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Example: Isabelle/Isar proof text

theorem Knaster-Tarski :
assumes mono:

V
x y. x  y =) f x  f y

shows f (
d
{x . f x  x}) =

d
{x . f x  x} (is f ?a = ?a)

proof �
have ⇤: f ?a  ?a (is - 

d
?H )

proof

fix x assume H : x 2 ?H
then have ?a  x ..

also from H have f . . .  x ..

moreover note mono finally show f ?a  x .

qed

also have ?a  f ?a
proof

from mono and ⇤ have f (f ?a)  f ?a .

then show f ?a 2 ?H ..

qed

finally show f ?a = ?a .

qed

1. Representing Proofs 7
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theory Scratch
imports Main ⇠⇠/src/HOL/Library/Lattice-Syntax
begin

theorem Knaster-Tarski :
assumes mono:

V
x y . x  y =) f x  f y

shows f (
d

{x . f x  x}) =
d

({x . f x  x}) (is f ?a = ?a)
proof �
have ⇤: f ?a  ?a (is - 

d
?H )

proof

fix x assume H : x 2 ?H
then have ?a  x ..

also from H have f x  x ..
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also have ?a  f ?a
proof

from mono and ⇤ have f (f ?a)  f ?a .

then show f ?a 2 ?H ..

qed

finally show f ?a = ?a .

qed

theorem Knaster-Tarski 0:
assumes mono[intro!]:

V
x y . x  y =) f x  f y

shows f (
d

{x . f x  x}) =
d

({x . f x  x}) (is f ?a = ?a)
proof �
have ⇤: f ?a  ?a by (clarsimp,rule order .trans , fastforce)
also have ?a  f ?a by (fastforce intro!: ⇤)
finally show f ?a = ?a .

qed

theorem Knaster-Tarski 00: (
V
x y . x  y =) f x  f y) =)
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theory Scratch
imports

⇠⇠/src/HOL/Library/Lattice-Syntax
begin

theorem Knaster-Tarski : (
V
x y . x  y =) f x  f y) =)

f (
d

{x . f x  x}) =
d

({x . f x  x})
apply (subst order-eq-i↵ )
apply (rule context-conjI )
apply (rule Inf-greatest)
apply (frule Inf-lower)
apply fastforce
apply (rule Inf-lower)
apply fastforce
done

theorem Knaster-Tarski 0: (
V
x y . x  y =) f x  f y) =)

f (
d

{x . f x  x}) =
d

({x . f x  x})
apply (tactic hh (EqSubst .eqsubst-tac @{context} [0 ] @{thms order-eq-i↵ } 1 )
THEN (Tactic.resolve-tac @{thms context-conjI } 1 )
THEN (Tactic.resolve-tac @{thms Inf-greatest} 1 )
THEN (Tactic.forward-tac @{thms Inf-lower} 1 )
THEN (Clasimp.fast-force-tac @{context} 1 )
THEN (Tactic.resolve-tac @{thms Inf-lower} 1 )
THEN (Clasimp.fast-force-tac @{context} 1 )
ii)

done

end

1
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Number of files in AFP

ML 
50

Isar (.thy) 
1,663
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seL4 - our experience

• Full functional correctness proof 
– Source code and Proof going open source! 
– http://seL4.systems for more info 
– July 29 
!

• Isabelle proof methods developed 
– WP/WPC - vcg for monadic hoare logic 
– sep-* - automating separation logic 
!

• Proof Engineers want more! 
– Languages like Ltac show this

10

http://seL4.systems
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Language Elements

• Integrates existing/new methods 
– fastforce, simp, auto… 
!

• Abstract over Terms/Facts/Methods 
!

• Attributes for method hints 
– simp, intro, my_vcg_rules… 
!

• Matching provides control flow 
– Match and bind higher-order patterns against focused 

subgoal elements

13
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The Isar proof language does not support proof procedure definitions directly, but
this hasn’t prevented large verifications from being completed: the seL4 proofs rely
mainly on two custom tactics. This can be partly explained by the power of exist-
ing proof tools in Isabelle/HOL. However, it has arguably led to more duplication in
these proofs than is acceptable; managing duplication has been a challenge for the seL4
proofs in [1]. This duplication makes proof maintenance difficult, and highlights the
barrier to entry when implementing proof tools in Isabelle/ML. If automation can be ex-
pressed at a high level, a wider class of users can maintain and extend domain-specific
proof procedures, which are often more maintainable than long proof scripts.

In this paper, we present a proof method language for Isabelle, called Eisbach, that
allows writing proof procedures by appealing to existing proof tools with their usual
syntax. The new Isar command method-definition allows proof methods to be com-
bined, named, and abstracted over terms, facts and other methods. Eisbach is inspired
by Coq’s Ltac [4], and includes similar features such as matching on facts and the cur-
rent goal. However, it continues the Isabelle philosophy of exposing carefully designed
features to the user while leaving more sophisticated functionality to Isabelle/ML: small
snippets of ML may be easily included on demand. Eisbach benefits from general
Isabelle concepts, while easing their exposure to users: pervasive backtracking, the
structured proof context with named facts, and attributes to declare hints for proof tools.

The following simple example defines a new proof method which identifies a list
in the conclusion of the current subgoal and applies the default induction principle to it
with the existing method induct. All newly emerging subgoals are solved with fastforce,
with additional simplification rules given as argument.

method-definition induct-list facts simp =
(match ?concl in ?P (?x :: 0a list) ) (induct ?x 7! fastforce simp: simp))

Now induct-list can be called as a proof method to prove simple properties about lists.

lemma length (xs @ ys) = length xs + length ys by induct-list

The primary goal of Eisbach is to make writing proofs more productive, to avoid
duplication, and thereby lower the costs of proof maintenance. Its design principles are:

– To be easy to use for beginners and experts.
– To expose limited functionality, leaving complex functionality to Isabelle/ML.
– Seamless integration with other Isabelle languages.
– To continue Isar’s principle of readable proofs, creating readable proof procedures.

We begin in Section 2 by recalling some concepts of Isabelle and Isar. Section 3
then presents Eisbach, via a tour of its features in a tutorial style, concluding with
the development of a solver for first order logic. We describe Eisbach’s design and
implementation in Section 4, before evaluating it in Section 5 by implementing the two
most widely-used proof methods of the seL4 verification stack, and comparing them
against their original implementations. Section 6 then surveys related work on proof
programming languages, to put Eisbach in proper context.

2
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features to the user while leaving more sophisticated functionality to Isabelle/ML: small
snippets of ML may be easily included on demand. Eisbach benefits from general
Isabelle concepts, while easing their exposure to users: pervasive backtracking, the
structured proof context with named facts, and attributes to declare hints for proof tools.

The following simple example defines a new proof method which identifies a list
in the conclusion of the current subgoal and applies the default induction principle to it
with the existing method induct. All newly emerging subgoals are solved with fastforce,
with additional simplification rules given as argument.

method-definition induct-list facts simp =
(match ?concl in ?P (?x :: 0a list) ) (induct ?x 7! fastforce simp: simp))

Now induct-list can be called as a proof method to prove simple properties about lists.

lemma length (xs @ ys) = length xs + length ys by induct-list

The primary goal of Eisbach is to make writing proofs more productive, to avoid
duplication, and thereby lower the costs of proof maintenance. Its design principles are:

– To be easy to use for beginners and experts.
– To expose limited functionality, leaving complex functionality to Isabelle/ML.
– Seamless integration with other Isabelle languages.
– To continue Isar’s principle of readable proofs, creating readable proof procedures.

We begin in Section 2 by recalling some concepts of Isabelle and Isar. Section 3
then presents Eisbach, via a tour of its features in a tutorial style, concluding with
the development of a solver for first order logic. We describe Eisbach’s design and
implementation in Section 4, before evaluating it in Section 5 by implementing the two
most widely-used proof methods of the seL4 verification stack, and comparing them
against their original implementations. Section 6 then surveys related work on proof
programming languages, to put Eisbach in proper context.
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The Isar proof language does not support proof procedure definitions directly, but
this hasn’t prevented large verifications from being completed: the seL4 proofs rely
mainly on two custom tactics. This can be partly explained by the power of exist-
ing proof tools in Isabelle/HOL. However, it has arguably led to more duplication in
these proofs than is acceptable; managing duplication has been a challenge for the seL4
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barrier to entry when implementing proof tools in Isabelle/ML. If automation can be ex-
pressed at a high level, a wider class of users can maintain and extend domain-specific
proof procedures, which are often more maintainable than long proof scripts.

In this paper, we present a proof method language for Isabelle, called Eisbach, that
allows writing proof procedures by appealing to existing proof tools with their usual
syntax. The new Isar command method-definition allows proof methods to be com-
bined, named, and abstracted over terms, facts and other methods. Eisbach is inspired
by Coq’s Ltac [4], and includes similar features such as matching on facts and the cur-
rent goal. However, it continues the Isabelle philosophy of exposing carefully designed
features to the user while leaving more sophisticated functionality to Isabelle/ML: small
snippets of ML may be easily included on demand. Eisbach benefits from general
Isabelle concepts, while easing their exposure to users: pervasive backtracking, the
structured proof context with named facts, and attributes to declare hints for proof tools.

The following simple example defines a new proof method which identifies a list
in the conclusion of the current subgoal and applies the default induction principle to it
with the existing method induct. All newly emerging subgoals are solved with fastforce,
with additional simplification rules given as argument.

method-definition induct-list facts simp =
(match ?concl in ?P (?x :: 0a list) ) (induct ?x 7! fastforce simp: simp))

Now induct-list can be called as a proof method to prove simple properties about lists.

lemma length (xs @ ys) = length xs + length ys by induct-list

The primary goal of Eisbach is to make writing proofs more productive, to avoid
duplication, and thereby lower the costs of proof maintenance. Its design principles are:

– To be easy to use for beginners and experts.
– To expose limited functionality, leaving complex functionality to Isabelle/ML.
– Seamless integration with other Isabelle languages.
– To continue Isar’s principle of readable proofs, creating readable proof procedures.

We begin in Section 2 by recalling some concepts of Isabelle and Isar. Section 3
then presents Eisbach, via a tour of its features in a tutorial style, concluding with
the development of a solver for first order logic. We describe Eisbach’s design and
implementation in Section 4, before evaluating it in Section 5 by implementing the two
most widely-used proof methods of the seL4 verification stack, and comparing them
against their original implementations. Section 6 then surveys related work on proof
programming languages, to put Eisbach in proper context.
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to continue the proof, until it is eventually concluded by the command done (without
implicit steps for closing). After one or two apply steps, the foreseeable structure of
the reasoning is usually lost, and the Isar proof text degenerates into a proof script:
understanding it later typically requires stepping through its intermediate goal states.

The method expressions above may combine basic proof methods using Isar’s method
combinators. Unlike former tacticals, there is only a minimalistic repertoire for repeated
application, alternative choice, and sequential composition (with backtracking). Such
methods are used in-place, to address a particular proof problem in a given situation.

Eisbach allows compound proof methods to be named, and extend the name space
of basic methods accordingly. Method definitions may abstract over parameters: terms,
facts, or other methods. Additionally, Eisbach provides an expressive matching facility
that can be used to manage control flow and perform proof goal analysis via unification.

Subsequently, we will follow the development of a small first order logic solver in
Eisbach, gradually increasing its scope and demonstrating the main language elements.

3.2 Combinators and Backtracking
There are four combinators in Isar. Firstly, “,” is sequential composition of two methods
with implicit backtracking: “meth1,meth2” applies meth1, which may produces a set of
possible results (new proof goals), before applying meth2 to all results produced by
meth1. Effectively this produces all results in which the application of meth1 followed
by meth2 is successful.

At the end of each apply command, the first successful result from all those pro-
duced is retained.

The second Isar combinator is “|”, alternative composition: “meth1|meth2” tries
meth1 and falls through to meth2 when meth1 fails (yields no results). The third combi-
nator “?” is a unary combinator that suppresses failure: meth? returns the original proof
state when meth fails, rather than failing. Lastly, “+” is a unary combinator for repeated
method application: meth+ repeatedly applies meth until meth fails, at which point it
yields the proof state obtained before the final failing invocation of meth.

A typical method invocation might look as follows:
lemma P ^ Q �! P by ((rule impI, (erule conjE)?) | assumption)+

Which, informally, says: “Apply the implication introduction rule, followed by op-
tionally eliminating any conjunctions in the assumptions. If this fails, solve the goal
with an assumption. Repeat this action until it is unsuccessful.”

As well as the above lemma, this invocation will prove the correctness a small class
of propositional logic tautologies. With the method-definition command we can define
a proof method that makes the above functionality available generally.

method-definition prop-solver1 = ((rule impI, (erule conjE)?) | assumption)+
lemma P ^ Q ^ R �! P by prop-solver1

3.3 Abstraction
We can abstract this method over its introduction and elimination rules to make it more
generally applicable. The facts keyword declares fact parameters for use in the method.
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Method “Signature”
These arguments are provided when the method is invoked, in the form of lists of facts
for each, using Isar’s standard method-sections syntax. Below we generalise the method
above over its intro and elim rules respectively that it may apply.

method-definition prop-solver2 facts intro elim =
((rule intro, (erule elim)?) | assumption)+

lemma P ^ Q �! P by (prop-solver2 intro: impI elim: conjE)

Above, the introduction and elimination rules need to be provided for each method
invocation. Traditionally Isabelle proof methods avoid this by using tool-specific data
as part of the proof context, which are managed using attributes (see Section 2) to add
and remove entries. A method invocation retrieves the facts that it needs to know about
whenever it is invoked, using the run-time proof context.

Eisbach supports creating new fact collections in the context when defining new
method. A fact parameter [p] surrounded by square brackets declares a new dynamic
fact whose name is p. It can be augmented further when a method is invoked using the
common syntax meth p: facts, but can also be managed in the proof context using the
provided add and del attributes combined with the Isar command declare.

method-definition prop-solver3 facts [intro] [elim] =
((rule intro, (erule elim)?) | assumption)+

declare impI [add intro] and conjE [add elim]

lemma P ^ Q �! P by prop-solver3

Methods can also abstract over terms using the for keyword, optionally providing
type constraints. For instance, the following proof method elim-all takes a term y of
any type, which it uses to instantiate the x-variable of the allE (forall elimination) rule
before applying that rule as an elimination rule. The instantiation is performed here by
Isar’s where attribute. This has the effect of instantiating a universal quantification 8 x.
P x in one of the current assumptions by replacing it with the term P y.

method-definition elim-all for Q :: 0a ) bool and y :: 0a =
(erule allE [where P = Q and x = y ])

The term parameters y and P can be used arbitrarily inside the method body, as part
of attribute applications or arguments to other methods. The expression is type-checked
as far as possible when the method is defined, however dynamic type errors can still
occur when it is invoked (e.g. when terms are instantiated in a parameterized fact).
Actual term arguments are supplied positionally, in the same order as in the method
definition.

lemma 8 x. P x =) P a by (elim-all P a)

3.4 Custom Combinators

The four existing combinators in Isar (mentioned above) quickly prove to be too re-
strictive when writing tactics in Eisbach. A fifth combinator (“ 7!”) was added, which
takes two methods and, in contrast to “,”, invokes the second method on all subgoals
produced by the first. This is necessary to handle cases where the number of subgoals
produced by a method cannot be known statically.

6

Abstracted Facts
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Method “Signature”
These arguments are provided when the method is invoked, in the form of lists of facts
for each, using Isar’s standard method-sections syntax. Below we generalise the method
above over its intro and elim rules respectively that it may apply.

method-definition prop-solver2 facts intro elim =
((rule intro, (erule elim)?) | assumption)+

lemma P ^ Q �! P by (prop-solver2 intro: impI elim: conjE)

Above, the introduction and elimination rules need to be provided for each method
invocation. Traditionally Isabelle proof methods avoid this by using tool-specific data
as part of the proof context, which are managed using attributes (see Section 2) to add
and remove entries. A method invocation retrieves the facts that it needs to know about
whenever it is invoked, using the run-time proof context.

Eisbach supports creating new fact collections in the context when defining new
method. A fact parameter [p] surrounded by square brackets declares a new dynamic
fact whose name is p. It can be augmented further when a method is invoked using the
common syntax meth p: facts, but can also be managed in the proof context using the
provided add and del attributes combined with the Isar command declare.

method-definition prop-solver3 facts [intro] [elim] =
((rule intro, (erule elim)?) | assumption)+

declare impI [add intro] and conjE [add elim]

lemma P ^ Q �! P by prop-solver3

Methods can also abstract over terms using the for keyword, optionally providing
type constraints. For instance, the following proof method elim-all takes a term y of
any type, which it uses to instantiate the x-variable of the allE (forall elimination) rule
before applying that rule as an elimination rule. The instantiation is performed here by
Isar’s where attribute. This has the effect of instantiating a universal quantification 8 x.
P x in one of the current assumptions by replacing it with the term P y.

method-definition elim-all for Q :: 0a ) bool and y :: 0a =
(erule allE [where P = Q and x = y ])

The term parameters y and P can be used arbitrarily inside the method body, as part
of attribute applications or arguments to other methods. The expression is type-checked
as far as possible when the method is defined, however dynamic type errors can still
occur when it is invoked (e.g. when terms are instantiated in a parameterized fact).
Actual term arguments are supplied positionally, in the same order as in the method
definition.

lemma 8 x. P x =) P a by (elim-all P a)

3.4 Custom Combinators

The four existing combinators in Isar (mentioned above) quickly prove to be too re-
strictive when writing tactics in Eisbach. A fifth combinator (“ 7!”) was added, which
takes two methods and, in contrast to “,”, invokes the second method on all subgoals
produced by the first. This is necessary to handle cases where the number of subgoals
produced by a method cannot be known statically.
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Abstracted Facts
These arguments are provided when the method is invoked, in the form of lists of facts
for each, using Isar’s standard method-sections syntax. Below we generalise the method
above over its intro and elim rules respectively that it may apply.

method-definition prop-solver2 facts intro elim =
((rule intro, (erule elim)?) | assumption)+

lemma P ^ Q �! P by (prop-solver2 intro: impI elim: conjE)

Above, the introduction and elimination rules need to be provided for each method
invocation. Traditionally Isabelle proof methods avoid this by using tool-specific data
as part of the proof context, which are managed using attributes (see Section 2) to add
and remove entries. A method invocation retrieves the facts that it needs to know about
whenever it is invoked, using the run-time proof context.

Eisbach supports creating new fact collections in the context when defining new
method. A fact parameter [p] surrounded by square brackets declares a new dynamic
fact whose name is p. It can be augmented further when a method is invoked using the
common syntax meth p: facts, but can also be managed in the proof context using the
provided add and del attributes combined with the Isar command declare.

method-definition prop-solver3 facts [intro] [elim] =
((rule intro, (erule elim)?) | assumption)+

declare impI [add intro] and conjE [add elim]

lemma P ^ Q �! P by prop-solver3

Methods can also abstract over terms using the for keyword, optionally providing
type constraints. For instance, the following proof method elim-all takes a term y of
any type, which it uses to instantiate the x-variable of the allE (forall elimination) rule
before applying that rule as an elimination rule. The instantiation is performed here by
Isar’s where attribute. This has the effect of instantiating a universal quantification 8 x.
P x in one of the current assumptions by replacing it with the term P y.

method-definition elim-all for Q :: 0a ) bool and y :: 0a =
(erule allE [where P = Q and x = y ])

The term parameters y and P can be used arbitrarily inside the method body, as part
of attribute applications or arguments to other methods. The expression is type-checked
as far as possible when the method is defined, however dynamic type errors can still
occur when it is invoked (e.g. when terms are instantiated in a parameterized fact).
Actual term arguments are supplied positionally, in the same order as in the method
definition.

lemma 8 x. P x =) P a by (elim-all P a)

3.4 Custom Combinators

The four existing combinators in Isar (mentioned above) quickly prove to be too re-
strictive when writing tactics in Eisbach. A fifth combinator (“ 7!”) was added, which
takes two methods and, in contrast to “,”, invokes the second method on all subgoals
produced by the first. This is necessary to handle cases where the number of subgoals
produced by a method cannot be known statically.
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These arguments are provided when the method is invoked, in the form of lists of facts
for each, using Isar’s standard method-sections syntax. Below we generalise the method
above over its intro and elim rules respectively that it may apply.

method-definition prop-solver2 facts intro elim =
((rule intro, (erule elim)?) | assumption)+

lemma P ^ Q �! P by (prop-solver2 intro: impI elim: conjE)

Above, the introduction and elimination rules need to be provided for each method
invocation. Traditionally Isabelle proof methods avoid this by using tool-specific data
as part of the proof context, which are managed using attributes (see Section 2) to add
and remove entries. A method invocation retrieves the facts that it needs to know about
whenever it is invoked, using the run-time proof context.

Eisbach supports creating new fact collections in the context using a new Isar com-
mand declare-attributes. A fact parameter [p] surrounded by square brackets declares
that fact to be backed by the fact collection p. It can be augmented further when a
method is invoked using the common syntax meth p: facts, but can also be managed in
the proof context with the Isar command declare.

declare-attributes intro elim
method-definition prop-solver3 facts [intro] [elim] =
((rule intro, (erule elim)?) | assumption)+

declare impI [intro] and conjE [elim]

lemma P ^ Q �! P by prop-solver3

Methods can also abstract over terms using the for keyword, optionally providing
type constraints. For instance, the following proof method elim-all takes a term y of
any type, which it uses to instantiate the x-variable of the allE (forall elimination) rule
before applying that rule as an elimination rule. The instantiation is performed here by
Isar’s where attribute. This has the effect of instantiating a universal quantification 8 x.
P x in one of the current assumptions by replacing it with the term P y.

method-definition elim-all for Q :: 0a ) bool and y :: 0a =
(erule allE [where P = Q and x = y ])

The term parameters y and P can be used arbitrarily inside the method body, as part
of attribute applications or arguments to other methods. The expression is type-checked
as far as possible when the method is defined, however dynamic type errors can still
occur when it is invoked (e.g. when terms are instantiated in a parameterized fact).
Actual term arguments are supplied positionally, in the same order as in the method
definition.

lemma 8 x. P x =) P a by (elim-all P a)

3.4 Custom Combinators

The four existing combinators in Isar (mentioned above) quickly prove to be too re-
strictive when writing tactics in Eisbach. A fifth combinator (“ 7!”) was added, which
takes two methods and, in contrast to “,”, invokes the second method on all subgoals

These arguments are provided when the method is invoked, in the form of lists of facts
for each, using Isar’s standard method-sections syntax. Below we generalise the method
above over its intro and elim rules respectively that it may apply.

method-definition prop-solver2 facts intro elim =
((rule intro, (erule elim)?) | assumption)+

lemma P ^ Q �! P by (prop-solver2 intro: impI elim: conjE)

Above, the introduction and elimination rules need to be provided for each method
invocation. Traditionally Isabelle proof methods avoid this by using tool-specific data
as part of the proof context, which are managed using attributes (see Section 2) to add
and remove entries. A method invocation retrieves the facts that it needs to know about
whenever it is invoked, using the run-time proof context.

Eisbach supports creating new fact collections in the context using a new Isar com-
mand declare-attributes. A fact parameter [p] surrounded by square brackets declares
that fact to be backed by the fact collection p. It can be augmented further when a
method is invoked using the common syntax meth p: facts, but can also be managed in
the proof context with the Isar command declare.

declare-attributes intro elim
method-definition prop-solver3 facts [intro] [elim] =
((rule intro, (erule elim)?) | assumption)+

declare impI [intro] and conjE [elim]

lemma P ^ Q �! P by prop-solver3

Methods can also abstract over terms using the for keyword, optionally providing
type constraints. For instance, the following proof method elim-all takes a term y of
any type, which it uses to instantiate the x-variable of the allE (forall elimination) rule
before applying that rule as an elimination rule. The instantiation is performed here by
Isar’s where attribute. This has the effect of instantiating a universal quantification 8 x.
P x in one of the current assumptions by replacing it with the term P y.

method-definition elim-all for Q :: 0a ) bool and y :: 0a =
(erule allE [where P = Q and x = y ])

The term parameters y and P can be used arbitrarily inside the method body, as part
of attribute applications or arguments to other methods. The expression is type-checked
as far as possible when the method is defined, however dynamic type errors can still
occur when it is invoked (e.g. when terms are instantiated in a parameterized fact).
Actual term arguments are supplied positionally, in the same order as in the method
definition.

lemma 8 x. P x =) P a by (elim-all P a)

3.4 Custom Combinators

The four existing combinators in Isar (mentioned above) quickly prove to be too re-
strictive when writing tactics in Eisbach. A fifth combinator (“ 7!”) was added, which
takes two methods and, in contrast to “,”, invokes the second method on all subgoals

These arguments are provided when the method is invoked, in the form of lists of facts
for each, using Isar’s standard method-sections syntax. Below we generalise the method
above over its intro and elim rules respectively that it may apply.

method-definition prop-solver2 facts intro elim =
((rule intro, (erule elim)?) | assumption)+

lemma P ^ Q �! P by (prop-solver2 intro: impI elim: conjE)

Above, the introduction and elimination rules need to be provided for each method
invocation. Traditionally Isabelle proof methods avoid this by using tool-specific data
as part of the proof context, which are managed using attributes (see Section 2) to add
and remove entries. A method invocation retrieves the facts that it needs to know about
whenever it is invoked, using the run-time proof context.

Eisbach supports creating new fact collections in the context using a new Isar com-
mand declare-attributes. A fact parameter [p] surrounded by square brackets declares
that fact to be backed by the fact collection p. It can be augmented further when a
method is invoked using the common syntax meth p: facts, but can also be managed in
the proof context with the Isar command declare.

declare-attributes intro elim
method-definition prop-solver3 facts [intro] [elim] =
((rule intro, (erule elim)?) | assumption)+

declare impI [intro] and conjE [elim]

lemma P ^ Q �! P by prop-solver3

Methods can also abstract over terms using the for keyword, optionally providing
type constraints. For instance, the following proof method elim-all takes a term y of
any type, which it uses to instantiate the x-variable of the allE (forall elimination) rule
before applying that rule as an elimination rule. The instantiation is performed here by
Isar’s where attribute. This has the effect of instantiating a universal quantification 8 x.
P x in one of the current assumptions by replacing it with the term P y.

method-definition elim-all for Q :: 0a ) bool and y :: 0a =
(erule allE [where P = Q and x = y ])

The term parameters y and P can be used arbitrarily inside the method body, as part
of attribute applications or arguments to other methods. The expression is type-checked
as far as possible when the method is defined, however dynamic type errors can still
occur when it is invoked (e.g. when terms are instantiated in a parameterized fact).
Actual term arguments are supplied positionally, in the same order as in the method
definition.

lemma 8 x. P x =) P a by (elim-all P a)

3.4 Custom Combinators

The four existing combinators in Isar (mentioned above) quickly prove to be too re-
strictive when writing tactics in Eisbach. A fifth combinator (“ 7!”) was added, which
takes two methods and, in contrast to “,”, invokes the second method on all subgoals
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These arguments are provided when the method is invoked, in the form of lists of facts
for each, using Isar’s standard method-sections syntax. Below we generalise the method
above over its intro and elim rules respectively that it may apply.

method-definition prop-solver2 facts intro elim =
((rule intro, (erule elim)?) | assumption)+

lemma P ^ Q �! P by (prop-solver2 intro: impI elim: conjE)

Above, the introduction and elimination rules need to be provided for each method
invocation. Traditionally Isabelle proof methods avoid this by using tool-specific data
as part of the proof context, which are managed using attributes (see Section 2) to add
and remove entries. A method invocation retrieves the facts that it needs to know about
whenever it is invoked, using the run-time proof context.

Eisbach supports creating new fact collections in the context using a new Isar com-
mand declare-attributes. A fact parameter [p] surrounded by square brackets declares
that fact to be backed by the fact collection p. It can be augmented further when a
method is invoked using the common syntax meth p: facts, but can also be managed in
the proof context with the Isar command declare.

declare-attributes intro elim
method-definition prop-solver3 facts [intro] [elim] =
((rule intro, (erule elim)?) | assumption)+

declare impI [intro] and conjE [elim]

lemma P ^ Q �! P by prop-solver3

Methods can also abstract over terms using the for keyword, optionally providing
type constraints. For instance, the following proof method elim-all takes a term y of
any type, which it uses to instantiate the x-variable of the allE (forall elimination) rule
before applying that rule as an elimination rule. The instantiation is performed here by
Isar’s where attribute. This has the effect of instantiating a universal quantification 8 x.
P x in one of the current assumptions by replacing it with the term P y.

method-definition elim-all for Q :: 0a ) bool and y :: 0a =
(erule allE [where P = Q and x = y ])

The term parameters y and P can be used arbitrarily inside the method body, as part
of attribute applications or arguments to other methods. The expression is type-checked
as far as possible when the method is defined, however dynamic type errors can still
occur when it is invoked (e.g. when terms are instantiated in a parameterized fact).
Actual term arguments are supplied positionally, in the same order as in the method
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lemma 8 x. P x =) P a by (elim-all P a)

3.4 Custom Combinators

The four existing combinators in Isar (mentioned above) quickly prove to be too re-
strictive when writing tactics in Eisbach. A fifth combinator (“ 7!”) was added, which
takes two methods and, in contrast to “,”, invokes the second method on all subgoals

These arguments are provided when the method is invoked, in the form of lists of facts
for each, using Isar’s standard method-sections syntax. Below we generalise the method
above over its intro and elim rules respectively that it may apply.

method-definition prop-solver2 facts intro elim =
((rule intro, (erule elim)?) | assumption)+

lemma P ^ Q �! P by (prop-solver2 intro: impI elim: conjE)

Above, the introduction and elimination rules need to be provided for each method
invocation. Traditionally Isabelle proof methods avoid this by using tool-specific data
as part of the proof context, which are managed using attributes (see Section 2) to add
and remove entries. A method invocation retrieves the facts that it needs to know about
whenever it is invoked, using the run-time proof context.

Eisbach supports creating new fact collections in the context using a new Isar com-
mand declare-attributes. A fact parameter [p] surrounded by square brackets declares
that fact to be backed by the fact collection p. It can be augmented further when a
method is invoked using the common syntax meth p: facts, but can also be managed in
the proof context with the Isar command declare.

declare-attributes intro elim
method-definition prop-solver3 facts [intro] [elim] =
((rule intro, (erule elim)?) | assumption)+

declare impI [intro] and conjE [elim]

lemma P ^ Q �! P by prop-solver3

Methods can also abstract over terms using the for keyword, optionally providing
type constraints. For instance, the following proof method elim-all takes a term y of
any type, which it uses to instantiate the x-variable of the allE (forall elimination) rule
before applying that rule as an elimination rule. The instantiation is performed here by
Isar’s where attribute. This has the effect of instantiating a universal quantification 8 x.
P x in one of the current assumptions by replacing it with the term P y.

method-definition elim-all for Q :: 0a ) bool and y :: 0a =
(erule allE [where P = Q and x = y ])

The term parameters y and P can be used arbitrarily inside the method body, as part
of attribute applications or arguments to other methods. The expression is type-checked
as far as possible when the method is defined, however dynamic type errors can still
occur when it is invoked (e.g. when terms are instantiated in a parameterized fact).
Actual term arguments are supplied positionally, in the same order as in the method
definition.

lemma 8 x. P x =) P a by (elim-all P a)

3.4 Custom Combinators

The four existing combinators in Isar (mentioned above) quickly prove to be too re-
strictive when writing tactics in Eisbach. A fifth combinator (“ 7!”) was added, which
takes two methods and, in contrast to “,”, invokes the second method on all subgoals

These arguments are provided when the method is invoked, in the form of lists of facts
for each, using Isar’s standard method-sections syntax. Below we generalise the method
above over its intro and elim rules respectively that it may apply.
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as part of the proof context, which are managed using attributes (see Section 2) to add
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whenever it is invoked, using the run-time proof context.

Eisbach supports creating new fact collections in the context using a new Isar com-
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that fact to be backed by the fact collection p. It can be augmented further when a
method is invoked using the common syntax meth p: facts, but can also be managed in
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any type, which it uses to instantiate the x-variable of the allE (forall elimination) rule
before applying that rule as an elimination rule. The instantiation is performed here by
Isar’s where attribute. This has the effect of instantiating a universal quantification 8 x.
P x in one of the current assumptions by replacing it with the term P y.

method-definition elim-all for Q :: 0a ) bool and y :: 0a =
(erule allE [where P = Q and x = y ])

The term parameters y and P can be used arbitrarily inside the method body, as part
of attribute applications or arguments to other methods. The expression is type-checked
as far as possible when the method is defined, however dynamic type errors can still
occur when it is invoked (e.g. when terms are instantiated in a parameterized fact).
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method is invoked using the common syntax meth p: facts, but can also be managed in
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before applying that rule as an elimination rule. The instantiation is performed here by
Isar’s where attribute. This has the effect of instantiating a universal quantification 8 x.
P x in one of the current assumptions by replacing it with the term P y.

method-definition elim-all for Q :: 0a ) bool and y :: 0a =
(erule allE [where P = Q and x = y ])

The term parameters y and P can be used arbitrarily inside the method body, as part
of attribute applications or arguments to other methods. The expression is type-checked
as far as possible when the method is defined, however dynamic type errors can still
occur when it is invoked (e.g. when terms are instantiated in a parameterized fact).
Actual term arguments are supplied positionally, in the same order as in the method
definition.
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as far as possible when the method is defined, however dynamic type errors can still
occur when it is invoked (e.g. when terms are instantiated in a parameterized fact).
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These arguments are provided when the method is invoked, in the form of lists of facts
for each, using Isar’s standard method-sections syntax. Below we generalise the method
above over its intro and elim rules respectively that it may apply.

method-definition prop-solver2 facts intro elim =
((rule intro, (erule elim)?) | assumption)+

lemma P ^ Q �! P by (prop-solver2 intro: impI elim: conjE)

Above, the introduction and elimination rules need to be provided for each method
invocation. Traditionally Isabelle proof methods avoid this by using tool-specific data
as part of the proof context, which are managed using attributes (see Section 2) to add
and remove entries. A method invocation retrieves the facts that it needs to know about
whenever it is invoked, using the run-time proof context.

Eisbach supports creating new fact collections in the context using a new Isar com-
mand declare-attributes. A fact parameter [p] surrounded by square brackets declares
that fact to be backed by the fact collection p. It can be augmented further when a
method is invoked using the common syntax meth p: facts, but can also be managed in
the proof context with the Isar command declare.

declare-attributes intro elim
method-definition prop-solver3 facts [intro] [elim] =
((rule intro, (erule elim)?) | assumption)+

declare impI [intro] and conjE [elim]

lemma P ^ Q �! P by prop-solver3

Methods can also abstract over terms using the for keyword, optionally providing
type constraints. For instance, the following proof method elim-all takes a term y of
any type, which it uses to instantiate the x-variable of the allE (forall elimination) rule
before applying that rule as an elimination rule. The instantiation is performed here by
Isar’s where attribute. This has the effect of instantiating a universal quantification 8 x.
P x in one of the current assumptions by replacing it with the term P y.

method-definition elim-all for Q :: 0a ) bool and y :: 0a =
(erule allE [where P = Q and x = y ])

The term parameters y and P can be used arbitrarily inside the method body, as part
of attribute applications or arguments to other methods. The expression is type-checked
as far as possible when the method is defined, however dynamic type errors can still
occur when it is invoked (e.g. when terms are instantiated in a parameterized fact).
Actual term arguments are supplied positionally, in the same order as in the method
definition.

lemma 8 x. P x =) P a by (elim-all P a)
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above over its intro and elim rules respectively that it may apply.
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Above, the introduction and elimination rules need to be provided for each method
invocation. Traditionally Isabelle proof methods avoid this by using tool-specific data
as part of the proof context, which are managed using attributes (see Section 2) to add
and remove entries. A method invocation retrieves the facts that it needs to know about
whenever it is invoked, using the run-time proof context.

Eisbach supports creating new fact collections in the context using a new Isar com-
mand declare-attributes. A fact parameter [p] surrounded by square brackets declares
that fact to be backed by the fact collection p. It can be augmented further when a
method is invoked using the common syntax meth p: facts, but can also be managed in
the proof context with the Isar command declare.

declare-attributes intro elim
method-definition prop-solver3 facts [intro] [elim] =
((rule intro, (erule elim)?) | assumption)+

declare impI [intro] and conjE [elim]

lemma P ^ Q �! P by prop-solver3

Methods can also abstract over terms using the for keyword, optionally providing
type constraints. For instance, the following proof method elim-all takes a term y of
any type, which it uses to instantiate the x-variable of the allE (forall elimination) rule
before applying that rule as an elimination rule. The instantiation is performed here by
Isar’s where attribute. This has the effect of instantiating a universal quantification 8 x.
P x in one of the current assumptions by replacing it with the term P y.

method-definition elim-all for Q :: 0a ) bool and y :: 0a =
(erule allE [where P = Q and x = y ])

The term parameters y and P can be used arbitrarily inside the method body, as part
of attribute applications or arguments to other methods. The expression is type-checked
as far as possible when the method is defined, however dynamic type errors can still
occur when it is invoked (e.g. when terms are instantiated in a parameterized fact).
Actual term arguments are supplied positionally, in the same order as in the method
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lemma 8 x. P x =) P a by (elim-all P a)
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and remove entries. A method invocation retrieves the facts that it needs to know about
whenever it is invoked, using the run-time proof context.

Eisbach supports creating new fact collections in the context using a new Isar com-
mand declare-attributes. A fact parameter [p] surrounded by square brackets declares
that fact to be backed by the fact collection p. It can be augmented further when a
method is invoked using the common syntax meth p: facts, but can also be managed in
the proof context with the Isar command declare.

declare-attributes intro elim
method-definition prop-solver3 facts [intro] [elim] =
((rule intro, (erule elim)?) | assumption)+

declare impI [intro] and conjE [elim]

lemma P ^ Q �! P by prop-solver3

Methods can also abstract over terms using the for keyword, optionally providing
type constraints. For instance, the following proof method elim-all takes a term y of
any type, which it uses to instantiate the x-variable of the allE (forall elimination) rule
before applying that rule as an elimination rule. The instantiation is performed here by
Isar’s where attribute. This has the effect of instantiating a universal quantification 8 x.
P x in one of the current assumptions by replacing it with the term P y.

method-definition elim-all for Q :: 0a ) bool and y :: 0a =
(erule allE [where P = Q and x = y ])

The term parameters y and P can be used arbitrarily inside the method body, as part
of attribute applications or arguments to other methods. The expression is type-checked
as far as possible when the method is defined, however dynamic type errors can still
occur when it is invoked (e.g. when terms are instantiated in a parameterized fact).
Actual term arguments are supplied positionally, in the same order as in the method
definition.

lemma 8 x. P x =) P a by (elim-all P a)

3.4 Custom Combinators

The four existing combinators in Isar (mentioned above) quickly prove to be too re-
strictive when writing tactics in Eisbach. A fifth combinator (“ 7!”) was added, which
takes two methods and, in contrast to “,”, invokes the second method on all subgoals
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the user to perform matches against (i.e. to introspect) the current goal-state; doing
so causes an implicit subgoal focus (see also Section 4) which binds these two names
appropriately, creating a local context of local goal parameters (as fixed term variables)
and premises (as hypothetical theorems).

In the following example we extract the predicate of an existentially quantified con-
clusion in the current subgoal and search the current premises for a matching fact. If
both matches are successful, we then instantiate the existential introduction rule with
both the witness and predicate, solving with the matched premise.

method-definition solve-ex =
(match ?concl in 9 x. ?Q x )
(match prems in U: Q ?y ) (rule exI [where x = y and P = Q, OF U])))

The first match matches the pattern 9 x. ?Q x against the current conclusion, binding
the pattern ?Q to a particular term Q in the inner match. Next the pattern Q ?y is matched
against all premises of the current subgoal. Once a match is found, the local fact U is
bound to the matching premise and the variable y is bound to the matching witness. The
existential introduction rule P x =) 9 x. P x is then instantiated with y as the witness
and Q as the predicate, with its proof obligation solved by the local fact U (using the
Isar attribute OF). The following example is a trivial use of this method.

lemma halts p =) 9 x. halts x by solve-ex

Matching is performed from top to bottom, considering each pattern in turn until
a match is found. When attempting to match a pattern, Eisbach tries to match the pat-
tern against all provided terms/facts before moving on to the next pattern. Successful
matches serve as cut points for backtracking. Specifically, once a match is made no
other patterns will be attempted regardless of the outcome of the inner method m. How-
ever, all possible unifiers of that pattern will be explored, re-executing the method m
with different variable bindings when backtracking.

The method foo below fails for all goals that are conjunctions. Any such goal will
match the first pattern, causing the second pattern (that would otherwise match all goals)
to never be considered. If multiple unifiers exist for the pattern ?P ^ ?Q against the
current goal, then the failing method fail will be (uselessly) tried for all of them.

method-definition foo =
(match ?concl in ?P ^ ?Q ) fail ?R ) prop-solver)

This behaviour is in direct contrast to the backtracking done by Coq’s Ltac [4],
which will attempt all patterns in a match before failing. This means that the failure of
an inner method that is executed after a successful match does not, in Ltac, cause the
entire match to fail, whereas it does in Eisbach. In Eisbach the distinction is important
due to the pervasive use of backtracking. When a method is used in a combinator chain,
its failure becomes significant because it signals previously applied methods to move
to the next result. Therefore, it is better for match to not mask such failure in Eisbach.
One can always rewrite a match in Eisbach using the combinators ? and | to have it try
subsequent patterns in the case of an inner-method failure. The following proof method,
for example, always invokes prop-solver for all goals because its first alternative either
never matches or (if it does match) always fails.
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the user to perform matches against (i.e. to introspect) the current goal-state; doing
so causes an implicit subgoal focus (see also Section 4) which binds these two names
appropriately, creating a local context of local goal parameters (as fixed term variables)
and premises (as hypothetical theorems).

In the following example we extract the predicate of an existentially quantified con-
clusion in the current subgoal and search the current premises for a matching fact. If
both matches are successful, we then instantiate the existential introduction rule with
both the witness and predicate, solving with the matched premise.

method-definition solve-ex =
(match ?concl in 9 x. ?Q x )
(match prems in U: Q ?y ) (rule exI [where x = y and P = Q, OF U])))

The first match matches the pattern 9 x. ?Q x against the current conclusion, binding
the pattern ?Q to a particular term Q in the inner match. Next the pattern Q ?y is matched
against all premises of the current subgoal. Once a match is found, the local fact U is
bound to the matching premise and the variable y is bound to the matching witness. The
existential introduction rule P x =) 9 x. P x is then instantiated with y as the witness
and Q as the predicate, with its proof obligation solved by the local fact U (using the
Isar attribute OF). The following example is a trivial use of this method.

lemma halts p =) 9 x. halts x by solve-ex

Matching is performed from top to bottom, considering each pattern in turn until
a match is found. When attempting to match a pattern, Eisbach tries to match the pat-
tern against all provided terms/facts before moving on to the next pattern. Successful
matches serve as cut points for backtracking. Specifically, once a match is made no
other patterns will be attempted regardless of the outcome of the inner method m. How-
ever, all possible unifiers of that pattern will be explored, re-executing the method m
with different variable bindings when backtracking.

The method foo below fails for all goals that are conjunctions. Any such goal will
match the first pattern, causing the second pattern (that would otherwise match all goals)
to never be considered. If multiple unifiers exist for the pattern ?P ^ ?Q against the
current goal, then the failing method fail will be (uselessly) tried for all of them.

method-definition foo =
(match ?concl in ?P ^ ?Q ) fail ?R ) prop-solver)

This behaviour is in direct contrast to the backtracking done by Coq’s Ltac [4],
which will attempt all patterns in a match before failing. This means that the failure of
an inner method that is executed after a successful match does not, in Ltac, cause the
entire match to fail, whereas it does in Eisbach. In Eisbach the distinction is important
due to the pervasive use of backtracking. When a method is used in a combinator chain,
its failure becomes significant because it signals previously applied methods to move
to the next result. Therefore, it is better for match to not mask such failure in Eisbach.
One can always rewrite a match in Eisbach using the combinators ? and | to have it try
subsequent patterns in the case of an inner-method failure. The following proof method,
for example, always invokes prop-solver for all goals because its first alternative either
never matches or (if it does match) always fails.

Special term 
is current subgoal

the user to perform matches against (i.e. to introspect) the current goal-state; doing
so causes an implicit subgoal focus (see also Section 4) which binds these two names
appropriately, creating a local context of local goal parameters (as fixed term variables)
and premises (as hypothetical theorems).

In the following example we extract the predicate of an existentially quantified con-
clusion in the current subgoal and search the current premises for a matching fact. If
both matches are successful, we then instantiate the existential introduction rule with
both the witness and predicate, solving with the matched premise.

method-definition solve-ex =
(match ?concl in 9 x. ?Q x )
(match prems in U: Q ?y ) (rule exI [where x = y and P = Q, OF U])))

The first match matches the pattern 9 x. ?Q x against the current conclusion, binding
the pattern ?Q to a particular term Q in the inner match. Next the pattern Q ?y is matched
against all premises of the current subgoal. Once a match is found, the local fact U is
bound to the matching premise and the variable y is bound to the matching witness. The
existential introduction rule P x =) 9 x. P x is then instantiated with y as the witness
and Q as the predicate, with its proof obligation solved by the local fact U (using the
Isar attribute OF). The following example is a trivial use of this method.

lemma halts p =) 9 x. halts x by solve-ex

Matching is performed from top to bottom, considering each pattern in turn until
a match is found. When attempting to match a pattern, Eisbach tries to match the pat-
tern against all provided terms/facts before moving on to the next pattern. Successful
matches serve as cut points for backtracking. Specifically, once a match is made no
other patterns will be attempted regardless of the outcome of the inner method m. How-
ever, all possible unifiers of that pattern will be explored, re-executing the method m
with different variable bindings when backtracking.

The method foo below fails for all goals that are conjunctions. Any such goal will
match the first pattern, causing the second pattern (that would otherwise match all goals)
to never be considered. If multiple unifiers exist for the pattern ?P ^ ?Q against the
current goal, then the failing method fail will be (uselessly) tried for all of them.

method-definition foo =
(match ?concl in ?P ^ ?Q ) fail ?R ) prop-solver)

This behaviour is in direct contrast to the backtracking done by Coq’s Ltac [4],
which will attempt all patterns in a match before failing. This means that the failure of
an inner method that is executed after a successful match does not, in Ltac, cause the
entire match to fail, whereas it does in Eisbach. In Eisbach the distinction is important
due to the pervasive use of backtracking. When a method is used in a combinator chain,
its failure becomes significant because it signals previously applied methods to move
to the next result. Therefore, it is better for match to not mask such failure in Eisbach.
One can always rewrite a match in Eisbach using the combinators ? and | to have it try
subsequent patterns in the case of an inner-method failure. The following proof method,
for example, always invokes prop-solver for all goals because its first alternative either
never matches or (if it does match) always fails.
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the user to perform matches against (i.e. to introspect) the current goal-state; doing
so causes an implicit subgoal focus (see also Section 4) which binds these two names
appropriately, creating a local context of local goal parameters (as fixed term variables)
and premises (as hypothetical theorems).

In the following example we extract the predicate of an existentially quantified con-
clusion in the current subgoal and search the current premises for a matching fact. If
both matches are successful, we then instantiate the existential introduction rule with
both the witness and predicate, solving with the matched premise.

method-definition solve-ex =
(match ?concl in 9 x. ?Q x )
(match prems in U: Q ?y ) (rule exI [where x = y and P = Q, OF U])))

The first match matches the pattern 9 x. ?Q x against the current conclusion, binding
the pattern ?Q to a particular term Q in the inner match. Next the pattern Q ?y is matched
against all premises of the current subgoal. Once a match is found, the local fact U is
bound to the matching premise and the variable y is bound to the matching witness. The
existential introduction rule P x =) 9 x. P x is then instantiated with y as the witness
and Q as the predicate, with its proof obligation solved by the local fact U (using the
Isar attribute OF). The following example is a trivial use of this method.

lemma halts p =) 9 x. halts x by solve-ex

Matching is performed from top to bottom, considering each pattern in turn until
a match is found. When attempting to match a pattern, Eisbach tries to match the pat-
tern against all provided terms/facts before moving on to the next pattern. Successful
matches serve as cut points for backtracking. Specifically, once a match is made no
other patterns will be attempted regardless of the outcome of the inner method m. How-
ever, all possible unifiers of that pattern will be explored, re-executing the method m
with different variable bindings when backtracking.

The method foo below fails for all goals that are conjunctions. Any such goal will
match the first pattern, causing the second pattern (that would otherwise match all goals)
to never be considered. If multiple unifiers exist for the pattern ?P ^ ?Q against the
current goal, then the failing method fail will be (uselessly) tried for all of them.

method-definition foo =
(match ?concl in ?P ^ ?Q ) fail ?R ) prop-solver)

This behaviour is in direct contrast to the backtracking done by Coq’s Ltac [4],
which will attempt all patterns in a match before failing. This means that the failure of
an inner method that is executed after a successful match does not, in Ltac, cause the
entire match to fail, whereas it does in Eisbach. In Eisbach the distinction is important
due to the pervasive use of backtracking. When a method is used in a combinator chain,
its failure becomes significant because it signals previously applied methods to move
to the next result. Therefore, it is better for match to not mask such failure in Eisbach.
One can always rewrite a match in Eisbach using the combinators ? and | to have it try
subsequent patterns in the case of an inner-method failure. The following proof method,
for example, always invokes prop-solver for all goals because its first alternative either
never matches or (if it does match) always fails.

Special term 
is current subgoal

the user to perform matches against (i.e. to introspect) the current goal-state; doing
so causes an implicit subgoal focus (see also Section 4) which binds these two names
appropriately, creating a local context of local goal parameters (as fixed term variables)
and premises (as hypothetical theorems).

In the following example we extract the predicate of an existentially quantified con-
clusion in the current subgoal and search the current premises for a matching fact. If
both matches are successful, we then instantiate the existential introduction rule with
both the witness and predicate, solving with the matched premise.

method-definition solve-ex =
(match ?concl in 9 x. ?Q x )
(match prems in U: Q ?y ) (rule exI [where x = y and P = Q, OF U])))

The first match matches the pattern 9 x. ?Q x against the current conclusion, binding
the pattern ?Q to a particular term Q in the inner match. Next the pattern Q ?y is matched
against all premises of the current subgoal. Once a match is found, the local fact U is
bound to the matching premise and the variable y is bound to the matching witness. The
existential introduction rule P x =) 9 x. P x is then instantiated with y as the witness
and Q as the predicate, with its proof obligation solved by the local fact U (using the
Isar attribute OF). The following example is a trivial use of this method.

lemma halts p =) 9 x. halts x by solve-ex

Matching is performed from top to bottom, considering each pattern in turn until
a match is found. When attempting to match a pattern, Eisbach tries to match the pat-
tern against all provided terms/facts before moving on to the next pattern. Successful
matches serve as cut points for backtracking. Specifically, once a match is made no
other patterns will be attempted regardless of the outcome of the inner method m. How-
ever, all possible unifiers of that pattern will be explored, re-executing the method m
with different variable bindings when backtracking.

The method foo below fails for all goals that are conjunctions. Any such goal will
match the first pattern, causing the second pattern (that would otherwise match all goals)
to never be considered. If multiple unifiers exist for the pattern ?P ^ ?Q against the
current goal, then the failing method fail will be (uselessly) tried for all of them.

method-definition foo =
(match ?concl in ?P ^ ?Q ) fail ?R ) prop-solver)

This behaviour is in direct contrast to the backtracking done by Coq’s Ltac [4],
which will attempt all patterns in a match before failing. This means that the failure of
an inner method that is executed after a successful match does not, in Ltac, cause the
entire match to fail, whereas it does in Eisbach. In Eisbach the distinction is important
due to the pervasive use of backtracking. When a method is used in a combinator chain,
its failure becomes significant because it signals previously applied methods to move
to the next result. Therefore, it is better for match to not mask such failure in Eisbach.
One can always rewrite a match in Eisbach using the combinators ? and | to have it try
subsequent patterns in the case of an inner-method failure. The following proof method,
for example, always invokes prop-solver for all goals because its first alternative either
never matches or (if it does match) always fails.

Matched pattern 
is bound

the user to perform matches against (i.e. to introspect) the current goal-state; doing
so causes an implicit subgoal focus (see also Section 4) which binds these two names
appropriately, creating a local context of local goal parameters (as fixed term variables)
and premises (as hypothetical theorems).

In the following example we extract the predicate of an existentially quantified con-
clusion in the current subgoal and search the current premises for a matching fact. If
both matches are successful, we then instantiate the existential introduction rule with
both the witness and predicate, solving with the matched premise.

method-definition solve-ex =
(match ?concl in 9 x. ?Q x )
(match prems in U: Q ?y ) (rule exI [where x = y and P = Q, OF U])))

The first match matches the pattern 9 x. ?Q x against the current conclusion, binding
the pattern ?Q to a particular term Q in the inner match. Next the pattern Q ?y is matched
against all premises of the current subgoal. Once a match is found, the local fact U is
bound to the matching premise and the variable y is bound to the matching witness. The
existential introduction rule P x =) 9 x. P x is then instantiated with y as the witness
and Q as the predicate, with its proof obligation solved by the local fact U (using the
Isar attribute OF). The following example is a trivial use of this method.

lemma halts p =) 9 x. halts x by solve-ex

Matching is performed from top to bottom, considering each pattern in turn until
a match is found. When attempting to match a pattern, Eisbach tries to match the pat-
tern against all provided terms/facts before moving on to the next pattern. Successful
matches serve as cut points for backtracking. Specifically, once a match is made no
other patterns will be attempted regardless of the outcome of the inner method m. How-
ever, all possible unifiers of that pattern will be explored, re-executing the method m
with different variable bindings when backtracking.

The method foo below fails for all goals that are conjunctions. Any such goal will
match the first pattern, causing the second pattern (that would otherwise match all goals)
to never be considered. If multiple unifiers exist for the pattern ?P ^ ?Q against the
current goal, then the failing method fail will be (uselessly) tried for all of them.

method-definition foo =
(match ?concl in ?P ^ ?Q ) fail ?R ) prop-solver)

This behaviour is in direct contrast to the backtracking done by Coq’s Ltac [4],
which will attempt all patterns in a match before failing. This means that the failure of
an inner method that is executed after a successful match does not, in Ltac, cause the
entire match to fail, whereas it does in Eisbach. In Eisbach the distinction is important
due to the pervasive use of backtracking. When a method is used in a combinator chain,
its failure becomes significant because it signals previously applied methods to move
to the next result. Therefore, it is better for match to not mask such failure in Eisbach.
One can always rewrite a match in Eisbach using the combinators ? and | to have it try
subsequent patterns in the case of an inner-method failure. The following proof method,
for example, always invokes prop-solver for all goals because its first alternative either
never matches or (if it does match) always fails.
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the user to perform matches against (i.e. to introspect) the current goal-state; doing
so causes an implicit subgoal focus (see also Section 4) which binds these two names
appropriately, creating a local context of local goal parameters (as fixed term variables)
and premises (as hypothetical theorems).

In the following example we extract the predicate of an existentially quantified con-
clusion in the current subgoal and search the current premises for a matching fact. If
both matches are successful, we then instantiate the existential introduction rule with
both the witness and predicate, solving with the matched premise.

method-definition solve-ex =
(match ?concl in 9 x. ?Q x )
(match prems in U: Q ?y ) (rule exI [where x = y and P = Q, OF U])))

The first match matches the pattern 9 x. ?Q x against the current conclusion, binding
the pattern ?Q to a particular term Q in the inner match. Next the pattern Q ?y is matched
against all premises of the current subgoal. Once a match is found, the local fact U is
bound to the matching premise and the variable y is bound to the matching witness. The
existential introduction rule P x =) 9 x. P x is then instantiated with y as the witness
and Q as the predicate, with its proof obligation solved by the local fact U (using the
Isar attribute OF). The following example is a trivial use of this method.

lemma halts p =) 9 x. halts x by solve-ex

Matching is performed from top to bottom, considering each pattern in turn until
a match is found. When attempting to match a pattern, Eisbach tries to match the pat-
tern against all provided terms/facts before moving on to the next pattern. Successful
matches serve as cut points for backtracking. Specifically, once a match is made no
other patterns will be attempted regardless of the outcome of the inner method m. How-
ever, all possible unifiers of that pattern will be explored, re-executing the method m
with different variable bindings when backtracking.

The method foo below fails for all goals that are conjunctions. Any such goal will
match the first pattern, causing the second pattern (that would otherwise match all goals)
to never be considered. If multiple unifiers exist for the pattern ?P ^ ?Q against the
current goal, then the failing method fail will be (uselessly) tried for all of them.

method-definition foo =
(match ?concl in ?P ^ ?Q ) fail ?R ) prop-solver)

This behaviour is in direct contrast to the backtracking done by Coq’s Ltac [4],
which will attempt all patterns in a match before failing. This means that the failure of
an inner method that is executed after a successful match does not, in Ltac, cause the
entire match to fail, whereas it does in Eisbach. In Eisbach the distinction is important
due to the pervasive use of backtracking. When a method is used in a combinator chain,
its failure becomes significant because it signals previously applied methods to move
to the next result. Therefore, it is better for match to not mask such failure in Eisbach.
One can always rewrite a match in Eisbach using the combinators ? and | to have it try
subsequent patterns in the case of an inner-method failure. The following proof method,
for example, always invokes prop-solver for all goals because its first alternative either
never matches or (if it does match) always fails.

Special term 
is current subgoal

the user to perform matches against (i.e. to introspect) the current goal-state; doing
so causes an implicit subgoal focus (see also Section 4) which binds these two names
appropriately, creating a local context of local goal parameters (as fixed term variables)
and premises (as hypothetical theorems).

In the following example we extract the predicate of an existentially quantified con-
clusion in the current subgoal and search the current premises for a matching fact. If
both matches are successful, we then instantiate the existential introduction rule with
both the witness and predicate, solving with the matched premise.

method-definition solve-ex =
(match ?concl in 9 x. ?Q x )
(match prems in U: Q ?y ) (rule exI [where x = y and P = Q, OF U])))

The first match matches the pattern 9 x. ?Q x against the current conclusion, binding
the pattern ?Q to a particular term Q in the inner match. Next the pattern Q ?y is matched
against all premises of the current subgoal. Once a match is found, the local fact U is
bound to the matching premise and the variable y is bound to the matching witness. The
existential introduction rule P x =) 9 x. P x is then instantiated with y as the witness
and Q as the predicate, with its proof obligation solved by the local fact U (using the
Isar attribute OF). The following example is a trivial use of this method.

lemma halts p =) 9 x. halts x by solve-ex

Matching is performed from top to bottom, considering each pattern in turn until
a match is found. When attempting to match a pattern, Eisbach tries to match the pat-
tern against all provided terms/facts before moving on to the next pattern. Successful
matches serve as cut points for backtracking. Specifically, once a match is made no
other patterns will be attempted regardless of the outcome of the inner method m. How-
ever, all possible unifiers of that pattern will be explored, re-executing the method m
with different variable bindings when backtracking.

The method foo below fails for all goals that are conjunctions. Any such goal will
match the first pattern, causing the second pattern (that would otherwise match all goals)
to never be considered. If multiple unifiers exist for the pattern ?P ^ ?Q against the
current goal, then the failing method fail will be (uselessly) tried for all of them.

method-definition foo =
(match ?concl in ?P ^ ?Q ) fail ?R ) prop-solver)

This behaviour is in direct contrast to the backtracking done by Coq’s Ltac [4],
which will attempt all patterns in a match before failing. This means that the failure of
an inner method that is executed after a successful match does not, in Ltac, cause the
entire match to fail, whereas it does in Eisbach. In Eisbach the distinction is important
due to the pervasive use of backtracking. When a method is used in a combinator chain,
its failure becomes significant because it signals previously applied methods to move
to the next result. Therefore, it is better for match to not mask such failure in Eisbach.
One can always rewrite a match in Eisbach using the combinators ? and | to have it try
subsequent patterns in the case of an inner-method failure. The following proof method,
for example, always invokes prop-solver for all goals because its first alternative either
never matches or (if it does match) always fails.

Matched pattern 
is bound

the user to perform matches against (i.e. to introspect) the current goal-state; doing
so causes an implicit subgoal focus (see also Section 4) which binds these two names
appropriately, creating a local context of local goal parameters (as fixed term variables)
and premises (as hypothetical theorems).

In the following example we extract the predicate of an existentially quantified con-
clusion in the current subgoal and search the current premises for a matching fact. If
both matches are successful, we then instantiate the existential introduction rule with
both the witness and predicate, solving with the matched premise.

method-definition solve-ex =
(match ?concl in 9 x. ?Q x )
(match prems in U: Q ?y ) (rule exI [where x = y and P = Q, OF U])))

The first match matches the pattern 9 x. ?Q x against the current conclusion, binding
the pattern ?Q to a particular term Q in the inner match. Next the pattern Q ?y is matched
against all premises of the current subgoal. Once a match is found, the local fact U is
bound to the matching premise and the variable y is bound to the matching witness. The
existential introduction rule P x =) 9 x. P x is then instantiated with y as the witness
and Q as the predicate, with its proof obligation solved by the local fact U (using the
Isar attribute OF). The following example is a trivial use of this method.

lemma halts p =) 9 x. halts x by solve-ex

Matching is performed from top to bottom, considering each pattern in turn until
a match is found. When attempting to match a pattern, Eisbach tries to match the pat-
tern against all provided terms/facts before moving on to the next pattern. Successful
matches serve as cut points for backtracking. Specifically, once a match is made no
other patterns will be attempted regardless of the outcome of the inner method m. How-
ever, all possible unifiers of that pattern will be explored, re-executing the method m
with different variable bindings when backtracking.

The method foo below fails for all goals that are conjunctions. Any such goal will
match the first pattern, causing the second pattern (that would otherwise match all goals)
to never be considered. If multiple unifiers exist for the pattern ?P ^ ?Q against the
current goal, then the failing method fail will be (uselessly) tried for all of them.

method-definition foo =
(match ?concl in ?P ^ ?Q ) fail ?R ) prop-solver)

This behaviour is in direct contrast to the backtracking done by Coq’s Ltac [4],
which will attempt all patterns in a match before failing. This means that the failure of
an inner method that is executed after a successful match does not, in Ltac, cause the
entire match to fail, whereas it does in Eisbach. In Eisbach the distinction is important
due to the pervasive use of backtracking. When a method is used in a combinator chain,
its failure becomes significant because it signals previously applied methods to move
to the next result. Therefore, it is better for match to not mask such failure in Eisbach.
One can always rewrite a match in Eisbach using the combinators ? and | to have it try
subsequent patterns in the case of an inner-method failure. The following proof method,
for example, always invokes prop-solver for all goals because its first alternative either
never matches or (if it does match) always fails.

Special fact 
is current premises

the user to perform matches against (i.e. to introspect) the current goal-state; doing
so causes an implicit subgoal focus (see also Section 4) which binds these two names
appropriately, creating a local context of local goal parameters (as fixed term variables)
and premises (as hypothetical theorems).

In the following example we extract the predicate of an existentially quantified con-
clusion in the current subgoal and search the current premises for a matching fact. If
both matches are successful, we then instantiate the existential introduction rule with
both the witness and predicate, solving with the matched premise.

method-definition solve-ex =
(match ?concl in 9 x. ?Q x )
(match prems in U: Q ?y ) (rule exI [where x = y and P = Q, OF U])))

The first match matches the pattern 9 x. ?Q x against the current conclusion, binding
the pattern ?Q to a particular term Q in the inner match. Next the pattern Q ?y is matched
against all premises of the current subgoal. Once a match is found, the local fact U is
bound to the matching premise and the variable y is bound to the matching witness. The
existential introduction rule P x =) 9 x. P x is then instantiated with y as the witness
and Q as the predicate, with its proof obligation solved by the local fact U (using the
Isar attribute OF). The following example is a trivial use of this method.

lemma halts p =) 9 x. halts x by solve-ex

Matching is performed from top to bottom, considering each pattern in turn until
a match is found. When attempting to match a pattern, Eisbach tries to match the pat-
tern against all provided terms/facts before moving on to the next pattern. Successful
matches serve as cut points for backtracking. Specifically, once a match is made no
other patterns will be attempted regardless of the outcome of the inner method m. How-
ever, all possible unifiers of that pattern will be explored, re-executing the method m
with different variable bindings when backtracking.

The method foo below fails for all goals that are conjunctions. Any such goal will
match the first pattern, causing the second pattern (that would otherwise match all goals)
to never be considered. If multiple unifiers exist for the pattern ?P ^ ?Q against the
current goal, then the failing method fail will be (uselessly) tried for all of them.

method-definition foo =
(match ?concl in ?P ^ ?Q ) fail ?R ) prop-solver)

This behaviour is in direct contrast to the backtracking done by Coq’s Ltac [4],
which will attempt all patterns in a match before failing. This means that the failure of
an inner method that is executed after a successful match does not, in Ltac, cause the
entire match to fail, whereas it does in Eisbach. In Eisbach the distinction is important
due to the pervasive use of backtracking. When a method is used in a combinator chain,
its failure becomes significant because it signals previously applied methods to move
to the next result. Therefore, it is better for match to not mask such failure in Eisbach.
One can always rewrite a match in Eisbach using the combinators ? and | to have it try
subsequent patterns in the case of an inner-method failure. The following proof method,
for example, always invokes prop-solver for all goals because its first alternative either
never matches or (if it does match) always fails.
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the user to perform matches against (i.e. to introspect) the current goal-state; doing
so causes an implicit subgoal focus (see also Section 4) which binds these two names
appropriately, creating a local context of local goal parameters (as fixed term variables)
and premises (as hypothetical theorems).

In the following example we extract the predicate of an existentially quantified con-
clusion in the current subgoal and search the current premises for a matching fact. If
both matches are successful, we then instantiate the existential introduction rule with
both the witness and predicate, solving with the matched premise.

method-definition solve-ex =
(match ?concl in 9 x. ?Q x )
(match prems in U: Q ?y ) (rule exI [where x = y and P = Q, OF U])))

The first match matches the pattern 9 x. ?Q x against the current conclusion, binding
the pattern ?Q to a particular term Q in the inner match. Next the pattern Q ?y is matched
against all premises of the current subgoal. Once a match is found, the local fact U is
bound to the matching premise and the variable y is bound to the matching witness. The
existential introduction rule P x =) 9 x. P x is then instantiated with y as the witness
and Q as the predicate, with its proof obligation solved by the local fact U (using the
Isar attribute OF). The following example is a trivial use of this method.

lemma halts p =) 9 x. halts x by solve-ex

Matching is performed from top to bottom, considering each pattern in turn until
a match is found. When attempting to match a pattern, Eisbach tries to match the pat-
tern against all provided terms/facts before moving on to the next pattern. Successful
matches serve as cut points for backtracking. Specifically, once a match is made no
other patterns will be attempted regardless of the outcome of the inner method m. How-
ever, all possible unifiers of that pattern will be explored, re-executing the method m
with different variable bindings when backtracking.

The method foo below fails for all goals that are conjunctions. Any such goal will
match the first pattern, causing the second pattern (that would otherwise match all goals)
to never be considered. If multiple unifiers exist for the pattern ?P ^ ?Q against the
current goal, then the failing method fail will be (uselessly) tried for all of them.

method-definition foo =
(match ?concl in ?P ^ ?Q ) fail ?R ) prop-solver)

This behaviour is in direct contrast to the backtracking done by Coq’s Ltac [4],
which will attempt all patterns in a match before failing. This means that the failure of
an inner method that is executed after a successful match does not, in Ltac, cause the
entire match to fail, whereas it does in Eisbach. In Eisbach the distinction is important
due to the pervasive use of backtracking. When a method is used in a combinator chain,
its failure becomes significant because it signals previously applied methods to move
to the next result. Therefore, it is better for match to not mask such failure in Eisbach.
One can always rewrite a match in Eisbach using the combinators ? and | to have it try
subsequent patterns in the case of an inner-method failure. The following proof method,
for example, always invokes prop-solver for all goals because its first alternative either
never matches or (if it does match) always fails.

Special term 
is current subgoal

the user to perform matches against (i.e. to introspect) the current goal-state; doing
so causes an implicit subgoal focus (see also Section 4) which binds these two names
appropriately, creating a local context of local goal parameters (as fixed term variables)
and premises (as hypothetical theorems).

In the following example we extract the predicate of an existentially quantified con-
clusion in the current subgoal and search the current premises for a matching fact. If
both matches are successful, we then instantiate the existential introduction rule with
both the witness and predicate, solving with the matched premise.

method-definition solve-ex =
(match ?concl in 9 x. ?Q x )
(match prems in U: Q ?y ) (rule exI [where x = y and P = Q, OF U])))

The first match matches the pattern 9 x. ?Q x against the current conclusion, binding
the pattern ?Q to a particular term Q in the inner match. Next the pattern Q ?y is matched
against all premises of the current subgoal. Once a match is found, the local fact U is
bound to the matching premise and the variable y is bound to the matching witness. The
existential introduction rule P x =) 9 x. P x is then instantiated with y as the witness
and Q as the predicate, with its proof obligation solved by the local fact U (using the
Isar attribute OF). The following example is a trivial use of this method.

lemma halts p =) 9 x. halts x by solve-ex

Matching is performed from top to bottom, considering each pattern in turn until
a match is found. When attempting to match a pattern, Eisbach tries to match the pat-
tern against all provided terms/facts before moving on to the next pattern. Successful
matches serve as cut points for backtracking. Specifically, once a match is made no
other patterns will be attempted regardless of the outcome of the inner method m. How-
ever, all possible unifiers of that pattern will be explored, re-executing the method m
with different variable bindings when backtracking.

The method foo below fails for all goals that are conjunctions. Any such goal will
match the first pattern, causing the second pattern (that would otherwise match all goals)
to never be considered. If multiple unifiers exist for the pattern ?P ^ ?Q against the
current goal, then the failing method fail will be (uselessly) tried for all of them.

method-definition foo =
(match ?concl in ?P ^ ?Q ) fail ?R ) prop-solver)

This behaviour is in direct contrast to the backtracking done by Coq’s Ltac [4],
which will attempt all patterns in a match before failing. This means that the failure of
an inner method that is executed after a successful match does not, in Ltac, cause the
entire match to fail, whereas it does in Eisbach. In Eisbach the distinction is important
due to the pervasive use of backtracking. When a method is used in a combinator chain,
its failure becomes significant because it signals previously applied methods to move
to the next result. Therefore, it is better for match to not mask such failure in Eisbach.
One can always rewrite a match in Eisbach using the combinators ? and | to have it try
subsequent patterns in the case of an inner-method failure. The following proof method,
for example, always invokes prop-solver for all goals because its first alternative either
never matches or (if it does match) always fails.

Matched pattern 
is bound

the user to perform matches against (i.e. to introspect) the current goal-state; doing
so causes an implicit subgoal focus (see also Section 4) which binds these two names
appropriately, creating a local context of local goal parameters (as fixed term variables)
and premises (as hypothetical theorems).

In the following example we extract the predicate of an existentially quantified con-
clusion in the current subgoal and search the current premises for a matching fact. If
both matches are successful, we then instantiate the existential introduction rule with
both the witness and predicate, solving with the matched premise.

method-definition solve-ex =
(match ?concl in 9 x. ?Q x )
(match prems in U: Q ?y ) (rule exI [where x = y and P = Q, OF U])))

The first match matches the pattern 9 x. ?Q x against the current conclusion, binding
the pattern ?Q to a particular term Q in the inner match. Next the pattern Q ?y is matched
against all premises of the current subgoal. Once a match is found, the local fact U is
bound to the matching premise and the variable y is bound to the matching witness. The
existential introduction rule P x =) 9 x. P x is then instantiated with y as the witness
and Q as the predicate, with its proof obligation solved by the local fact U (using the
Isar attribute OF). The following example is a trivial use of this method.

lemma halts p =) 9 x. halts x by solve-ex

Matching is performed from top to bottom, considering each pattern in turn until
a match is found. When attempting to match a pattern, Eisbach tries to match the pat-
tern against all provided terms/facts before moving on to the next pattern. Successful
matches serve as cut points for backtracking. Specifically, once a match is made no
other patterns will be attempted regardless of the outcome of the inner method m. How-
ever, all possible unifiers of that pattern will be explored, re-executing the method m
with different variable bindings when backtracking.

The method foo below fails for all goals that are conjunctions. Any such goal will
match the first pattern, causing the second pattern (that would otherwise match all goals)
to never be considered. If multiple unifiers exist for the pattern ?P ^ ?Q against the
current goal, then the failing method fail will be (uselessly) tried for all of them.

method-definition foo =
(match ?concl in ?P ^ ?Q ) fail ?R ) prop-solver)

This behaviour is in direct contrast to the backtracking done by Coq’s Ltac [4],
which will attempt all patterns in a match before failing. This means that the failure of
an inner method that is executed after a successful match does not, in Ltac, cause the
entire match to fail, whereas it does in Eisbach. In Eisbach the distinction is important
due to the pervasive use of backtracking. When a method is used in a combinator chain,
its failure becomes significant because it signals previously applied methods to move
to the next result. Therefore, it is better for match to not mask such failure in Eisbach.
One can always rewrite a match in Eisbach using the combinators ? and | to have it try
subsequent patterns in the case of an inner-method failure. The following proof method,
for example, always invokes prop-solver for all goals because its first alternative either
never matches or (if it does match) always fails.

Special fact 
is current premises

the user to perform matches against (i.e. to introspect) the current goal-state; doing
so causes an implicit subgoal focus (see also Section 4) which binds these two names
appropriately, creating a local context of local goal parameters (as fixed term variables)
and premises (as hypothetical theorems).

In the following example we extract the predicate of an existentially quantified con-
clusion in the current subgoal and search the current premises for a matching fact. If
both matches are successful, we then instantiate the existential introduction rule with
both the witness and predicate, solving with the matched premise.

method-definition solve-ex =
(match ?concl in 9 x. ?Q x )
(match prems in U: Q ?y ) (rule exI [where x = y and P = Q, OF U])))

The first match matches the pattern 9 x. ?Q x against the current conclusion, binding
the pattern ?Q to a particular term Q in the inner match. Next the pattern Q ?y is matched
against all premises of the current subgoal. Once a match is found, the local fact U is
bound to the matching premise and the variable y is bound to the matching witness. The
existential introduction rule P x =) 9 x. P x is then instantiated with y as the witness
and Q as the predicate, with its proof obligation solved by the local fact U (using the
Isar attribute OF). The following example is a trivial use of this method.

lemma halts p =) 9 x. halts x by solve-ex

Matching is performed from top to bottom, considering each pattern in turn until
a match is found. When attempting to match a pattern, Eisbach tries to match the pat-
tern against all provided terms/facts before moving on to the next pattern. Successful
matches serve as cut points for backtracking. Specifically, once a match is made no
other patterns will be attempted regardless of the outcome of the inner method m. How-
ever, all possible unifiers of that pattern will be explored, re-executing the method m
with different variable bindings when backtracking.

The method foo below fails for all goals that are conjunctions. Any such goal will
match the first pattern, causing the second pattern (that would otherwise match all goals)
to never be considered. If multiple unifiers exist for the pattern ?P ^ ?Q against the
current goal, then the failing method fail will be (uselessly) tried for all of them.

method-definition foo =
(match ?concl in ?P ^ ?Q ) fail ?R ) prop-solver)

This behaviour is in direct contrast to the backtracking done by Coq’s Ltac [4],
which will attempt all patterns in a match before failing. This means that the failure of
an inner method that is executed after a successful match does not, in Ltac, cause the
entire match to fail, whereas it does in Eisbach. In Eisbach the distinction is important
due to the pervasive use of backtracking. When a method is used in a combinator chain,
its failure becomes significant because it signals previously applied methods to move
to the next result. Therefore, it is better for match to not mask such failure in Eisbach.
One can always rewrite a match in Eisbach using the combinators ? and | to have it try
subsequent patterns in the case of an inner-method failure. The following proof method,
for example, always invokes prop-solver for all goals because its first alternative either
never matches or (if it does match) always fails.

Matching singleton fact 
is bound

the user to perform matches against (i.e. to introspect) the current goal-state; doing
so causes an implicit subgoal focus (see also Section 4) which binds these two names
appropriately, creating a local context of local goal parameters (as fixed term variables)
and premises (as hypothetical theorems).

In the following example we extract the predicate of an existentially quantified con-
clusion in the current subgoal and search the current premises for a matching fact. If
both matches are successful, we then instantiate the existential introduction rule with
both the witness and predicate, solving with the matched premise.

method-definition solve-ex =
(match ?concl in 9 x. ?Q x )
(match prems in U: Q ?y ) (rule exI [where x = y and P = Q, OF U])))

The first match matches the pattern 9 x. ?Q x against the current conclusion, binding
the pattern ?Q to a particular term Q in the inner match. Next the pattern Q ?y is matched
against all premises of the current subgoal. Once a match is found, the local fact U is
bound to the matching premise and the variable y is bound to the matching witness. The
existential introduction rule P x =) 9 x. P x is then instantiated with y as the witness
and Q as the predicate, with its proof obligation solved by the local fact U (using the
Isar attribute OF). The following example is a trivial use of this method.

lemma halts p =) 9 x. halts x by solve-ex

Matching is performed from top to bottom, considering each pattern in turn until
a match is found. When attempting to match a pattern, Eisbach tries to match the pat-
tern against all provided terms/facts before moving on to the next pattern. Successful
matches serve as cut points for backtracking. Specifically, once a match is made no
other patterns will be attempted regardless of the outcome of the inner method m. How-
ever, all possible unifiers of that pattern will be explored, re-executing the method m
with different variable bindings when backtracking.

The method foo below fails for all goals that are conjunctions. Any such goal will
match the first pattern, causing the second pattern (that would otherwise match all goals)
to never be considered. If multiple unifiers exist for the pattern ?P ^ ?Q against the
current goal, then the failing method fail will be (uselessly) tried for all of them.

method-definition foo =
(match ?concl in ?P ^ ?Q ) fail ?R ) prop-solver)

This behaviour is in direct contrast to the backtracking done by Coq’s Ltac [4],
which will attempt all patterns in a match before failing. This means that the failure of
an inner method that is executed after a successful match does not, in Ltac, cause the
entire match to fail, whereas it does in Eisbach. In Eisbach the distinction is important
due to the pervasive use of backtracking. When a method is used in a combinator chain,
its failure becomes significant because it signals previously applied methods to move
to the next result. Therefore, it is better for match to not mask such failure in Eisbach.
One can always rewrite a match in Eisbach using the combinators ? and | to have it try
subsequent patterns in the case of an inner-method failure. The following proof method,
for example, always invokes prop-solver for all goals because its first alternative either
never matches or (if it does match) always fails.
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method-definition solve-conj =
(match ?concl in ?P ^ ?Q )

(match prems in U : ?P and U 0: ?Q )
(rule conjI [OF U U 0])))

schematic-lemma

V
x . A x =) B x =) A x ^ B x by solve-conj

theorem Knaster-Tarski :
assumes mono:

V
x y . x  y =) f x  f y

shows f (
d

{x . f x  x}) =
d

({x . f x  x}) (is f ?a = ?a)
proof �
have ⇤: f ?a  ?a (is - 

d
?H )

proof

fix x assume H : x 2 ?H
then have ?a  x ..

also from H have f x  x ..

moreover note mono finally show f ?a  x .

qed

also have ?a  f ?a
proof

from mono and ⇤ have f (f ?a)  f ?a .

then show f ?a 2 ?H ..

qed

finally show f ?a = ?a .

qed

theorem Knaster-Tarski 0:
assumes mono[intro!]:

V
x y . x  y =) f x  f y

shows f (
d

{x . f x  x}) =
d

({x . f x  x}) (is f ?a = ?a)
proof �
have ⇤: f ?a  ?a by (clarsimp,rule order .trans , fastforce)
also have ?a  f ?a by (fastforce intro!: ⇤)
finally show f ?a = ?a .

qed

term

V
x . P x

term P x

2
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method-definition solve-conj =
(match ?concl in ?P ^ ?Q )

(match prems in U : ?P and U 0: ?Q )
(rule conjI [OF U U 0])))

schematic-lemma

V
x . A x =) B x =) A x ^ B x by solve-conj

lemmas assms = conjI disjI1

lemma assumes A: A and B : B shows A ^ B
by (rule conjI [OF assms(1 ) assms(2 )])
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method-definition solve-conj =
(match ?concl in ?P ^ ?Q )

(match prems in U : ?P and U 0: ?Q )
(rule conjI [OF U U 0])))

schematic-lemma

V
x . A x =) B x =) A x ^ B x by solve-conj

theorem Knaster-Tarski :
assumes mono:
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proof

fix x assume H : x 2 ?H
then have ?a  x ..

also from H have f x  x ..

moreover note mono finally show f ?a  x .

qed

also have ?a  f ?a
proof

from mono and ⇤ have f (f ?a)  f ?a .

then show f ?a 2 ?H ..

qed

finally show f ?a = ?a .

qed

theorem Knaster-Tarski 0:
assumes mono[intro!]:
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x y . x  y =) f x  f y

shows f (
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also have ?a  f ?a by (fastforce intro!: ⇤)
finally show f ?a = ?a .

qed
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method-definition solve-conj =
(match ?concl in ?P ^ ?Q )

(match prems in U : ?P and U 0: ?Q )
(rule conjI [OF U U 0])))

schematic-lemma

V
x . A x =) B x =) A x ^ B x by solve-conj

lemmas assms = conjI disjI1

lemma assumes A: A and B : B shows A ^ B
by (rule conjI [OF assms(1 ) assms(2 )])
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method-definition solve-conj =
(match ?concl in ?P ^ ?Q )

(match prems in U : ?P and U 0: ?Q )
(rule conjI [OF U U 0])))

schematic-lemma

V
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qed

also have ?a  f ?a
proof
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then show f ?a 2 ?H ..

qed

finally show f ?a = ?a .

qed
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moreover note mono finally show f ?a  x .

qed

also have ?a  f ?a
proof

from mono and ⇤ have f (f ?a)  f ?a .

then show f ?a 2 ?H ..

qed

finally show f ?a = ?a .

qed

theorem Knaster-Tarski 0:
assumes mono[intro!]:

V
x y . x  y =) f x  f y

shows f (
d

{x . f x  x}) =
d

({x . f x  x}) (is f ?a = ?a)
proof �
have ⇤: f ?a  ?a by (clarsimp,rule order .trans , fastforce)
also have ?a  f ?a by (fastforce intro!: ⇤)
finally show f ?a = ?a .

qed

term

V
x . P x

term P x

2
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the user to perform matches against (i.e. to introspect) the current goal-state; doing
so causes an implicit subgoal focus (see also Section 4) which binds these two names
appropriately, creating a local context of local goal parameters (as fixed term variables)
and premises (as hypothetical theorems).

In the following example we extract the predicate of an existentially quantified con-
clusion in the current subgoal and search the current premises for a matching fact. If
both matches are successful, we then instantiate the existential introduction rule with
both the witness and predicate, solving with the matched premise.

method-definition solve-ex =
(match ?concl in 9 x. ?Q x )
(match prems in U: Q ?y ) (rule exI [where x = y and P = Q, OF U])))

The first match matches the pattern 9 x. ?Q x against the current conclusion, binding
the pattern ?Q to a particular term Q in the inner match. Next the pattern Q ?y is matched
against all premises of the current subgoal. Once a match is found, the local fact U is
bound to the matching premise and the variable y is bound to the matching witness. The
existential introduction rule P x =) 9 x. P x is then instantiated with y as the witness
and Q as the predicate, with its proof obligation solved by the local fact U (using the
Isar attribute OF). The following example is a trivial use of this method.

lemma halts p =) 9 x. halts x by solve-ex

Matching is performed from top to bottom, considering each pattern in turn until
a match is found. When attempting to match a pattern, Eisbach tries to match the pat-
tern against all provided terms/facts before moving on to the next pattern. Successful
matches serve as cut points for backtracking. Specifically, once a match is made no
other patterns will be attempted regardless of the outcome of the inner method m. How-
ever, all possible unifiers of that pattern will be explored, re-executing the method m
with different variable bindings when backtracking.

The method foo below fails for all goals that are conjunctions. Any such goal will
match the first pattern, causing the second pattern (that would otherwise match all goals)
to never be considered. If multiple unifiers exist for the pattern ?P ^ ?Q against the
current goal, then the failing method fail will be (uselessly) tried for all of them.

method-definition foo =
(match ?concl in ?P ^ ?Q ) fail ?R ) prop-solver)

This behaviour is in direct contrast to the backtracking done by Coq’s Ltac [4],
which will attempt all patterns in a match before failing. This means that the failure of
an inner method that is executed after a successful match does not, in Ltac, cause the
entire match to fail, whereas it does in Eisbach. In Eisbach the distinction is important
due to the pervasive use of backtracking. When a method is used in a combinator chain,
its failure becomes significant because it signals previously applied methods to move
to the next result. Therefore, it is better for match to not mask such failure in Eisbach.
One can always rewrite a match in Eisbach using the combinators ? and | to have it try
subsequent patterns in the case of an inner-method failure. The following proof method,
for example, always invokes prop-solver for all goals because its first alternative either
never matches or (if it does match) always fails.
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Evaluation/Future work
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Tactic Languages are not new
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• Ltac 
– Untyped High-level tactic language for Coq 
– Goal matching, iteration, recursion 
!

• VeriML 
– Dependently typed tactic language 
– Provides strong static guarantees 
!

• Mtac 
– Typed tactic language for Coq 
– Leverages built-in Coq notion of computation 
– Strong static guarantees
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• Eisbach 
– Extension of Isar, Isabelle’s proof language 
– Integrates with existing Isar syntax 

• methods 
• attributes 
!

• Evaluation 
– Existing methods rewritten in Eisbach 

• WP, WPC: l4.verified invariant proof successfully checked 

• Future Work 
– Tracing/Debugging 
– Optimisations

Current Results

25
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Conclusion

• Proof Engineers need tools 
– to write proofs at scale 

• Isar provides structure/syntax for proofs 
– Most Isabelle users most familiar with Isar 

• Eisbach provides easy mechanisms for writing 
automation 
– abstraction 
– matching 
– backtracking 
– recursion 

• Coming soon…
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Thank You!
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