
 ACL2 Workshop, 11/2007

 Erik Reeber: UT CS Dept.

Using ACL2’s Verified Clause Processor Mechanism to Sort
Commutative and Associative Operations

Erik Reeber
CS Department

1 University Station, M/S C0500
The University of Texas
Austin, TX 78712-0233

E-mail: reeber@cs.utexas.edu

 ACL2 Workshop, 11/2007

 Erik Reeber: UT CS Dept.

Verified Clause Processors

• New form of meta-reasoning available in ACL2 v3.2 and later.

• Clause processors reduce an ACL2 proof goal into a list of new goals
that together imply the original.

• Matt Kaufmann, J Strother Moore, Sandip Ray, and Erik Reeber. Inte-
grating External Deduction Tools with ACL2. To Appear in the Journal
of Applied Logic, Special Issue on Empirically Successful Computerized
Reasoning (ESCoR).

• Similar to meta-rules, with the following advantages:

− Can generalize

− Can implement techniques that are not inside-out

1

 ACL2 Workshop, 11/2007

 Erik Reeber: UT CS Dept.

Example problem: Sorting

• Proofs sometimes require sorting arguments to operations that are com-
mutative and associative.

− Some typical sorting theorems for bit-vector addition:

(DEFTHM BV+COMMUTE

(IMPLIES

(AND (SYNTAXP (NOT (BV+ORD X Y)))

(BVP X) (BVP Y))

(EQUAL (BV+BIN X Y) (BV+BIN Y X)))

:RULE-CLASSES ((:REWRITE :LOOP-STOPPER NIL)))

(DEFTHM BV+REORDER

(IMPLIES

(AND (SYNTAXP (NOT (BV+ORD X Y)))

(BVP X) (BVP Y) (BVP Z))

(EQUAL (BV+BIN X (BV+BIN Y Z))

(BV+BIN Y (BV+BIN X Z))))

:RULE-CLASSES ((:REWRITE :LOOP-STOPPER NIL)))

− may be too inefficient for large expressions.

2

 ACL2 Workshop, 11/2007

 Erik Reeber: UT CS Dept.

Sorting Clause Processor
• BV+ may also be sorted using a verified clause processor.

• Clause processor implemented as BV+SORT function satisfying:

(DEFTHM CORRECTNESS-OF-BV+SORT

(IMPLIES (AND (PSEUDO-TERM-LISTP CLAUSE)

(ALISTP ENV)

(EVL-BV+ (CONJOIN-CLAUSES (BV+SORT CLAUSE)) ENV))

(EVL-BV+ (DISJOIN CLAUSE) ENV))

:RULE-CLASSES :CLAUSE-PROCESSOR)

• where:

− EVL-BV+ is an ACL2 evaluator for IF, BV+BIN, and BVP.

− PSEUDO-TERM-LISTP recognizes well-formed ACL2 clauses.

− DISJOIN creates the disjunction represented by an ACL2 clause.

− CONJOIN-CLAUSES creates the conjunction of disjunctions represented
by a list of ACL2 clauses.

3

 ACL2 Workshop, 11/2007

 Erik Reeber: UT CS Dept.

Example Usage

• The sorting clause processor is accessed through the hint mechanism:

(DEFTHM FIRST-TEST

(IMPLIES

(AND (BVP X0) (BVP X1) (BVP X2) (BVP X3))

(EQUAL (F (BV+BIN X3 (BV+BIN X2 (BV+BIN X1 X0))))

(F (BV+BIN X0 (BV+BIN X1 (BV+BIN X2 X3))))))

:HINTS (("GOAL"

:CLAUSE-PROCESSOR (:FUNCTION BV+SORT))))

• In this case, 5 subgoals are produced:

Subgoal 5

(IMPLIES (AND (BVP X0) (BVP X1) (BVP X2) (BVP X3))

(EQUAL (F (BV+BIN X0 (BV+BIN X1 (BV+BIN X2 X3))))

(F (BV+BIN X0 (BV+BIN X1 (BV+BIN X2 X3)))))).

Subgoal 4

(IMPLIES (NOT (BVP X0))

(IMPLIES (AND (BVP X0) (BVP X1) (BVP X2) (BVP X3))

(EQUAL (F (BV+BIN X3 (BV+BIN X2 (BV+BIN X1 X0))))

(F (BV+BIN X0 (BV+BIN X1 (BV+BIN X2 X3))))))).

...

4

 ACL2 Workshop, 11/2007

 Erik Reeber: UT CS Dept.

Performance Comparison

• Extended example problem to different numbers of bit-vector arguments.

• Without the sorting clause processor:

− 7.12, 127.60, and 1862.55 seconds to verify property with 100, 200,
and 400 arguments respectively.

• With sorting clause processor:

− 0.05, 0.30, and 1.51 seconds to verify property with 100, 200, and
400 arguments respectively.

− 19.08 and 139.47 seconds to verify property with 1000 and 2000
arguments (only 0.04 and 0.08 seconds during SCP).

• Journal paper has results without BVP hypotheses:

− 10.55 and 58.15 seconds to prove the 500 and 1000 argument theo-
rem without the clause processor.

− 0.02 and 0.05 seconds to prove the 500 and 1000 argument theorem
with the clause processor.

5

 ACL2 Workshop, 11/2007

 Erik Reeber: UT CS Dept.

Conclusion

• Verified clause processors present a new method of extending the the-
orem prover.

− Useful for creating efficient domain-specific proof techniques.

• BV+ sorting clause processor.

− Much more efficient than traditional rewrite-based approach.

− Must be accessed through a clause hint.

• Generalized into a macro for any commutative and associative opera-
tion.

− Will make publicly available,
“books/clause-processors/sorting-cp/”.

6

