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|Isabelle/lsar

theorem Knaster-Tarsk::
assumes mono: Nz y. 2 < y— fax < fy
shows [ ([|{z. fz <z})=[|{z. fz <z} (isf % = %a)
proof —
have x: f %a < %a (is - <[|?H)
proof
fix x assume H: x € “H
then have 70 < 7 ..

also from H have f ... < z ..

moreover note mono finally show f 70 < zx .
ged
also have 7a < f “a
proof

from mono and x have f (f %a) < f %a .
then show f %a € “H ..
ged
finally show f %0 = “a .
ged
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theorem Knaster-Tarski:
assumes mono: Nz y. 2 < y— fax < fy
shows [ ([|{z. fz <z})=[|{z. fz <z} (isf % = %a)
proof —
have x: f %a < %a (is - <[|?H)
proof
fix x assume H: z € 7H
then have 70 < 7 .. &

————
<z

also from H have | . o /
moreover note mono fmally show féa < x.

x
ged
also have “a < f “7a
proof
from mono and x have f (f %a) < f %a .
then show f 7a € YH .. &

ged
finally show f %0 = Y0 . -
ged




|Isabelle/lsar

theorem Knaster-Tarski’:
assumes monolintroll: Ney. 2 <y = fz < fy
shows f ([| {z. fz <z}) =[] {z. fz < =z}) (is f %a = ?a)
proof —
have x: f ?a < ?a by (clarsimp,rule order.trans, fastforce)
also have ?a < f Ya by (fastforce intro!: x)
finally show f a0 = %a .

qed
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theorem Knaster-Tarski’:
assumes monolintroll: Aey. x <y = fzx < fy
shows f ([| {z. fz <z}) =[] {z. fz < =z}) (is f %a = ?a)
proof —
have *x: f Ya < ?a by (clarsimp,rule order. tmns fastforce) """

also have ?a < f Ya by (fastforce intro!: x)
finally show f 7a = “a . \ /

qed
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have x: f %a < %a by (clarstmp,rule order.trans, fastforce)

;SN\

Goal Method Combinator

NN

also have 70 < f %a by (fastforce intro!: x)

/

Method Parameter




|lsabelle/ML o

theorem Knaster-Tarski”: (Nzy. 2 <y= fz < fy) =

fUl iz fo<zp) =[] {z fo <))
apply (tactic {{ (FEqSubst.eqsubst-tac @Q{context} [0] Q{thms order-eq-iff } 1)

THEN (Tactic.resolve-tac @Q{thms context-conjl} 1)
THEN (Tactic.resolve-tac @{thms Inf-greatest} 1)
THEN (Tuactic.forward-tac @Q{thms Inf-lower} 1)
THEN (Clasimp.fast-force-tac @Q{ context} 1)
THEN (Tactic.resolve-tac @{thms Inf-lower} 1)
THEN (Clasimp.fast-force-tac @Q{ context} 1)
))

done




|Isabelle’s AFP

Number of files in AFP

Isar (.thy)
1,663




selL4 - our experience

 Full functional correctness proof
—Source code and Proof going open source!

— http://sel 4.systems for more info
—July 29

» |sabelle proof methods developed
-~ WP/WPC - vcg for monadic hoare logic
—sep-* - automating separation logic

» Proof Engineers want more!  Ng s
—Languages like Ltac show this

10
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Eisbach
- Easy Custom Proof Methods
- Demo

Evaluation/Future
-Existing method rewritten
-Tracing/Debugging...

Isabelle Concepts
- |sar
- Proof Methods
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Language Elements

* [ntegrates existing/new methods
—fastforce, simp, auto...

 Abstract over Terms/Facts/Methods

o Attributes for method hints
—simp, intro, my vcg_ rules...

» Matching provides control flow

—Match and bind higher-order patterns against focused
subgoal elements

NICTA

13
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method-definition induct-list facts simp =
(match ?conclin ?P (?x :: ‘a list) = (induct ?x — fastforce simp: simp))

lemma length (xs Q ys) = length xs + length ys by induct-list

14



Eisbach - Design goals (Je
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» Easy for beginners and experts
—Familiar method syntax from Isar

 Limited functionality - leave complexity to Isabelle/ML

* Integration with other Isabelle languages

» Readable proof procedures

15



Eisbach - Combinators @

« Standard Isar Method Combinators
—“|" - alternative composition
—",7 - sequential composition
—"?" - suppress failure (try)

—"+" - repeated application

* New Combinator
—"—=" - compose with emerging subgoals

method-definition prop-solver, = ((rule impl, (erule conjE)?) | assumption)+




Eisbach - Abstraction

 Parameterize over facts, terms, and methods

Method “Signature”

N\

method-definition prop-solvers facts intro elim =
((rule intro, (erule elim)?) | assumption)+

N/

Abstracted Facts

NICTA

17



Eisbach - Abstraction ()@

NICTA
 Parameterize over facts, terms, and methods

Method “Signature”

N\

method-definition prop- solverz facts intro elim =
((rule intro, (erule elim)?) | assumption)-+

V4

Abstracted Facts

Fact Arguments

lemma P A Q — P by (prop-solvers intro: impl elim: conjE)

17



Eisbach - Attributes

* New command: declare-attributes

declare-attributes intro elim

—Managed with the usual Isar declare command

declare impl [intro| and conjE |elim]

—Used at run-time by methods

method-definition prop-solvers facts |intro| |elim] =
((rule intro, (erule elim)?) | assumption)+
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* New command: declare-attributes

declare-attributes intro elim

—Managed with the usual Isar declare command

declare impl |intro] and conjE [elim| Square brackets indicate
fact parameter is

—Used at run-time by methods '//managed by attribute

method-definition prop-solvers facts |intro| |elim] =
((rule intro, (erule elim)?) | assumption)+
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Eisbach - Attributes o

* New command: declare-attributes

declare-attributes intro elim

—Managed with the usual Isar declare command

declare impl |intro] and conjE [elim| Square brackets indicate
| fact parameter is

—Used at run-time by methods '//managed by attribute

method-definition prop-solvers facts |intro| |elim] =
((rule intro, (erule elim)?) | assumption)+

/N

Contains impl Contains conjE

lemma P A Q — P by prop-solvers




Eisbach - Matching (Je

» Higher-order matching for control flow
—Bind matched patterns

method-definition solve-ex =
(match ?conclin 3x. ?Q x =
(match premsin U: Q ?y = (rule exI |where x =y and P = Q, OF U])))

19
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» Higher-order matching for control flow

—Bind matched patterns Special term ?concl
IS current subgoal

method-definiti
(match ?conclin 3x. ?Q x =
(match premsin U: Q ?y = (rule exI |where x =y and P = Q, OF U])))

19



Eisbach - Matching [ Je

NICTA
» Higher-order matching for control flow

—Bind matched patterns Special term ?concl
IS current subgoal

Matched pattern ?Q

IS bound
method-definition solvefex =

(match ?conclin 3x. ?Q x =
(match premsin U: Q ?y = (rule exI |where x =y and P = Q, OF U])))

19



Eisbach - Matching o

NICTA
» Higher-order matching for control flow

—Bind matched patterns Special term ?concl
IS current subgoal

Matched pattern ?Q

IS bound
method-definition solvefex =

(match ?conclin 3x. ?Q x =
(match prems in U: Q ?y = (rule exI \where x =y and P = Q, OF U])))

Special fact prems
IS current premises

19



Eisbach - Matching ®
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» Higher-order matching for control flow

—Bind matched patterns Special term ?concl
IS current subgoal

Matched pattern ?Q

IS bound
method-definition solvefex =

(match ?conclin 3x. ?Q x =
(match premsin U: Q ?y = (rule exI \where x =y and P = Q, OF U])))

Matching singleton fact U

Special fact prems is bound

IS current premises



Focus/Matching

* Problem: Raw subgoals are unstructured

Ne. Av = Bx=— Az N Bz

NICTA
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Focus/Matching

* Problem: Raw subgoals are unstructured

Ne. Av = Bx=— Az N Bz

by (rule conjl|OF assms(1) assms(2)])

NICTA
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* Problem: Raw subgoals are unstructured

Ne. Av = Bx=— Az N Bz

by (rule ssms(2)])
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Focus/Matching

* Problem: Raw subgoals are unstructured

Ne. Av = Bx=— Az N Bz

by (rule ssms(2)])

e Goal:

method-definition solve-conj =
(match ?concl in 7P N 70Q) =
(match prems in U: P and U". QQ =
(rule congI|OF U U')))

NICTA
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* Problem: Raw subgoals are unstructured

Ne. Av = Bx=— Az N Bz

by (rule ssms(2)])

Find and name assumptions
through matching

e Goal:

method-definition solve-cghy =
(match ?concl in 7P NJ7Q) =
(match prems in U: P and U". QQ =
(rule congI|OF U U')))

20



Focus

» Solution: Focusing
—Based on existing work

Ne. Ar = Bx=— Ax AN Bzx

v

NICTA
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Focus

» Solution: Focusing
—Based on existing work

Nr. Ax = Bx=— Az AN Bzx

fixes &

assumes A r and B z
shows A 2 A B z

NICTA
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Focus

» Solution: Focusing
—Based on existing work

Nr. Ax = Bx=— Az AN Bzx

fixes &

assumes A r and B zx » prems
shows A x N B x > 2concl

NICTA

21



Demo

NICTA
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Tactic Languages are not new

e | tac
—Untyped High-level tactic language for Coqg
— Goal matching, iteration, recursion

 VeriML

—Dependently typed tactic language
—Provides strong static guarantees

» Mtac
— Typed tactic language for Coq
—Leverages built-in Coq notion of computation
— Strong static guarantees



Current Results

 Eisbach

— Extension of Isar, Isabelle’s proof language

—Integrates with existing Isar syntax

* methods
o attributes

 Evaluation

— Existing methods rewritten in Eisbach
« WP, WPC: 14.verified invariant proof successfully checked

* Future Work
— Tracing/Debugging
— Optimisations



Conclusion

* Proof Engineers need tools
—to write proofs at scale

* |sar provides structure/syntax for proofs
—Most Isabelle users most familiar with Isar

» Eisbach provides easy mechanisms for writing
automation
—abstraction
—matching
—backtracking
—recursion

» Coming soon...

NICTA
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Thank Youl!
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