Quantum Computers & Quantum Optics

Formalization

Hardware Verification Group fortiss http://www.fortiss.org/en Munich, Germany

Formal Verification of Optical Quantum Flip Gate

Mohamed Yousri Mahmoud (slides author) Vincent Aravantinos

Sofiène Tahar

Hardware Verification Group Electrical and Computer Engineering Dept. Concordia University Montreal, Quebec, Canada http://hvg.ece.concordia.ca

July 16, 2014

- 2 Quantum Computers & Quantum Optics
- 3 Formalization
- 4 Conclusion

Motivation

Context

Global context:

- Research program carried out at Concordia University
- Objective: formal verification of *optical systems* (e.g., fiber optic, optic circuits, quantum computers, etc.)

To do so, formalization of various theories of optics:

- Ray optics
- Electromagnetic optics
- Quantum optics

Quantum Computers & Quantum Optics

3 Formalization

Quantum Computers

Classical Bit

Classical bit = 0 or 1

Implementation:

- Physical implementations of Qubits: photons, electrons or ions
- Photon-based implementations are the most promising

Quantum Computers

Classical Bit

Classical bit = 0 or 1

Implementation:

- Physical implementations of Qubits: photons, electrons or ions
- Photon-based implementations are the most promising

Coherent light is used to represent quantum bits:

Coherent Light Qubit

- Qubit = coherent light with states $|0\rangle$ and $|\alpha\rangle$
- $|0\rangle$ and $|\alpha\rangle$ represent $|0\rangle$ and $|1\rangle,$ respectively

Coherent light is used to represent quantum bits:

Coherent Light Qubit

- Qubit = coherent light with states |0
 angle and |lpha
 angle
- $|0\rangle$ and $|\alpha\rangle$ represent $|0\rangle$ and $|1\rangle,$ respectively

- $\bullet~$ Quantum flip gate, converts $|0\rangle$ into $|1\rangle$ and vice versa
- Implemented as a *beam splitter* and a *phase conjugating mirror*.

Coherent light is used to represent quantum bits:

Coherent Light Qubit

- Qubit = coherent light with states $|0\rangle$ and $|\alpha\rangle$
- $|0\rangle$ and $|\alpha\rangle$ represent $|0\rangle$ and $|1\rangle,$ respectively

- Quantum flip gate, converts |0
 angle into |1
 angle and vice versa
- Implemented as a *beam splitter* and a *phase conjugating mirror*.

Coherent light is used to represent quantum bits:

Coherent Light Qubit

- Qubit = coherent light with states $|0\rangle$ and $|\alpha\rangle$
- $|0\rangle$ and $|\alpha\rangle$ represent $|0\rangle$ and $|1\rangle,$ respectively

- Quantum flip gate, converts |0
 angle into |1
 angle and vice versa
- Implemented as a *beam splitter* and a *phase conjugating mirror*.

Coherent light is used to represent quantum bits:

Coherent Light Qubit

- Qubit = coherent light with states $|0\rangle$ and $|\alpha\rangle$
- $|0\rangle$ and $|\alpha\rangle$ represent $|0\rangle$ and $|1\rangle,$ respectively

- $\bullet\,$ Quantum flip gate, converts $|0\rangle$ into $|1\rangle$ and vice versa
- Implemented as a *beam splitter* and a *phase conjugating mirror*.

Coherent light is used to represent quantum bits:

Coherent Light Qubit

- Qubit = coherent light with states $|0\rangle$ and $|\alpha\rangle$
- $|0\rangle$ and $|\alpha\rangle$ represent $|0\rangle$ and $|1\rangle,$ respectively

- $\bullet\,$ Quantum flip gate, converts $|0\rangle$ into $|1\rangle$ and vice versa
- Implemented as a *beam splitter* and a *phase conjugating mirror*.

Coherent light is used to represent quantum bits:

Coherent Light Qubit

- Qubit = coherent light with states $|0\rangle$ and $|\alpha\rangle$
- $|0\rangle$ and $|\alpha\rangle$ represent $|0\rangle$ and $|1\rangle,$ respectively

- Quantum flip gate, converts |0
 angle into |1
 angle and vice versa
- Implemented as a *beam splitter* and a *phase conjugating mirror*.

Quantum Optics: Overview

Outline

Motivation & Context

Quantum Computers & Quantum Optics

3 Formalization

- Mathematics Prerequisites
- Coherent Light
- Optical Flip Gate

Conclusion

Outline

Motivation & Context

Quantum Computers & Quantum Optics

3 Formalization

• Mathematics Prerequisites

- Coherent Light
- Optical Flip Gate

Conclusion

Mathematics Prerequisites

- Complex functions spaces (cfun). NFM13
- Infinite summation over cfun. NFM14
- Infinite summation over quantum operators.
- Exponentiation of quantum operators.

Infinite Summation over Operators: Definition

$$\sum_{n=0}^{\infty} f_n = g_n \Leftrightarrow \forall x \sum_{n=0}^{\infty} f_n(x) = g_n(x)$$

Definition

- Specification: cop_sums (s, inprod) f l (from 0) ⇔ ∀x. x IN s ⇒ cfun_sums (s, inprod) (λn.(f n) x) (l x) (from 0)
- Hilbert operator to make a function out of it: cop_infsum innerspc s f = @l. cop_sums innerspc f l s
- Existence predicate:

cop_summable innerspc s $f = \exists l. cop_sums$ innerspc f l s

Infinite Summation: Properties

"
$$\sum_{n=0}^{\infty} (f_n + g_n) = \sum_{n=0}^{\infty} f_n + \sum_{n=0}^{\infty} g_n$$
"

Theorem (Linearity of infinite summation - 1)

 \forall f g innerspc. cop_summable innerspc s f \land cop_summable innerspc s g \Rightarrow cop_infsum innerspc s (λ n. fn + gn) = cop_infsum innerspc s f + cop_infsum innerspc s g

"
$$\sum_{n=0}^{\infty} (a.f_n) = a. \sum_{n=0}^{\infty} f_n$$
"

Theorem (Linearity of infinite sum<u>mation - 2)</u>

 \forall f innerspc a. cop_summable innerspc s f \Rightarrow cop_infsum innerspc s (λ n. a % f n) = a % cop_infsum innerspc s f

%= multiplication by a scalar

Commutativity of Fun. Inf. Summation with Linear Operators

Definition (Linearity)

is_linear_cop s (op : cop) \Leftrightarrow $\forall x y.x IN s \land y IN s \Rightarrow op (x + y) = op x + op y$ $\land \forall a. op (a \% x) = a \% (op x)$

"if op linear & bounded:
$$\sum_{n=0}^{\infty} (op(f_n)) = op(\sum_{n=0}^{\infty} f_n)$$
"

Theorem (Commutativity of Inf. Summation with Linear Op.)

orall f h s innerspc.is_linear_cop s h \land is_bounded innerspc h \Rightarrow cfun_infsum innerspc s (λ n. h(f n)) = h (cfun_infsum innerspc s f)

Exponentiation of Quantum Operators

$$"e^{op} = \sum_{i=0}^{\infty} \frac{op^n}{!n}"$$

Definition

 $\begin{array}{c} \texttt{cop_exp innerspc (op:cfun \rightarrow cfun)} \Leftrightarrow \\ \texttt{cop_infsum innerspc (from 0) } (\lambda\texttt{n.} \ \frac{1}{ln} \ \% \ (\texttt{op pow n}) \end{array}$

" e^{constantly} null operator = identity"

Theorem

$$\begin{array}{l} \forall \texttt{s inprod } \texttt{x. x IN } \texttt{s} \land \texttt{is_inner_space} \ (\texttt{s, inprod}) \rightleftharpoons \\ \texttt{cop_exp} \ (\texttt{s, inprod}) \ \texttt{cop_zero} \ \texttt{x} = \texttt{x} \end{array}$$

$$e^{a.op}_{op}(x) = e^a_{\mathbb{C}}.op(x)$$

Theorem

 $\begin{array}{l} \forall \; \texttt{s inprod a x. x IN s \land is_inner_space (s, inprod) \Rightarrow} \\ & (\texttt{cop_exp (s, inprod) (\lambda y. a\%y)) x = \texttt{cpow a \% x} \end{array}$

Outline

Motivation & Context

Quantum Computers & Quantum Optics

3 Formalization

- Mathematics Prerequisites
- Coherent Light
- Optical Flip Gate

Conclusion

Coherent Light: Definition

 $\textit{Coherent} \; \mathsf{light} \Rightarrow \mathsf{number} \; \mathsf{of} \; \mathsf{photons} \; \mathsf{follows} \; \mathsf{Poisson} \; \mathsf{distribution} \; \mathsf{at} \; \mathsf{any} \; \mathsf{time}$

More precisely: state of a coherent light = $|\alpha\rangle$ where $|\alpha|^2$ is the distribution parameter, i.e., the number of expected photons.

Definition

coherent sm
$$\alpha = \exp(-\frac{|\alpha|^2}{2}))\%$$

cfun_infsum (s, inprod) (from 0) ($\lambda n. \frac{\alpha^n}{\sqrt{n!}}\%$ (fock sm n))

fock sm n = state where we have n photons

- \rightarrow defined using the creation operator and the vaccum state (. . .)
- \rightarrow themselves defined using the definition of sm (. . .)

Quantum Optics: Overview (Recall)

Coherent Light: Property

Theorem (Expression using the displacement operator)

 $\begin{array}{l} (\forall \texttt{n.creat_of_sm sm (fock sm n) \neq cfun_zero)}) \\ \land \texttt{cfun_summable (s, inprod) (from 0)} (\lambda \texttt{n}. \frac{\alpha \text{ pow n}}{\sqrt{!n}} \% \texttt{ fock sm n}) \\ \texttt{is_sm sm} \land \texttt{ exp_summable (qspc_of_sm sm) (} \alpha \texttt{ creat_of_sm sm}) \\ \Rightarrow \texttt{coherent sm } \alpha = (\texttt{disp sm } \alpha) \texttt{ vac} \end{array}$

vac = lowest energy coherent state ("vaccum")

Displacement Operator

$$D(\alpha) = e^{\alpha \hat{a}^{\dagger}} e^{-\alpha^* \hat{a}} e^{[\alpha \hat{a}^{\dagger}, \alpha^* \hat{a}]}$$

 \hat{a} = creation operator (adds a level of energy/photon to a quantum system) [a, b] = commutator between a and b, i.e., $a \circ b - b \circ a$

Definition (Displacement Operator)

disp sm
$$\alpha =$$

(cop_exp sm (α % creat_of_sm sm) **
cop_exp sm (-(cnj α) % a_of_sm sm) **
cop_exp sm ((α % creat_of_sm sm) com ((cnj α) % a_of_sm sm)

Main interest of the displacement operator: easily implemented (physically) using a beam splitter

Outline

Motivation & Context

Quantum Computers & Quantum Optics

3 Formalization

- Mathematics Prerequisites
- Coherent Light
- Optical Flip Gate

4) Conclusion

Coherent Light Qubit

- Qubit = coherent light with states $|\textit{vac}\rangle$ and $|\alpha\rangle$
- |vac
 angle and |lpha
 angle represent |0
 angle and |1
 angle, respectively

- \bullet Quantum flip gate converts $|0\rangle$ into $|1\rangle$ and vice versa
- Implemented as a beam splitter and a phase conjugating mirror.

Coherent Light Qubit

- Qubit = coherent light with states $|\textit{vac}\rangle$ and $|\alpha\rangle$
- |vac
 angle and |lpha
 angle represent |0
 angle and |1
 angle, respectively

- \bullet Quantum flip gate converts $|0\rangle$ into $|1\rangle$ and vice versa
- Implemented as a beam splitter and a phase conjugating mirror.

Coherent Light Qubit

- Qubit = coherent light with states $|\textit{vac}\rangle$ and $|\alpha\rangle$
- $|\textit{vac}\rangle$ and $|\alpha\rangle$ represent $|0\rangle$ and $|1\rangle$, respectively

- \bullet Quantum flip gate converts $|0\rangle$ into $|1\rangle$ and vice versa
- Implemented as a beam splitter and a phase conjugating mirror.

Coherent Light Qubit

- Qubit = coherent light with states $|\textit{vac}\rangle$ and $|\alpha\rangle$
- $|\textit{vac}\rangle$ and $|\alpha\rangle$ represent $|0\rangle$ and $|1\rangle,$ respectively

- \bullet Quantum flip gate converts $|0\rangle$ into $|1\rangle$ and vice versa
- Implemented as a beam splitter and a phase conjugating mirror.

Beam Splitter over Coherent states

Theorem (Beam splitter over |1
angle)

$$\begin{array}{l} \wedge \ (\forall \texttt{x op. is_linear_cop op} \land \texttt{x IN s} \Rightarrow \\ (\texttt{cop_exp (s, inprod) (-op) ** cop_exp (s, inprod) (op)) x} = \texttt{x} \\ \Rightarrow \texttt{disp sm } (-\alpha) \ (\texttt{coherent sm } \alpha) = \texttt{vac} \end{array}$$

Theorem (Beam splitter over $|0\rangle$)

$$\begin{array}{l} \wedge \ (\forall \texttt{x op. is_linear_cop op} \land \texttt{x IN s} \Rightarrow \\ (\texttt{cop_exp (s, inprod) (-op) ** cop_exp (s, inprod) (op)) x} = \texttt{x} \\ \Rightarrow \texttt{disp sm } (-\alpha) \ (\texttt{coherent sm vac}) = -\alpha \end{array}$$

Note: These proofs requires Baker-Campbell-Hausdorf theorem \rightarrow assumed in this work

Mirror over Coherent states

Definition (Mirror)

mirror m =

cop_exp (s, inprod) (i π % n_of_sm sm)

Theorem (Main mirror property)

 $\begin{array}{l} \texttt{mirror_summable sm \land is_bounded (qspc_of_sm sm) (mirror sm)} \\ \land (\forall \texttt{n.creat_of_sm sm (fock sm n) \neq cfun_zero))} \\ \Rightarrow \texttt{mirror sm (coherent sm } \alpha) = \texttt{coherent sm } (-\alpha) \end{array}$

Theorem (Main mirror property)

 $\begin{array}{l} \texttt{mirror_summable sm \land is_bounded (qspc_of_sm sm) (mirror sm)} \\ \land (\forall \texttt{n.creat_of_sm sm (fock sm n) \neq cfun_zero))} \\ \Rightarrow \texttt{mirror sm (coherent sm vac)} = \texttt{coherent sm vac} \end{array}$

Formal Flip Gate Verification

Definition (Flip Gate)

 $\texttt{flip_gate } \alpha \texttt{ sm} = (\texttt{mirror sm}) \ \ast \ast (\texttt{disp sm} \ (-\alpha))$

Main result of this work:

```
"flip gate applied to |1\rangle returns |0\rangle"
and
"flip gate applied to |0\rangle returns |1\rangle"
```

Theorem

 $\begin{array}{l} (\texttt{coherent sm } \alpha \neq \texttt{cfun_zero}) \land \\ \land (\texttt{cop_exp } (\texttt{s},\texttt{inprod}) (-\texttt{op}) * * \texttt{cop_exp } (\texttt{s},\texttt{inprod}) (\texttt{op})) \texttt{x} = \texttt{x}) \\ \land \texttt{mirror_summable sm } \land \texttt{is_bounded } (\texttt{qspc_of_sm sm}) (\texttt{mirror sm}) \\ \Rightarrow (\texttt{flip_gate } \alpha \texttt{ sm}) (\texttt{coherent sm } \alpha) = \texttt{vac} \\ \land (\texttt{flip_gate } \alpha \texttt{ sm}) \texttt{vac} = \texttt{coherent sm } \alpha \end{array}$

Quantum Computers & Quantum Optics

3 Formalization

Conclusion

- Used HOL Light to formally verify that a quantum-optic-based physical system implements a flip gate (under reasonable assumptions)
- Required the formal development of several theories
- Most important fact: we went from the maths foundations to a close-to-practice implementation

Faculty of Engineering and Computer Science

Thanks! Questions?

http://hvg.ece.concordia.ca