HOL Constant Definition Done Right

Rob Arthan

Lemma 1 Ltd. / Queen Mary University of London, UK

ITP, Vienna, Austria
15 July 2014



In the beginning

» HOL (Mike Gordon c. 1984):
> simply typed A-calculus:
(M :N->NXIx:Nfx):(N->N)->N—=>N
> + minimalist polymorphism:
> free type variables:
(M- Xx-fx):(a—=B)—>a—p
> polymorphic constants:

first(head[1;2; 3]," a") = first(head[(1, 2)])

> + principle for defining new types
> —+ principle for defining new constants.

» HOL is a great compromise between simplicity and expressiveness.
> (At least) 6 current implementations and many users 30 years on.

» This talk describes an improved principle for defining new constants.



new_definition

» Input to new_definition is an equation:
CVi ... Vp=1
» Result is a new constant ¢ with defining property:
FVYvi...vpoCvy...v, =t

> Side-conditions:

1. ¢ and v; distinct variables

2. frees(t) C {vi,...,vn}

3. tyvars(t) C tyvars(c)

Condition 3 fixes an inconsistency found by Roger Jones c. 1988

» Means for specifying constant names like ¢ immaterial in this talk.



A little later: a feature request

v

Roger Jones (c. 1988) made an observation:

new_definition doesn’t support implicit definitions.

v

You can't give an implicit definition of min:
min(x,y) € {x,y} Amin(x,y) < x Amin(x,y) <y

or define Pre in terms of Suc:

v

Pre(Suc(n)) =n
> or give an approximate specification of a number:

ci; < 10.



Work-arounds

» Can work around using specific circumlocutions:
min(x, y) = if x < y then x else y

and then prove the desired defining property as a theorem.
» General purpose “work-around” with the Hilbert choice operator:
> E.g., to define c1 such that ¢; < 10, use new_definition to define:

c1 = (ex- x < 10)

» This is a hack: it introduces unintended identities.
> E.g., the naive way of now defining ¢z such that co < 10 leads to:

c1=(exx<10)=c2

> More devious hacks mitigate the problem but don't eliminate it.



The feature request implemented: new specification

» Roger’s observation was addressed by adding a new definitional
principle called new_specification.

> new_specification takes as input a theorem of the form:

Fdvi ..o vy p

v

Results in new constants ¢y, ..., c, with defining property:

F p[cl/vl7 s ,Cn/Vn]

Side conditions:

1. frees(p) C {wv1 ... va}
2. tyvars(p) C tyvars(v;),i=1...n.

v

v

E.g.,
> You prove: Jvi va- vi <10A v <10
> and you get c¢; and ¢z such that ¢; < 10 A ¢z < 10.
> And that is all you know about c; and c;.



Further Observations

» new_specification provides the abstraction Roger wanted.
> | observed (c. 1992) that it is annoying that:
> new_specification supersedes new_definition, but
» new definition is required for bootstrapping, to define 3.
» John Harrison observed (HOL Done Right, 1995) that the
polymorphic typed A-calculus is extremely expressive:
» The HOL logic can be defined using equality alone.
» T, F, =, A, V, 3,V are all definable.
> Full strength of HOL may then be obtained from three axioms.
» HOL Light follows this approach (as does OpenTheory).
> new_specification was replaced by a form of the ¢ hack in HOL
Light c. 2006, to simplify work on self-verification.

> | and others (c. 1992 — 2014) observed that the constraint on the
use of type variables is rather restrictive for some purposes.



A Proposed Enhancement

» In 2012, | proposed gen new_specification.
» Takes as input a theorem of the form
%1 :tl,...,v,,:t,,l—p
> Results in new constants cy, ..., c, with defining property:
Fplci/vi, ..., cn/vi]
» Subject to the following restrictions:
1. the v; must be pairwise distinct variables;
2. frees(t;) =0
3. tyvars(t;) C tyvars(v;).
4. frees(p) C {vi,...vn};
» There is no restriction on the type variables appearing in p.



Example

v

For example, it is easy to prove:

n=0,f =Ay-1FVx-~fx=n

v

This meets the requirements of gen new_specification

Hence can define constants f and n such that:

v

Vx- —f x = n.

v

Note f has type & — N and n has type N:

> This would be impossible with new_specification.
> new_specification always gives tyvars(c;) = tyvars(c;).



Soundness

Claim
gen new_specification is conservative and hence sound.

» The informal proof is really quite simple (simpler than for
new_specification):
> It is easy to derive the theorem b p[ti/wv1, ..., ty/v4] from the
theorem that is input to new_specification.
» Hence replacing each instance of a ¢; with the corresponding
instance of t; will transform a proof whose conclusion doesn’t involve
the c; into a proof that doesn’t involve the ¢; at all.

> As reported in Ramana's talk yesterday, Ramana Kumar, Magnus

Myreen and Scott Owens have now formalised this proof (and much,
much more) in HOL4.



Backwards Compatibility

Claim
gen new_specification subsumes new_definition.

» The proof is easy:

> to simulate new_definition on input:
CVvVi...vp=1
> apply gen_new_specification to the easily proved theorem:

C=Avi ... Voo tEVVi ... VprCvy .. V=t



Backwards Compatibility (2)

Claim
gen new_specification subsumes new_specification.

» The proof requires a little boot-strapping:
> For the proof in the special case of new_specification on input

Fdcp

> apply gen_new_specification to the following (easily derived from
the above input theorem):

c=¢cv-pkp.

> Use this to define the constructor and destructors for binary products.
> Once you have these, the precise behaviour of new_specification
in general is easily simulated.

> See paper for details.



Assessment

v

The proposal solves my concern about bootstrapping:

> gen new_specification subsumes both new_definition and
new_specification.

v

The proposal satisfies John Harrison's criterion:

> gen new_specification involves no constants other than equality.

v

The proposal has now been proved sound:
> No further need for the € hack in HOL Light.
The proposal is much more liberal about type variables:

v

> We have seen a simple, but not useless example.
> See the paper for more significant examples.



Current Status

HOL implementors were awaiting a formalised correctness proof
before adopting the proposal.

Now thanks to the hard work of Ramana Kumar et al., we have a
correctness proof in HOLA4.

» Ramana has a branch of HOL4 including gen_new_specification
> gen new_specification is in ProofPower working snapshot 3.1wl

and later.

> Includes a version of new_specification implementing the

subsumption proof sketched above.

ProofPower and HOL4 both implement gen new_specification as
a replacement for new_definition:

> Keep the old new_specification as a built-in for pragmatic reasons.
Joe Hurd has included gen_new_specification in draft version 6
of the OpenTheory article file format.



	Main Part
	The Problem
	Proposed Solution
	Current Status


