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In the beginning

I HOL (Mike Gordon c. 1984):
I simply typed λ-calculus:

(λf : N→ N· λx : N· f x) : (N→ N)→ N→ N

I + minimalist polymorphism:
I free type variables:

(λf · λx · f x) : (α→ β)→ α→ β

I polymorphic constants:

first(head[1; 2; 3], ”a”) = first(head[(1, 2)])

I + principle for defining new types
I + principle for defining new constants.

I HOL is a great compromise between simplicity and expressiveness.

I (At least) 6 current implementations and many users 30 years on.

I This talk describes an improved principle for defining new constants.



new definition

I Input to new definition is an equation:

c v1 . . . vn = t

I Result is a new constant c with defining property:

` ∀v1 . . . vn· c v1 . . . vn = t

I Side-conditions:

1. c and vi distinct variables
2. frees(t) ⊆ {v1, . . . , vn}
3. tyvars(t) ⊆ tyvars(c)

Condition 3 fixes an inconsistency found by Roger Jones c. 1988

I Means for specifying constant names like c immaterial in this talk.



A little later: a feature request

I Roger Jones (c. 1988) made an observation:

new definition doesn’t support implicit definitions.

I You can’t give an implicit definition of min:

min(x , y) ∈ {x , y} ∧min(x , y) ≤ x ∧min(x , y) ≤ y

I or define Pre in terms of Suc:

Pre(Suc(n)) = n

I or give an approximate specification of a number:

c1 ≤ 10.



Work-arounds

I Can work around using specific circumlocutions:

min(x , y) = if x ≤ y then x else y

and then prove the desired defining property as a theorem.

I General purpose “work-around” with the Hilbert choice operator:
I E.g., to define c1 such that c1 ≤ 10, use new definition to define:

c1 = (εx · x ≤ 10)

I This is a hack: it introduces unintended identities.
I E.g., the naive way of now defining c2 such that c2 ≤ 10 leads to:

c1 = (εx · x ≤ 10) = c2

I More devious hacks mitigate the problem but don’t eliminate it.



The feature request implemented: new specification

I Roger’s observation was addressed by adding a new definitional
principle called new specification.

I new specification takes as input a theorem of the form:

` ∃v1 . . . vn· p

I Results in new constants c1, . . . , cn with defining property:

` p[c1/v1, . . . , cn/vn]

I Side conditions:

1. frees(p) ⊆ {v1 . . . vn}
2. tyvars(p) ⊆ tyvars(vi ), i = 1 . . . n.

I E.g.,
I You prove: ∃v1 v2· v1 ≤ 10 ∧ v2 ≤ 10
I and you get c1 and c2 such that c1 ≤ 10 ∧ c2 ≤ 10.
I And that is all you know about c1 and c2.



Further Observations

I new specification provides the abstraction Roger wanted.

I I observed (c. 1992) that it is annoying that:
I new specification supersedes new definition, but
I new definition is required for bootstrapping, to define ∃.

I John Harrison observed (HOL Done Right, 1995) that the
polymorphic typed λ-calculus is extremely expressive:

I The HOL logic can be defined using equality alone.
I T, F, ¬, ∧, ∨, ∃, ∀ are all definable.
I Full strength of HOL may then be obtained from three axioms.
I HOL Light follows this approach (as does OpenTheory).

I new specification was replaced by a form of the ε hack in HOL
Light c. 2006, to simplify work on self-verification.

I I and others (c. 1992 – 2014) observed that the constraint on the
use of type variables is rather restrictive for some purposes.



A Proposed Enhancement

I In 2012, I proposed gen new specification.

I Takes as input a theorem of the form

v1 = t1, . . . , vn = tn ` p

I Results in new constants c1, . . . , cn with defining property:

` p[c1/v1, . . . , cn/vn]

I Subject to the following restrictions:

1. the vi must be pairwise distinct variables;
2. frees(ti ) = ∅
3. tyvars(ti ) ⊆ tyvars(vi ).
4. frees(p) ⊆ {v1, . . . vn};

I There is no restriction on the type variables appearing in p.



Example

I For example, it is easy to prove:

n = 0, f = λy · 1 ` ∀x · ¬f x = n

I This meets the requirements of gen new specification

I Hence can define constants f and n such that:

∀x · ¬f x = n.

I Note f has type α→ N and n has type N:
I This would be impossible with new specification.
I new specification always gives tyvars(ci) = tyvars(cj).



Soundness

Claim
gen new specification is conservative and hence sound.

I The informal proof is really quite simple (simpler than for
new specification):

I It is easy to derive the theorem ` p[t1/v1, . . . , tn/vn] from the
theorem that is input to new specification.

I Hence replacing each instance of a ci with the corresponding
instance of ti will transform a proof whose conclusion doesn’t involve
the ci into a proof that doesn’t involve the ci at all.

I As reported in Ramana’s talk yesterday, Ramana Kumar, Magnus
Myreen and Scott Owens have now formalised this proof (and much,
much more) in HOL4.



Backwards Compatibility

Claim
gen new specification subsumes new definition.

I The proof is easy:
I to simulate new definition on input:

c v1 . . . vn = t

I apply gen new specification to the easily proved theorem:

c = λv1 . . . vn· t ` ∀v1 . . . vn· c v1 . . . vn = t



Backwards Compatibility (2)

Claim
gen new specification subsumes new specification.

I The proof requires a little boot-strapping:
I For the proof in the special case of new specification on input

` ∃c· p

I apply gen new specification to the following (easily derived from
the above input theorem):

c = εv · p ` p.

I Use this to define the constructor and destructors for binary products.
I Once you have these, the precise behaviour of new specification

in general is easily simulated.

I See paper for details.



Assessment

I The proposal solves my concern about bootstrapping:
I gen new specification subsumes both new definition and

new specification.

I The proposal satisfies John Harrison’s criterion:
I gen new specification involves no constants other than equality.

I The proposal has now been proved sound:
I No further need for the ε hack in HOL Light.

I The proposal is much more liberal about type variables:
I We have seen a simple, but not useless example.
I See the paper for more significant examples.



Current Status

I HOL implementors were awaiting a formalised correctness proof
before adopting the proposal.

I Now thanks to the hard work of Ramana Kumar et al., we have a
correctness proof in HOL4.

I Ramana has a branch of HOL4 including gen new specification

I gen new specification is in ProofPower working snapshot 3.1w1
and later.

I Includes a version of new specification implementing the
subsumption proof sketched above.

I ProofPower and HOL4 both implement gen new specification as
a replacement for new definition:

I Keep the old new specification as a built-in for pragmatic reasons.

I Joe Hurd has included gen new specification in draft version 6
of the OpenTheory article file format.
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