The reflective Milawa theorem prover is sound down to the machine code that runs it

ITP'14, Vienna

Magnus O. Myreen — Computer Laboratory, University of Cambridge, UK Jared Davis — Centaur Technology, Inc., Austin TX, USA

We design our provers to be sound.

We design our provers to be sound.

We verify programs with them.

We design our provers to be sound. We verify programs with them. Why not prove the theorem provers sound?

Soundness

We design our provers to be sound. We verify programs with them. Why not prove the theorem provers sound?

This talk: explains how soundness was proved for the Milawa theorem prover.

Previous work

Previous work

Jitawa verified **LISP**

A verified runtime for a verified theorem prover Magnus Myreen, Jared Davis — ITP'I I

Jitawa verified **LISP** Milawa theorem prover (kernel approx. 2000 lines of Milawa Lisp)

Lisp semantics

Lisp implementation (x86) (approx. 7000 64-bit x86 instructions)

semantics of x86-64 machine

Milawa theorem prover (kernel approx. 2000 lines of Milawa Lisp)

Lisp semantics

Lisp implementation (x86) (approx. 7000 64-bit x86 instructions)

semantics of x86-64 machine

verification of a Lisp implementation [ITP'II]

Jitawa verified **LISP**

Milawa

semantics of Milawa's logic

inference rules of Milawa's logic

Milawa theorem prover (kernel approx. 2000 lines of Milawa Lisp)

Lisp semantics

Lisp implementation (x86) (approx. 7000 64-bit x86 instructions)

semantics of x86-64 machine

verification of a Lisp implementation [ITP'II]

Jitawa verified LISP

A very short introdution

- Milawa is styled after theorem provers such as NQTHM and ACL2,
- has a small trusted logical kernel similar to LCF-style provers,
- ... but does not suffer the performance hit of LCF's fully expansive approach.

Comparison with LCF approach

core

LCF-style approach

- all proofs pass through the core's primitive inferences
- extensions steer the core

Comparison with LCF approach

LCF-style approach

- all proofs pass through the core's primitive inferences
- extensions steer the core

Comparison with LCF approach

LCF-style approach

- all proofs pass through the core's primitive inferences
- extensions steer the core

- all proofs must pass the core
- the core proof checker can be replaced at runtime

Comparison with LCF approach

LCF-style approach

- all proofs pass through the core's primitive inferences
- extensions steer the core

- all proofs must pass the core
- the core proof checker can be replaced at runtime

Comparison with LCF approach

LCF-style approach

- all proofs pass through the core's primitive inferences
- extensions steer the core

- all proofs must pass the core
- the core proof checker can be replaced at runtime

Comparison with LCF approach

LCF-style approach

- all proofs pass through the core's primitive inferences
- extensions steer the core

- all proofs must pass the core
- the core proof checker can be replaced at runtime

LCF-style approach

- all proofs pass through the core's primitive inferences
- extensions steer the core

- all proofs must pass the core
- the core proof checker can be replaced at runtime

A. formalise Milawa's logic

syntax, semantics, inference, soundness

A. formalise Milawa's logic

- syntax, semantics, inference, soundness
- **B**. prove that Milawa's kernel is faithful to the logic
 - ► run the Lisp parser (in the logic) on Milawa's kernel
 - translate (with proof) deep embedding into shallow
 - prove that Milawa's (reflective) kernel is faithful to logic

A. formalise Milawa's logic

- syntax, semantics, inference, soundness
- **B**. prove that Milawa's kernel is faithful to the logic
 - ► run the Lisp parser (in the logic) on Milawa's kernel
 - translate (with proof) deep embedding into shallow
 - prove that Milawa's (reflective) kernel is faithful to logic
- C. connect the verified Lisp implementation
 - compose with the correctness thm from ITP'11

A. formalise Milawa's logic

- syntax, semantics, inference, soundness
- **B**. prove that Milawa's kernel is faithful to the logic
 - ► run the Lisp parser (in the logic) on Milawa's kernel
 - translate (with proof) deep embedding into shallow
 - prove that Milawa's (reflective) kernel is faithful to logic
- C. connect the verified Lisp implementation
 - compose with the correctness thm from ITP'11

A—C combine to a top-level theorem that relates the logic's semantics with the execution of the x86 machine code.

This talk

A. formalise Milawa's logic

B. prove that Milawa's kernel is faithful to the logic

C. connect the verified Lisp implementation

This talk

A. formalise Milawa's logic

B. prove that Milawa's kernel is faithful to the logic

C. connect the verified Lisp implementation

Syntax

sexp	::=	Val $num \mid \text{Sym } string \mid \text{Dot } sexp \ sexp$	S-expression
prim	::= 	If Equal Not Symbolp Symbol_less Natp Add Sub Less Consp Cons Car Cdr Rank Ord_less Ordp	
func	=:: 	PrimitiveFun <i>prim</i> Fun <i>string</i>	primitive functions user-defined
term	::= 	Const <i>sexp</i> Var <i>string</i> App <i>func</i> (<i>term</i> list) LamApp (<i>string</i> list) <i>term</i> (<i>term</i> list)	constant S-expression variable function application λ formals body actuals
formula	::= 	$\neg formula$ formula \lor formula term = term	negation disjunction term equality

Syntax, semantics and inference rules depend on a context.

Syntax, semantics and inference rules depend on a context.

A context is a finite partial map from *string* to *string* list \times *func_body* \times (*sexp* list \rightarrow *sexp*)

Syntax, semantics and inference rules depend on a context.

A context is a finite partial map from string to string list \times func_body \times (sexp list \rightarrow sexp)

Syntax, semantics and inference rules depend on a context.

A context is a finite partial map from string to string list \times func_body \times (sexp list \rightarrow sexp) parameters syntax of body

Syntax, semantics and inference rules depend on a context.

A context is a finite partial map from string to string list \times func_body \times (sexp list \rightarrow sexp) parameters syntax of body

concrete term (e.g. recursive function) property, element name no function body given

Syntax, semantics and inference rules depend on a context.

concrete term (e.g. recursive function) property, element name no function body given

Semantics

Semantics

 $(\models_{\pi} p) = \text{formula_ok}_{\pi} p \land \forall i. \text{ eval_formula } i \pi p$
$(\models_{\pi} p) = \text{formula_ok}_{\pi} p \land \forall i. \text{ eval_formula } i \pi p$ syntax makes sense

eval_formula $i \pi (\neg p) = \neg (\text{eval}_f \text{formula } i \pi p)$ eval_formula $i \pi (p \lor q) = \text{eval}_f \text{formula } i \pi p \lor \text{eval}_f \text{formula } i \pi q$ eval_formula $i \pi (x = y) = (\text{eval}_t \text{term } i \pi x = \text{eval}_t \text{term } i \pi y)$

eval_formula $i \pi (\neg p) = \neg (\text{eval} \text{formula } i \pi p)$ eval_formula $i \pi (p \lor q) = \text{eval} \text{formula } i \pi p \lor \text{eval} \text{formula } i \pi q$ eval_formula $i \pi (x = y) = (\text{eval} \text{term } i \pi x = \text{eval} \text{term } i \pi y)$ eval_term $i \pi (\text{Const } c) = c$ eval_term $i \pi (\text{Var } v) = i(v)$ eval_term $i \pi (\text{App } f xs) = \text{eval} \text{app } (f, \text{map } (\text{eval} \text{term } i \pi) xs, \pi)$ eval_term $i \pi (\text{LambdaApp } vs x xs) = \text{let } ys = \text{map } (\text{eval} \text{term } i \pi) xs \text{ in } eval \text{term } [vs \mapsto ys] \pi x$ eval_app (PrimitiveFun $p, args, \pi) = \text{eval} \text{primitive } p args$ eval_app (Fun $name, args, \pi) = \text{let } (_,_, interp) = \pi(name) \text{ in }$

interp(args)

$$(\models_{\pi} p) = \text{formula_ok}_{\pi} p \land \forall i. \text{ eval_formula } i \pi p$$

$$(\texttt{syntax makes sense}) \quad \texttt{truth value}$$

eval_formula $i \pi (\neg p) = \neg (eval_formula i \pi p)$ eval_formula $i \pi (p \lor q) = eval_formula i \pi p \lor eval_formula i \pi q$ eval_formula $i \pi (x = y) = (eval_term i \pi x = eval_term i \pi y)$ eval_term $i \pi$ (Const c) = ceval_term $i \pi$ (Var v) = i(v)eval_term $i \pi$ (App f xs) = eval_app $(f, map (eval_term i \pi) xs, \pi)$ eval_term $i \pi$ (LambdaApp vs x xs) = let ys = map (eval_term $i \pi$) xs in eval_term $[vs \mapsto ys] \pi x$ eval_app (PrimitiveFun $p, args, \pi$) = eval_primitive p args= let $(_,_,interp) = \pi(name)$ in eval_app (Fun *name*, *args*, π) interp(args) $eval_primitive Add [Val 2, Val 3] = Val 5$ eval_primitive Add [Val 2, Sym "a"] = Val 2 $eval_primitive Cons [Val 2, Sym "a"] = Dot (Val 2) (Sym "a")$

Well-formedness of context

Semantics only makes sense for well-formed contexts.

Well-formedness of context

Semantics only makes sense for well-formed contexts.

For every entry,

 $\pi(name) = (formals, Body \ body, interp)$

it must be that:

- ► the formals are all distinct
- ► the body is well-formed w.r.t. the context
- the interpretation satisfies the defining equation:

 $\forall i. interp(map i formals) = eval_term i \pi body$

Well-formedness of context

Semantics only makes sense for well-formed contexts.

For every entry,

 $\pi(name) = (formals, Body \ body, interp)$

it must be that:

- ► the formals are all distinct
- the body is well-formed w.r.t. the context
- the interpretation satisfies the defining equation:

 $\forall i. interp(map i formals) = eval_term i \pi body$

Similarly for the other function types.

$$\frac{\vdash_{\pi} a \lor (b \lor c)}{\vdash_{\pi} (a \lor b) \lor c}$$
(associativity)

$$\frac{a \in \mathsf{milawa_axioms}}{\vdash_{\pi} a} \text{ (basic axiom)}$$

$$\frac{\pi(name) = (formals, \mathsf{Body} \ body, interp)}{\vdash_{\pi} \mathsf{App} \ (\mathsf{Fun} \ name) \ (\mathsf{map} \ \mathsf{Var} \ formals) = body}$$

$$\frac{\pi(name) = (formals, \mathsf{Body} \ body, interp)}{\vdash_{\pi} \mathsf{App} \ (\mathsf{Fun} \ name) \ (\mathsf{map} \ \mathsf{Var} \ formals) = body}$$

Soundness of inference rules:

 $\forall \pi \ p. \ \operatorname{context_ok} \pi \land (\vdash_{\pi} p) \Longrightarrow (\models_{\pi} p)$

Soundness of inference rules:

 $\forall \pi \ p. \ \operatorname{context_ok} \pi \land (\vdash_{\pi} p) \Longrightarrow (\models_{\pi} p)$

induction rule most interesting, Kaufmann&Slind [TPHOLs'07]

Soundness of inference rules:

 $\forall \pi \ p. \ \operatorname{context_ok} \pi \land (\vdash_{\pi} p) \Longrightarrow (\models_{\pi} p)$

induction rule most interesting, Kaufmann&Slind [TPHOLs'07]

Soundness of definition mechanism:

 $\forall \pi \text{ name formals body.}$ $\mathsf{context_ok} \ \pi \land \mathsf{definition_ok} \ (name, formals, body, \pi) \implies$ $\mathsf{context_ok} \ (\pi[name \mapsto (formals, body, \mathsf{new_interp} \ \pi \text{ name formals body})])$

Soundness of inference rules:

 $\forall \pi \ p. \ \operatorname{context_ok} \pi \land (\vdash_{\pi} p) \Longrightarrow (\models_{\pi} p)$

induction rule most interesting, Kaufmann&Slind [TPHOLs'07]

Soundness of definition mechanism:

 $\forall \pi \text{ name formals body.}$ $\mathsf{context_ok} \ \pi \land \mathsf{definition_ok} \ (name, formals, body, \pi) \implies$ $\mathsf{context_ok} \ (\pi[name \mapsto (formals, body, \mathsf{new_interp} \ \pi \ name \ formals \ body)])$

req. proving that termination conditions imply that a semantic interpretation exists as a function in HOL

This talk

A. formalise Milawa's logic

B. prove that Milawa's kernel is faithful to the logic

C. connect the verified Lisp implementation

This talk

A. formalise Milawa's logic

B. prove that Milawa's kernel is faithful to the logic

C. connect the verified Lisp implementation

This talk

A. formalise Milawa's logic

B. prove that Milawa's kernel is faithful to the logic

- run the Lisp parser (in the logic) on Milawa's kernel
- translate (with proof) deep embedding into shallow
- prove that Milawa's (reflective) kernel is faithful to logic

C. connect the verified Lisp implementation

Verification must be w.r.t. semantics of Lisp [ITP'11].

Verification must be w.r.t. semantics of Lisp [ITP'11].

Semantics of Lisp's read-eval-print loop:

Verification must be w.r.t. semantics of Lisp [ITP'11].

Semantics of Lisp's read-eval-print loop:

- 1. parse ASCII characters into s-expressions
- 2. translate s-expressions into program AST
- 3. evaluate program AST
- 4. print results, goto 1.

Verification must be w.r.t. semantics of Lisp [ITP'11].

Semantics of Lisp's read-eval-print loop:

- 1. parse ASCII characters into s-expressions
- 2. translate s-expressions into program AST
- 3. evaluate program AST
- 4. print results, goto 1.

Need to verify program down to concrete source code.

► run the Lisp parser (in the logic) on Milawa's kernel

run the Lisp parser (in the logic) on Milawa's kernel

Each top-level function definition in ASCII

run the Lisp parser (in the logic) on Milawa's kernel

Each top-level function definition in ASCII

becomes a program AST

App Define [Const (Sym "LOOKUP-SAFE"), Const (...), Const (...)]

App Define [Const (Sym "LOOKUP-SAFE"), Const (...), Const (...)]

When

App Define [Const (Sym "LOOKUP-SAFE"), Const (...), Const (...)] is evaluated, the op. sem. adds a definition to its context:

When

```
App Define [Const (Sym "LOOKUP-SAFE"), Const (...), Const (...)]
```

is evaluated, the op. sem. adds a definition to its context:

When

```
App Define [Const (Sym "LOOKUP-SAFE"), Const (...), Const (...)]
```

is evaluated, the op. sem. adds a definition to its context:

We could do verification over this deep embedding.

When

```
App Define [Const (Sym "LOOKUP-SAFE"), Const (...), Const (...)]
```

is evaluated, the op. sem. adds a definition to its context:

We could do verification over this deep embedding.

...but a shallow embedding is easier to work with.

function name: "LOOKUP parameter list: "A", "X" function body: If (App (

"LOOKUP-SAFE"
"A", "X"
If (App (PrimitiveFun Consp) [Var "X"])
 (If (App (PrimitiveFun Equal) [...])
 (If (App (PrimitiveFun Consp) [...] (...) (...))
 (App (Fun "LOOKUP-SAFE") [...]))
 (Const (Sym "NIL"))

We translate deep embedding into convenient shallow emb. [ITP'12] lookup_safe a x = if consp x then

if a = car (car x) then if consp (car x) then car x else cons (car (car x)) (cdr (car x)) else lookup_safe a (cdr x) else Sym "NIL"

We translate deep embedding into convenient shallow emb. [ITP'12]

lookup_safe a x = if consp x then if a = car (car x) then if consp (car x) then car xelse cons (car (car x)) (cdr (car x)) else lookup_safe a (cdr x)else Sym "NIL"

and produce a certificate theorem relating the deep and shallow embeddings.

 $\dots \implies (\mathsf{Fun "LOOKUP-SAFE"}, [a, x], state) \xrightarrow{\mathsf{ap}} (\mathsf{lookup_safe} \ a \ x, state)$

We translate deep embedding into convenient shallow emb. [ITP'12]

lookup_safe a x = if consp x then if a = car (car x) then if consp (car x) then car xelse cons (car (car x)) (cdr (car x)) else lookup_safe a (cdr x)else Sym "NIL"

and produce a certificate theorem relating the deep and shallow embeddings.
Steps towards an easier verification

We translate deep embedding into convenient shallow emb. [ITP'12]

lookup_safe $a \ x = if \operatorname{consp} x$ then if $a = \operatorname{car} (\operatorname{car} x)$ then if $\operatorname{consp} (\operatorname{car} x)$ then $\operatorname{car} x$ else $\operatorname{cons} (\operatorname{car} (\operatorname{car} x)) (\operatorname{cdr} (\operatorname{car} x))$ else $\operatorname{lookup}_safe a (\operatorname{cdr} x)$ else Sym "NIL"

and produce a certificate theorem relating the deep and shallow embeddings.

$$\begin{array}{c} \ldots \implies (\mathsf{Fun "LOOKUP-SAFE"}, [a, x], state) \xrightarrow{\mathsf{ap}} (\mathsf{lookup_safe} \ a \ x, state) \\ & \land \\ & \land \\ & \mathsf{name \ in \ deep \ embedding} \end{array} } \begin{array}{c} \mathsf{shallow \ embedding} \end{array}$$

Steps towards an easier verification

We translate deep embedding into convenient shallow emb. [ITP'12]

lookup_safe a x = if consp x then if a = car (car x) then if consp (car x) then car xelse cons (car (car x)) (cdr (car x)) else lookup_safe a (cdr x)else Sym "NIL"

and produce a certificate theorem relating the deep and shallow embeddings.

prove that Milawa's (reflective) kernel is faithful to logic

A routine verification exercise.

prove that Milawa's (reflective) kernel is faithful to logic

A routine verification exercise.

Points of interest:

Milawa's initial proof checker was a large function

Top-level loop has complicated invariant, relates:

- program state
- current Lisp op.sem. state
- Iogical context

prove that Milawa's (reflective) kernel is faithful to logic

A routine verification exercise.

Points of interest:

Milawa's initial proof checker was a large function

Top-level loop has complicated invariant, relates:

- program state
- current Lisp op.sem. state
- logical context

Bugs found?

prove that Milawa's (reflective) kernel is faithful to logic

A routine verification exercise.

Points of interest:

Milawa's initial proof checker was a large function

Top-level loop has complicated invariant, relates:

- program state
- current Lisp op.sem. state
- logical context

Bugs found? Yes, two very minor (no soundness bugs)

Theorem:

 $\exists ans \ k \ output \ ok.$ milawa_main cmds init_state = $(ans, (k, output, ok)) \land$ $(ok \Longrightarrow (ans = \text{Sym "SUCCESS"}) \land$ let $result = \text{compute_output } cmds$ in every_line line_ok $result \land$ $output = \text{output_string } result$)

where

This talk

A. formalise Milawa's logic

B. prove that Milawa's kernel is faithful to the logic

C. connect the verified Lisp implementation

Top-level correctness theorem:

{ init_state $input * pc pc * \langle terminates_for input \rangle$ } $pc : code_for_entire_jitawa_implementation$ { $error_message \lor \exists output. \langle ([], input) \xrightarrow{exec} (output, true) \rangle * final_state output$ }

There must be enough memory and I/O assumptions must hold.

assumptions must hold. ness theorem:

{ init_state $input * pc \ pc * \langle terminates_for \ input \rangle$ } $pc : code_for_entire_jitawa_implementation$ { $error_message \lor \exists output. \langle ([], input) \xrightarrow{exec} (output, true) \rangle * final_state \ output$ }

There must be enough memory and I/O assumptions must hold.

assumptions must hold. ness theorem:

{ init_state $input * pc pc * \langle terminates_for input \rangle$ } $pc : code_for_entire_jitawa_implementation$ { error_message $\lor \exists output. \langle ([], input) \xrightarrow{exec} (output, true) \rangle * final_state output }$ Each execution is allowed to fail with an error message.

assumptions must hold. ness theorem:

{ init_state $input * pc pc * (terminates_for input) }$ *pc* : code_for_entire_jitawa_implementation { error_message $\lor \exists output. \langle ([], input) \xrightarrow{exec} (output, true) \rangle * final_state output \}$ Each execution is If there is no error message, allowed to fail with then the result is described by an error message.

the high-level op. semantics.

 $\forall input \ pc.$

There must be enough memory and input is Milawa's kernel followed by call to main for some *input*.

 $\forall input \ pc.$

There must be enough memory and input is Milawa's kernel followed by call to main for some *input*.

 $\forall input \ pc.$

{ init_state (milawa_implementation ++ "(milawa-main 'input)") * pc pc }
pc : code_for_entire_jitawa_implementation

```
{ error_message \lor (let result = compute_output (parse input) in
```

 $\langle every_line line_ok result \rangle *$

final_state (output_string result ++ "SUCCESS")) }

Machine code terminates either with error message, or ...

There must be enough memory and input is Milawa's kernel followed by call to main for some *input*.

 $\forall input \ pc.$

{ init_state (milawa_implementation ++ "(milawa-main 'input)") * pc pc }
pc : code_for_entire_jitawa_implementation

```
{ error_message \lor (let result = compute_output (parse input) in
```

 $\langle every_line line_ok result \rangle *$

final_state (output_string result ++ "SUCCESS")) }

Machine code terminates either with error message, or ...

... output lines that are all true w.r.t. the semantics of the logic.

The top-level theorem:

relates the logic's semantics with the execution of the x86 machine code.

The top-level theorem:

relates the logic's semantics with the execution of the x86 machine code.

Steps:

- A. formalise Milawa's logic
 - syntax, semantics, inference, soundness
- **B**. prove that Milawa's kernel is faithful to the logic
 - run the Lisp parser (in the logic) on Milawa's kernel
 - translate (with proof) deep embedding into shallow
 - prove that Milawa's (reflective) kernel is faithful to logic
- C. connect the verified Lisp implementation
 - compose with the correctness thm from ITP'11

The top-level theorem:

Questions?

relates the logic's semantics with the execution of the x86 machine code.

Steps:

- A. formalise Milawa's logic
 - syntax, semantics, inference, soundness
- B. prove that Milawa's kernel is faithful to the logic
 - run the Lisp parser (in the logic) on Milawa's kernel
 - translate (with proof) deep embedding into shallow
 - prove that Milawa's (reflective) kernel is faithful to logic
- C. connect the verified Lisp implementation
 - compose with the correctness thm from ITP'11