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Our initial motivation

How do we know that our systems are sound? How do we
safely extend them?
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Our initial motivation

How do we know that our systems are sound? How do we
safely extend them?

v

Proofs mostly carried out on paper.

Not carried out in full detail.

v

v

Spread over several papers/PhD theses.

v

Precise metatheory, precise account of Nuprl.

v

No better way than using a proof assistant.
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Our initial motivation

Agda & Coq J

2 2013/2014: bug in their termination checker.

Vincent Rahli Towards a Formally Verified Proof Assistant July 11, 2014 6/47



Our initial motivation

Agda & Coq

2 2013/2014: bug in their termination checker.

Nuprl

Inconsistencies related to types and rules, e.g.,
» Mendler’s recursive type,

» LEM is inconsistent with Base

How can we be sure that these rules are valid?

Vincent Rahli Towards a Formally Verified Proof Assistant July 11, 2014

7/47



Our initial motivation

Agda & Coq

2 2013/2014: bug in their termination checker.

Nuprl

Inconsistencies related to types and rules, e.g.,
» Mendler’s recursive type,

» LEM is inconsistent with Base

How can we be sure that these rules are valid?

Nuprl’s PER semantics in Coq (and Agda).
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Mechanization and Experimentation!

Mechanization ) Experimentation |

A

5%
's

D Less error prone 2 Adding new computations

2 Easier to propagate changes 2 Adding new types

2 Positive feedback loop 2 Exploring type theory
> Additive 2 Changing the theory
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Stuart Allen had his own meta-theory that was meant to be
meaningful on its own and needs not be framed into type
theory. We chose to use Coq and Agda.
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Nuprl — Stack

( Refiner J
( Inference rules J

( Allen's PER semantics J

[ Howe's computational equality J

[ An untyped lambda-calculus J
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Nuprl — Environment

Distributed )

Runs in the cloud

Structure editor )

Shared library

Tactic language: Classic ML J
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Nuprl — Types

Equality: a=be T
Dependent function: a:A — B3]
Dependent product: a:A x BJa]

Universe: U;
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Nuprl — Types

Partial: A ]

Intersection: Na:A.BJa]

Subset: {a: A | Bla]}
Computational equivalence: t; ~ t,
Image: Img(A,f)

PER: per(R), with R a partial equivalence relation.

Vincent Rahli Towards a Formally Verified Proof Assistant July 11, 2014 14/47



Nuprl — Types
2 Rich type language facilitates specification

2 Makes type checking harder

Inductive types? )

2 Using W types.

2 In Nuprl, we used to define inductive types using Mendler's
recursive types. PER semantics?

2 We now use Brouwer's bar induction rule to define W types.
Validity?

Vincent Rahli Towards a Formally Verified Proof Assistant July 11, 2014 15/47



Nuprl — Trusted core

Nuprl's proof engine is called a refiner.

A generic goal directed reasoner:

. f
2 a rule interpreter proo
proof
2 a proof manager tree
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Nuprl — Trusted core

Nuprl's proof engine is called a refiner.

A generic goal directed reasoner:

proof

2 a rule interpreter

proof

2 a proof manager tree

Parameterized by a collection of rules

extract

> We proved that Nuprl’s rules are valid

2 Next step is to build a verified refiner
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What we implemented in Coq

[ Refiner ]
( Inference rules J

( Allen's PER semantics )

[ Howe's computational equality J

[ An untyped lambda-calculus J
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An untyped lambda-calculus

A “nominal” approach: ]

Inductive NTerm : Set :=

| vterm: NVar — NTerm

| oterm: Opid — list BTerm — NTerm
with BTerm : Set :=

| bterm: list NVar — NTerm — BTerm.

For example:
oterm (Can NLambda) [bterm [nvar 0] (vterm (nvar 0))]
represents a \-term of the form Ax.x.
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An untyped lambda-calculus

We have the usual computation rules J

with a -reduction rule, pair and injection destructors, a
call-by-value operator, a fix operator, exceptions, ...

Provides a generic framework for defining and reasoning about
programming languages using a “nominal” style

2 See Abhishek’s LFMTP talk on Thursday
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What we have to implement

[ Refiner ]
( Inference rules J

( Allen's PER semantics )

[ Howe's computational equality J

> [ An untyped lambda-calculus J
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Howe's computational equality

One can think of approx as the greatest fixpoint of the
following operator on binary relations:

Definition close_compute
(R : NTerm— NTerm —Type)
(a b: NTerm) : Type :=
programs [ a, b ]
x ¥ (c : CanonicalOp) (as : list BTerm),
a |l oterm (Can ¢) as
— {bs : list BTerm
& (b | oterm (Can c) bs)
x 1blift (olift R) as bs }.
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Howe's computational equality

One would like to define

CoInductive approx (a b : NTerm) : Type :=
| approx_fold: close_compute approx a b — approx a b.

Unfortunately, because of cofix's conservative productivity
checking, we had to use parametrized coinduction.

Definition cequiv a b := approx a b x approx b a.

approx (=) and cequiv (~) are congruences J
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Constructive domain theory (Crary)
Let L be fix(Ax.x).
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Constructive domain theory (Crary)
Let L be fix(Ax.x).

Least element

Vt. approx L t.
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Constructive domain theory (Crary)
Let L be fix(Ax.x).

Least element )

Vt. approx L t.

Least upper bound principle J

VG f. G(£fix(f)) is the lub of the (approx) chain G(f"(L))
for n € N.
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Constructive domain theory (Crary)

Let L be fix(Ax.x).

Least element )

Vt. approx L t.

Least upper bound principle J

VG f. G(£fix(f)) is the lub of the (approx) chain G(f"(L))
for n € N.

Compactness J

if G(£ix(f)) converges, then there exists a natural number n
such that G(f"(_L)) converges.
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What we have to implement

[ Refiner ]
( Inference rules J

( Allen's PER semantics )

> [ Howe's computational equality J

[ An untyped lambda-calculus J
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What we have to implement

[ Refiner ]
( Inference rules J

) ( Allen's PER semantics )

[ Howe's computational equality J

[ An untyped lambda-calculus J
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Allen’'s PER semantics

Agda

Universe 2

Universe 0 <€

~

Coq

Universe 3
Universe 2
Universe 1

Universe 0

000l

Vincent Rahli

Towards a Formally Verified Proof Assistant

Axiom of functional
choice

July 11, 2014
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Allen's PER semantics
fi=hex:A— B J

(x:A — B) type AVay, ar. ay=ar €A = fi(a1)=h(a2) EB[x\ai]
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Allen's PER semantics
fi=hex:A— B J

(x:A — B) type AVay, ar. ay=ar €A = fi(a1)=h(a2) EB[x\ai]

ti=t,EBase J
tl ~ tg
Ax=Ax€(a=b € A) )

(a= b€ A) type A a=bEA

ti=t,EA J

(Z) type A (tllJ/ < t2~U/) AN (tlU = tlthEA)
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Allen’'s PER semantics

X1:A1 = Bi=x2:A, — B, J

A1£A2 A ‘v’al, an. 31532€A1 = Bl [X1\31]EBQ[X2\32]
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Allen’'s PER semantics

X1:A1 = Bi=x2:A, — B,

A1£A2 A ‘v’al, an. 315326141 = Bl [X1\31]EBQ[X2\32]

Base=Base

(al = ay € A)E(bl = b2 & B)

A=B A (a1=b1EAV a1 ~ b)) A (ax=b €AV ay ~ by)

A=B

A=B A (Va. a€A = al))
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Allen’'s PER semantics

This definition can be made formal using induction-recursion ]

Simple induction mechanisms such as in Coq are not enough ]

2 Definition is non-strictly-positive

Allen suggests that the definition should be valid because it is
“half-positive” (achieved by induction-recursion)

Instead of using induction-recursion, Allen defines ternary
relations between types and equalities

2 Translation of a mutually inductive-recursive definition to a

single inductive definition (Capretta).
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Allen’'s PER semantics

Ternary relations

candidate type systems:
cts = CTerm — CTerm — per — Univ

where per = CTerm — CTerm — Univ
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Allen’'s PER semantics

Ternary relations

candidate type systems:
cts = CTerm — CTerm — per — Univ
where per = CTerm — CTerm — Univ

Type constructors

Definition per_function (ts : cts) : cts = ...

Closure

Inductive close (ts : cts) : cts := ...
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Allen’'s PER semantics

Ternary relations

candidate type systems:
cts = CTerm — CTerm — per — Univ
where per = CTerm — CTerm — Univ

Type constructors

Definition per_function (ts : cts) : cts = ...

Closure

Inductive close (ts : cts) : cts := ...

Universes

Fixpoint univi (/ : nat) : cts := ...
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Allen’'s PER semantics

Fixpoint univi (/ : nat) (T T': CTerm) (eq : per) : Prop :=
match / with
| 0 = False
|Sn=

eq <2= (fun A A’ = {eqa : per, close (univi n) A A’ eqa})
end.

Has to be in Prop, otherwise we can only define a finite
number of universes
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Allen's PER semantics

Definitionuniv T T eq:= {i : nat, univii T T’ eq}. J

Definition nuprl := close univ. J

ti=th€T = {eq : per , nuprl T T eq X eq t; t} J

T=T" = {eq : per , nuprl T T' eq} J
Interesting fact: ~ m:N — U(n) is a Nuprl type J
oy I = = z wace
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What we have to implement

[ Refiner ]
( Inference rules J

) ( Allen's PER semantics )

[ Howe's computational equality J

[ An untyped lambda-calculus J
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Inference rules

We verified over 70 rules )

The more rules the better |

2 Expose more of the metatheory

2 Encode Mathematical knowledge

Gives us the basis to formally define a refiner J
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What next?

Adding new types J

Extend our formalization with
a library of definitions

Adding new computations }

Build a verified refiner )

Write a parser J

Type checker/type inferencer?J

Build a proof assistant J

Implement Allen’s semantics
of Atoms

What about Mendler’'s
recursive types?

What can you do with it? ]
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