k.a Hindley-Milner) algorithm is in the basis of
type inference in most of modern functional programming
languages
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Goals
Verification in ACL2

Goal (and ongoing work):
Formal verification of Hindley algorithm in ACL2
For the moment, the monomorphic case (polymorphic let
excluded)

By-product goal: analyze proof reusing of a previously
done formalization of Robinson’s unification algorithm
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λ-calculus
Terms in λ-calculus

The terms of the simply typed λ-calculus

Variables x , y . . .

Applications [M N], where M and N are terms

Abstractions λx .M, where M is a term and x is a variable
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λ-calculus
Type system

The type system consists of the following type expressions

Type variables α, β, γ . . .

“arrow”-types t1 → t2 (t1 and t2 type expressions)

Type expression examples:
α α→ β (α→ β)→ (α→ γ)
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λ-calculus
Type assignment

Problem: to assign a type expression τ to a λ-term M
(from a Γ basis of type assumtions)

Notation: Γ ⊢ M : τ

The following type assignement rules describe the
relation between terms and types:

Γ ∪ {x : τ} ⊢ x : τ

Γ ⊢ M : σ → β

Γ ⊢ N : σ
⇒ Γ ⊢ [M N] : β

Γ ∪ {x : σ} ⊢ M : τ ⇒ Γ ⊢ λx .M : σ → τ

For example:

Main type Valid type
{x : σ} =⇒ ⊢ λx .x : σ → σ (β → γ)→ (β → γ)
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Hindley Algorithm

Purpose:

To find the most general valid type for a given λ-term

Input:

M0 (a λ-term)

Output:

FAIL if M0 is not typeable, else τ0 (the main type of M0)
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Hindley Algorithm

E = ∅
G = {∅ ⊢ M0 : α0}
While G 6= ∅

g ← Γ ⊢ M : τ ∈ G
case g of:

-Γ ⊢ x : τ ⇒ E = E ∪ {τ ≃ Γ(x)}
-Γ ⊢ [M1 M2] : τ ⇒ G = G ∪ {Γ ⊢ M1 : α→ τ,Γ ⊢ M2 : α}
-Γ ⊢ λxM̄ : τ ⇒E = E ∪ {τ ≃ α1 → α2}

G = G ∪ {Γ ∨ {x : α1} ⊢ M̄ : α2}
end while
Φ← unify(E)
if Φ ≡FAILURE, return FAILURE
else, return α0Φ

D. Sotés, L. Lambán, J. Rubio



Introduction
Hindley type inference algorithm

Formalization in ACL2
Reusing proofs

Hindley Algorithm
Example

M0 = λf .λx .[f [f x ]]

G E
∅ ⊢ λf .λx .[f [f x ]] : α0

{f : α1} ⊢ λx .[f [f x ]] : α2 α0 ≃ (α1 → α2)
{f : α1, x : α3} ⊢ [f [f x ]] : α4 α2 ≃ (α3 → α4)
{f : α1, x : α3} ⊢ f : α5 → α4 (α5 → α4) ≃ α1

{f : α1, x : α3} ⊢ [f x ] : α5 (α5 → α6) ≃ α1

{f : α1, x : α3} ⊢ f : α5 → α6 α6 ≃ α3

{f : α1, x : α3} ⊢ x : α5

Unify(E) = Φ = {α0 ; ((α6 → α6)→ (α6 → α6)), α2 ;

(α6 → α6), α1 ; (α6 → α6), α4 ; α6, α5 ; α6, α3 ; α6}

•λf .λx .[f [f x ]] : (α6 → α6)→ (α6 → α6)
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Main properties of Hindley algorithm

Algorithm terminates on every input

If it does not fail, the returned type is valid for the input

In that case, the returned type is the most general valid
type for the input

If it fails, the input is not typeable
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Derivations
The main intended theorems

Derivations
Type Checking vs type inference

The relation Γ ⊢ M : α has to be formalized in ACL2 by
expliciting the derivation by means of the corresponding
applications of type inference rules (represented as a tree)
Example of a derivation witnessing that
⊢ λf .λx .[f x ] : (α→ β)→ (α→ β):

λ : (α→ β)→ (α→ β)

λ : α→ β

[ ] : β

x : αf : α→ β

x : α

f : α→ β
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Derivations
Derivation checking and inference in ACL2

Type derivations are represented in ACL2 as lists encoding
its tree structure

It is easy to define an ACL2 function for checking if a
derivation is coherent with the type inference rules

Function derivation-check

Hindley algorithm can be reprogrammed in ACL2, in such
a way that it builds not only a type, but a type derivation

Function derivation-inference
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Derivations
The main intended theorems

Soundness
Valid type

If it does not fail, The type returned by the algorithm is a correct
type for the input:

(defthm inference-soundness
(implies

(and (lambda-termp x)
(not (equal (derivation-inference x) ’FAIL)))

(derivation-check (derivation-inference x))))
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Derivations
The main intended theorems

Soundness
Main type

The type returned by the algorithm is more general than any
other correct type:

(defthm inference-principal-derivation
(implies (and (lambda-termp x)

(derivation-check d)
(eq-l-terms x (l-term-extract d)))

(derivation-subs d (derivation-inference x))))

D. Sotés, L. Lambán, J. Rubio



Introduction
Hindley type inference algorithm

Formalization in ACL2
Reusing proofs

Derivations
The main intended theorems

Completeness

If the algorithm returns failure, then there is no valid type for the
input term

(defthm inference-completeness
(implies (and (lambda-termp x)

(equal (derivation-inference x) ’FAIL)
(eq-l-terms x (l-term-extract d)))

(not (derivation-check d))))

Status of the work
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Unification algorithm and proof reusing

The final part of Hindley algorithm relies on Robinson
unification algorithm

Their properties are essential for the verification of Hindley
algorithm

This algorithm has already been verified in ACL2
It is a good example of proof reusing

How to test the degree of reusability of a book?
If used as a “black box”, how the structure of the book used
(local and non-local events) influences the proof effort of an
external user? And its generality?
Is this a good measure for “book reusability”?
Are there good general design principles for this?
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