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Context

Global context:

Research program carried out at Concordia University

Objective: formal verification of optical systems
(e.g., fiber optic, optic circuits, quantum computers, etc.)

To do so, formalization of various theories of optics:

Ray optics

Electromagnetic optics

Quantum optics
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Quantum Computers

Classical Bit

Classical bit = 0 or 1

Qubit

Quantum bit = “mix” of |0〉
and |1〉 → δ|0〉+ β|1〉

Implementation:

Physical implementations of Qubits: photons, electrons or ions

Photon-based implementations are the most promising
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Photon-based implementation of Qubits

Coherent light is used to represent quantum bits:

Coherent Light Qubit

Qubit = coherent light with states |0〉 and |α〉
|0〉 and |α〉 represent |0〉 and |1〉, respectively

Coherent Light Quantum Flip Gate

Quantum flip gate, converts |0〉 into |1〉 and vice versa

Implemented as a beam splitter and a phase conjugating
mirror.
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Quantum Optics: Overview

Photons 

Fock State  (|𝑛 ) 
Coherent State  

|α =  
α𝑛

!𝑛
|n ∞

0  

Annihilator 𝑎 
Creator 𝑎† 𝑎 |𝑛 = 𝑛|𝑛 − 1  𝑎† |𝑛 = 𝑛 + 1|𝑛 + 1   

|𝑛 =
𝑎†𝑛

!𝑛
|0   

𝑎|α  = α|α  
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Mathematics Prerequisites

Complex functions spaces (cfun). NFM13

Infinite summation over cfun. NFM14

Infinite summation over quantum operators.

Exponentiation of quantum operators.
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Infinite Summation over Operators: Definition

∑∞
n=0 fn = gn ⇔ ∀x

∑∞
n=0 fn(x) = gn(x)

Definition

Specification:
cop sums (s, inprod) f l (from 0)⇔ ∀x. x IN s ⇒

cfun sums (s, inprod) (λn.(f n) x) (l x) (from 0)

Hilbert operator to make a function out of it:
cop infsum innerspc s f = @l. cop sums innerspc f l s

Existence predicate:
cop summable innerspc s f = ∃l. cop sums innerspc f l s
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Infinite Summation: Properties

“
∑∞

n=0(fn + gn) =
∑∞

n=0 fn +
∑∞

n=0 gn”

Theorem (Linearity of infinite summation - 1)

∀ f g innerspc.
cop summable innerspc s f ∧ cop summable innerspc s g⇒
cop infsum innerspc s (λn. fn + gn) =
cop infsum innerspc s f + cop infsum innerspc s g

“
∑∞

n=0(a.fn) = a.
∑∞

n=0 fn”

Theorem (Linearity of infinite summation - 2)

∀ f innerspc a. cop summable innerspc s f⇒
cop infsum innerspc s (λn. a % f n)

= a % cop infsum innerspc s f

% = multiplication by a scalar
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Commutativity of Fun. Inf. Summation with Linear
Operators

Definition (Linearity)

is linear cop s (op : cop)⇔
∀x y.x IN s ∧ y IN s⇒ op (x + y) = op x + op y

∧ ∀a. op (a % x) = a % (op x)

“if op linear & bounded:
∑∞

n=0(op (fn)) = op (
∑∞

n=0 fn)”

Theorem (Commutativity of Inf. Summation with Linear Op.)

∀f h s innerspc.
is linear cop s h ∧ is bounded innerspc h

⇒ cfun infsum innerspc s (λn. h(f n))
= h (cfun infsum innerspc s f)
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Exponentiation of Quantum Operators

“eop =
∑∞

i=0
opn

!n ”

Definition

cop exp innerspc (op : cfun→ cfun)⇔
cop infsum innerspc (from 0) (λn. 1

!n % (op pow n)

“ econstantly null operator = identity”

Theorem

∀s inprod x. x IN s ∧ is inner space (s, inprod)⇒
cop exp (s, inprod) cop zero x = x

“ ea.opop (x) = eaC.op(x)”

Theorem

∀ s inprod a x. x IN s ∧ is inner space (s, inprod)⇒
(cop exp (s, inprod) (λy. a%y)) x = cpow a % x
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Coherent Light: Definition

Coherent light ⇒ number of photons follows Poisson distribution
at any time

More precisely: state of a coherent light = |α〉 where |α|2 is the
distribution parameter, i.e., the number of expected photons.

Definition

coherent sm α =
exp(− |α|

2)
2

))%
cfun infsum (s, inprod) (from 0) (λn. α

n
√
n!

%(fock sm n))

fock sm n = state where we have n photons
→ defined using the creation operator and the vaccum state (. . . )
→ themselves defined using the definition of sm (. . . )
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Quantum Optics: Overview (Recall)

Photons 

Fock State  (|𝑛 ) 
Coherent State  

|α =  
α𝑛

!𝑛
|n ∞

0  

Annihilator 𝑎 
Creator 𝑎† 𝑎 |𝑛 = 𝑛|𝑛 − 1  𝑎† |𝑛 = 𝑛 + 1|𝑛 + 1   

|𝑛 =
𝑎†𝑛

!𝑛
|0   
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Coherent Light: Property

Theorem (Expression using the displacement operator)

(∀n.creat of sm sm (fock sm n) 6= cfun zero))
∧ cfun summable (s, inprod) (from 0)(λn.α pow n√

!n
% fock sm n)

is sm sm ∧ exp summable (qspc of sm sm) (α creat of sm sm)
⇒ coherent sm α = (disp sm α) vac

vac = lowest energy coherent state (“vaccum”)
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Displacement Operator

D(α) = eαâ
†

e−α
∗â e [αâ†,α∗â]

â = creation operator (adds a level of energy/photon to a
quantum system)
[a, b] = commutator between a and b, i.e., a ◦ b − b ◦ a

Definition (Displacement Operator)

disp sm α =
(cop exp sm (α % creat of sm sm) ∗ ∗
cop exp sm (−(cnj α) % a of sm sm) ∗ ∗
cop exp sm ((α % creat of sm sm) com ((cnj α) % a of sm sm))

Main interest of the displacement operator:
easily implemented (physically) using a beam splitter
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Optical Flip Gate (Recall)

Coherent Light Qubit

Qubit = coherent light with states |vac〉 and |α〉
|vac〉 and |α〉 represent |0〉 and |1〉, respectively

Coherent Light Quantum Flip Gate

Quantum flip gate converts |0〉 into |1〉 and vice versa

Implemented as a beam splitter and a phase conjugating
mirror.

|𝑣𝑎𝑐  

Beam Splitter Mirror 

D(- 𝛼) 
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Beam Splitter over Coherent states

Theorem (Beam splitter over |1〉)

∧ (∀x op. is linear cop op ∧ x IN s⇒
(cop exp (s, inprod) (−op) ∗ ∗ cop exp (s, inprod) (op)) x = x

⇒ disp sm (−α) (coherent sm α) = vac

Theorem (Beam splitter over |0〉)

∧ (∀x op. is linear cop op ∧ x IN s⇒
(cop exp (s, inprod) (−op) ∗ ∗ cop exp (s, inprod) (op)) x = x

⇒ disp sm (−α) (coherent sm vac) = −α

Note: These proofs requires Baker-Campbell-Hausdorf theorem
→ assumed in this work
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Mirror over Coherent states

Definition (Mirror)

mirror sm =
cop exp (s, inprod) (iπ % n of sm sm)

Theorem (Main mirror property)

mirror summable sm ∧ is bounded (qspc of sm sm) (mirror sm)
∧ (∀n.creat of sm sm (fock sm n) 6= cfun zero))
⇒ mirror sm (coherent sm α) = coherent sm (−α)

Theorem (Main mirror property)

mirror summable sm ∧ is bounded (qspc of sm sm) (mirror sm)
∧ (∀n.creat of sm sm (fock sm n) 6= cfun zero))
⇒ mirror sm (coherent sm vac) = coherent sm vac
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Formal Flip Gate Verification

Definition (Flip Gate)

flip gate α sm = (mirror sm) ∗ ∗ (disp sm (−α))

Main result of this work:
“flip gate applied to |1〉 returns |0〉”
and
“flip gate applied to |0〉 returns |1〉”

Theorem

(coherent sm α 6= cfun zero)∧
∧ (cop exp (s, inprod) (−op) ∗ ∗ cop exp (s, inprod) (op)) x = x)
∧ mirror summable sm ∧ is bounded (qspc of sm sm) (mirror sm)
⇒ (flip gate α sm) (coherent sm α) = vac

∧ (flip gate α sm) vac = coherent sm α
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Conclusion

Used HOL Light to formally verify that a
quantum-optic-based physical system implements a flip gate
(under reasonable assumptions)

Required the formal development of several theories

Most important fact: we went from the maths foundations to
a close-to-practice implementation
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Thanks!
Questions?

http://hvg.ece.concordia.ca

http://hvg.ece.concordia.ca
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