(Je
NICTA
THE UNIVERSITY OF

O O NEW SOUTH WALES
NICTA i

Eisbach: An Isabelle Proof Method Language
Daniel Matichuk

Makarius Wenzel, Toby Murray

ITP 2014

(). fumtraten
LATROBE MACQUARIE Sy
BB b WGy AaTee Mm& BMONASH Ut

Trade & 'v.-t

Investment AL * (S
W .BM«!.I - @ ;;:’.:'."_;; UNSW s
BB OOF SYONTY wrasar o LJ___!'\ Aty Y

T —

Australian Government Queensland Tie Usivessiry ) B s §

Victoria : Government G X TR s




Proof Engineering (Je

NICTA

80000

60000

40000

20000
average — — | — — - BN | P N Lk - e o B — — I

| il | |
Mar-2004 Feb-2012

Size distribution of AFP entries in lines of proof,
sorted by submission date



Proof Engineering e

80000

60 000

40000

20000

average — — | — — - _ e _ ‘ o
Mar-2004 Feb-2012

Size distribution of AFP entries in lines of proof,
sorted by submission date



Proof Engineering (Je

80000

60 000

40000

20000

verage

0
Mar-2004 Feb-2012

Size distribution of AFP entries in lines of proof,
sorted by submission date



Proof Engineering (e

80000

60 000

40000

20000

verage — — -

0
Mar-2004 Feb-2012

Size distribution of AFP entries in lines of proof,
sorted by submission date



Outline

Isabelle Concepts
- |sar
- Proof Methods

Eisbach
- Easy Custom Proof Methods
- Demo

Evaluation/Future
-Existing method rewritten
-Tracing/Debugging...



Isabelle Concepts e

Isabelle Concepts Eisbach Evaluation/Future
- Isar - Easy Custom Proof Methods -Existing method rewritten
- Proof Methods - Demo -Tracing/Debugging...




|Isabelle/lsar

theorem Knaster-Tarsk::
assumes mono: Nz y. 2 < y— fax < fy
shows [ ([|{z. fz <z})=[|{z. fz <z} (isf % = %a)
proof —
have x: f %a < %a (is - <[|?H)
proof
fix x assume H: x € “H
then have 70 < 7 ..

also from H have f ... < z ..

moreover note mono finally show f 70 < zx .
ged
also have 7a < f “a
proof

from mono and x have f (f %a) < f %a .
then show f %a € “H ..
ged
finally show f %0 = “a .
ged




|Isabelle/lsar @

NICTA

theorem Knaster-Tarski:
assumes mono: Nz y. 2 < y— fax < fy
shows [ ([|{z. fz <z})=[|{z. fz <z} (isf % = %a)
proof —
have x: f %a < %a (is - <[|?H)
proof
fix x assume H: z € 7H
then have 70 < 7 .. &

————
<z

also from H have | . o /
moreover note mono fmally show féa < x.

x
ged
also have “a < f “7a
proof
from mono and x have f (f %a) < f %a .
then show f 7a € YH .. &

ged
finally show f %0 = Y0 . -
ged




|Isabelle/lsar

theorem Knaster-Tarski’:
assumes monolintroll: Ney. 2 <y = fz < fy
shows f ([| {z. fz <z}) =[] {z. fz < =z}) (is f %a = ?a)
proof —
have x: f ?a < ?a by (clarsimp,rule order.trans, fastforce)
also have ?a < f Ya by (fastforce intro!: x)
finally show f a0 = %a .

qed




|Isabelle/lsar (e

NICTA

theorem Knaster-Tarski’:
assumes monolintroll: Aey. x <y = fzx < fy
shows f ([| {z. fz <z}) =[] {z. fz < =z}) (is f %a = ?a)
proof —
have *x: f Ya < ?a by (clarsimp,rule order. tmns fastforce) """

also have ?a < f Ya by (fastforce intro!: x)
finally show f 7a = “a . \ /

qed




Proof Methods ®

NICTA

have x: f %a < %a by (clarstmp,rule order.trans, fastforce)

;SN\

Goal Method Combinator

NN

also have 70 < f %a by (fastforce intro!: x)

/

Method Parameter




|lsabelle/ML o

theorem Knaster-Tarski”: (Nzy. 2 <y= fz < fy) =

fUl iz fo<zp) =[] {z fo <))
apply (tactic {{ (FEqSubst.eqsubst-tac @Q{context} [0] Q{thms order-eq-iff } 1)

THEN (Tactic.resolve-tac @Q{thms context-conjl} 1)
THEN (Tactic.resolve-tac @{thms Inf-greatest} 1)
THEN (Tuactic.forward-tac @Q{thms Inf-lower} 1)
THEN (Clasimp.fast-force-tac @Q{ context} 1)
THEN (Tactic.resolve-tac @{thms Inf-lower} 1)
THEN (Clasimp.fast-force-tac @Q{ context} 1)
))

done




|Isabelle’s AFP

Number of files in AFP

Isar (.thy)
1,663




selL4 - our experience

 Full functional correctness proof
—Source code and Proof going open source!

— http://sel 4.systems for more info
—July 29

» |sabelle proof methods developed
-~ WP/WPC - vcg for monadic hoare logic
—sep-* - automating separation logic

» Proof Engineers want more!  Ng s
—Languages like Ltac show this

10


http://seL4.systems

Eisbach (Ye

Eisbach
- Easy Custom Proof Methods
- Demo

Evaluation/Future
-Existing method rewritten
-Tracing/Debugging...

Isabelle Concepts
- |sar
- Proof Methods

11






Dratarpmcal

' il = o S
: o L .".;_-I..“
% : "'r':"".’?,r.,
I_l,'\- ..' L .
3 (?é y #ﬁ"ﬂ-’r
=1 =
3 /A &
m |
g
. bz #
I::lulnlu'r\- - ;.:" .::l-:':"_l_r
g . ::{f{l E:.'- I.EI:';I!'}'._
T &£ o
& e S - FY “an
& b= Hilton Munic o g =)
= h e e
& Chinesischer Turm (= oo B,
- Eis 2y i
= -'-.- (r
&z . 1 o %
= =] -
Restaurant am & g
Chinesischen Turm k.%? & o .
milan = bc; » o7 =
’ [ ]
C e:"? o
&
l:-,"i.‘:'e'l;l:I
.;\."L':-'?-E'IILE
L I:I |:| li"'lll-ﬂ da
:': o S wehrl
H ] &= =
-' (T &
> o
=4 =
= L
= ol
x [
s ¢
I:I '""-.Gul-\:.lr"l_ S
=< e
] .J"“_J'.
Schwabinger z Mgy
Bach oF oF 3 Y, T =
— LN o=
o s g g Inngy,
o e C = ‘A, Al
e & —
anka’ - Lt
= ; "-";-.':.:IP-T .
i= -:‘.,*_u-..ll-;?lﬁ
= Bavanan a Mg - ‘Ig
. i = o & iy
Mational Museum = g [T = LI
T = "'.'i‘.:'f : q._='l 1_: =
[ 5 [ = o
I & e o e —
II:'- I-'rr. '.|'I 1 & E +r Fiy
3] Tl -] 7 TR
= q % c o A 3
3 = = = =
[ | i L) b | E i
= 'II"ll".'h.:,' T i I:I :I- .l..h"l.'\."
o [7H]
3 = £
= o
&
T 8 Prinzregententheater (=
& - - ©
(2] ; 2 2
o § ] - =
@ s 55 = i
ml i r=1 =
T 2 T = o
-Ei' o i ;—'h
r o’ = =
finchen s é—f:“ ; R =
4 (4]
£ = H
o
G
L

12



Language Elements

* [ntegrates existing/new methods
—fastforce, simp, auto...

 Abstract over Terms/Facts/Methods

o Attributes for method hints
—simp, intro, my vcg_ rules...

» Matching provides control flow

—Match and bind higher-order patterns against focused
subgoal elements

NICTA

13



Eisbach (J©®

NICTA

method-definition induct-list facts simp =
(match ?conclin ?P (?x :: ‘a list) = (induct ?x — fastforce simp: simp))

lemma length (xs Q ys) = length xs + length ys by induct-list

14



Eisbach - Design goals (Je

NICTA

» Easy for beginners and experts
—Familiar method syntax from Isar

 Limited functionality - leave complexity to Isabelle/ML

* Integration with other Isabelle languages

» Readable proof procedures

15



Eisbach - Combinators @

« Standard Isar Method Combinators
—“|" - alternative composition
—",7 - sequential composition
—"?" - suppress failure (try)

—"+" - repeated application

* New Combinator
—"—=" - compose with emerging subgoals

method-definition prop-solver, = ((rule impl, (erule conjE)?) | assumption)+




Eisbach - Abstraction

 Parameterize over facts, terms, and methods

Method “Signature”

N\

method-definition prop-solvers facts intro elim =
((rule intro, (erule elim)?) | assumption)+

N/

Abstracted Facts

NICTA

17



Eisbach - Abstraction ()@

NICTA
 Parameterize over facts, terms, and methods

Method “Signature”

N\

method-definition prop- solverz facts intro elim =
((rule intro, (erule elim)?) | assumption)-+

V4

Abstracted Facts

Fact Arguments

lemma P A Q — P by (prop-solvers intro: impl elim: conjE)

17



Eisbach - Attributes

* New command: declare-attributes

declare-attributes intro elim

—Managed with the usual Isar declare command

declare impl [intro| and conjE |elim]

—Used at run-time by methods

method-definition prop-solvers facts |intro| |elim] =
((rule intro, (erule elim)?) | assumption)+




Eisbach - Attributes o

* New command: declare-attributes

declare-attributes intro elim

—Managed with the usual Isar declare command

declare impl |intro] and conjE [elim| Square brackets indicate
fact parameter is

—Used at run-time by methods '//managed by attribute

method-definition prop-solvers facts |intro| |elim] =
((rule intro, (erule elim)?) | assumption)+




Eisbach - Attributes o

* New command: declare-attributes

declare-attributes intro elim

—Managed with the usual Isar declare command

declare impl |intro] and conjE [elim| Square brackets indicate
| fact parameter is

—Used at run-time by methods '//managed by attribute

method-definition prop-solvers facts |intro| |elim] =
((rule intro, (erule elim)?) | assumption)+

/N

Contains impl Contains conjE




Eisbach - Attributes o

* New command: declare-attributes

declare-attributes intro elim

—Managed with the usual Isar declare command

declare impl |intro] and conjE [elim| Square brackets indicate
| fact parameter is

—Used at run-time by methods '//managed by attribute

method-definition prop-solvers facts |intro| |elim] =
((rule intro, (erule elim)?) | assumption)+

/N

Contains impl Contains conjE

lemma P A Q — P by prop-solvers




Eisbach - Matching (Je

» Higher-order matching for control flow
—Bind matched patterns

method-definition solve-ex =
(match ?conclin 3x. ?Q x =
(match premsin U: Q ?y = (rule exI |where x =y and P = Q, OF U])))

19



Eisbach - Matching [ Je

NICTA
» Higher-order matching for control flow

—Bind matched patterns Special term ?concl
IS current subgoal

method-definiti
(match ?conclin 3x. ?Q x =
(match premsin U: Q ?y = (rule exI |where x =y and P = Q, OF U])))

19



Eisbach - Matching [ Je

NICTA
» Higher-order matching for control flow

—Bind matched patterns Special term ?concl
IS current subgoal

Matched pattern ?Q

IS bound
method-definition solvefex =

(match ?conclin 3x. ?Q x =
(match premsin U: Q ?y = (rule exI |where x =y and P = Q, OF U])))

19



Eisbach - Matching o

NICTA
» Higher-order matching for control flow

—Bind matched patterns Special term ?concl
IS current subgoal

Matched pattern ?Q

IS bound
method-definition solvefex =

(match ?conclin 3x. ?Q x =
(match prems in U: Q ?y = (rule exI \where x =y and P = Q, OF U])))

Special fact prems
IS current premises

19



Eisbach - Matching ®
NICTA
» Higher-order matching for control flow

—Bind matched patterns Special term ?concl
IS current subgoal

Matched pattern ?Q

IS bound
method-definition solvefex =

(match ?conclin 3x. ?Q x =
(match premsin U: Q ?y = (rule exI \where x =y and P = Q, OF U])))

Matching singleton fact U

Special fact prems is bound

IS current premises



Focus/Matching

* Problem: Raw subgoals are unstructured

Ne. Av = Bx=— Az N Bz

NICTA

20



Focus/Matching

* Problem: Raw subgoals are unstructured

Ne. Av = Bx=— Az N Bz

by (rule conjl|OF assms(1) assms(2)])

NICTA

20



Focus/Matching e

NICTA
* Problem: Raw subgoals are unstructured

Ne. Av = Bx=— Az N Bz

by (rule ssms(2)])

20



Focus/Matching

* Problem: Raw subgoals are unstructured

Ne. Av = Bx=— Az N Bz

by (rule ssms(2)])

e Goal:

method-definition solve-conj =
(match ?concl in 7P N 70Q) =
(match prems in U: P and U". QQ =
(rule congI|OF U U')))

NICTA

20



Focus/Matching (Je

NICTA

* Problem: Raw subgoals are unstructured

Ne. Av = Bx=— Az N Bz

by (rule ssms(2)])

Find and name assumptions
through matching

e Goal:

method-definition solve-cghy =
(match ?concl in 7P NJ7Q) =
(match prems in U: P and U". QQ =
(rule congI|OF U U')))

20



Focus

» Solution: Focusing
—Based on existing work

Ne. Ar = Bx=— Ax AN Bzx

v

NICTA

21



Focus

» Solution: Focusing
—Based on existing work

Nr. Ax = Bx=— Az AN Bzx

fixes &

assumes A r and B z
shows A 2 A B z

NICTA

21



Focus

» Solution: Focusing
—Based on existing work

Nr. Ax = Bx=— Az AN Bzx

fixes &

assumes A r and B zx » prems
shows A x N B x > 2concl

NICTA

21



Demo

NICTA

22



Evaluation/Future work O

T

J—

o

3
“

Isabelle Concepts Eisbach Evaluation/Future
- Isar - Easy Custom Proof Methods -Existing method rewritten
- Proof Methods - Demo -Tracing/Debugging...




Tactic Languages are not new

e | tac
—Untyped High-level tactic language for Coqg
— Goal matching, iteration, recursion

 VeriML

—Dependently typed tactic language
—Provides strong static guarantees

» Mtac
— Typed tactic language for Coq
—Leverages built-in Coq notion of computation
— Strong static guarantees



Current Results

 Eisbach

— Extension of Isar, Isabelle’s proof language

—Integrates with existing Isar syntax

* methods
o attributes

 Evaluation

— Existing methods rewritten in Eisbach
« WP, WPC: 14.verified invariant proof successfully checked

* Future Work
— Tracing/Debugging
— Optimisations



Conclusion

* Proof Engineers need tools
—to write proofs at scale

* |sar provides structure/syntax for proofs
—Most Isabelle users most familiar with Isar

» Eisbach provides easy mechanisms for writing
automation
—abstraction
—matching
—backtracking
—recursion

» Coming soon...

NICTA

26



Thank Youl!

NICTA



