Towards a Formally Verified Proof
Assistant

Abhishek Anand Vincent Rahli

July 11, 2014

Vincent Rahli Towards a Formally Verified Proof Assistant July 11, 2014 1/47

Our initial motivation

How do we know that our systems are sound? How do we
safely extend them?

Vincent Rahli Towards a Formally Verified Proof Assistant July 11, 2014 2/47

Our initial motivation

How do we know that our systems are sound? How do we
safely extend them?

Formalization of air traffic controllers)

Formal verification of banking protocols)

Vincent Rahli Towards a Formally Verified Proof Assistant July 11, 2014 3/47

Our initial motivation

How do we know that our systems are sound? How do we
safely extend them?

Formalization of air traffic controllers)
0‘
<
Formal verification of banking protocols)

Vincent Rahli Towards a Formally Verified Proof Assistant July 11, 2014 4/47

Our initial motivation

How do we know that our systems are sound? How do we
safely extend them?

v

Proofs mostly carried out on paper.

Not carried out in full detail.

v

v

Spread over several papers/PhD theses.

v

Precise metatheory, precise account of Nuprl.

v

No better way than using a proof assistant.

Vincent Rahli Towards a Formally Verified Proof Assistant July 11, 2014 5/47

Our initial motivation

Agda & Coq J

2 2013/2014: bug in their termination checker.

Vincent Rahli Towards a Formally Verified Proof Assistant July 11, 2014 6/47

Our initial motivation

Agda & Coq

2 2013/2014: bug in their termination checker.

Nuprl

Inconsistencies related to types and rules, e.g.,
» Mendler’s recursive type,

» LEM is inconsistent with Base

How can we be sure that these rules are valid?

Vincent Rahli Towards a Formally Verified Proof Assistant July 11, 2014

7/47

Our initial motivation

Agda & Coq

2 2013/2014: bug in their termination checker.

Nuprl

Inconsistencies related to types and rules, e.g.,
» Mendler’s recursive type,

» LEM is inconsistent with Base

How can we be sure that these rules are valid?

Nuprl’s PER semantics in Coq (and Agda).

Vincent Rahli Towards a Formally Verified Proof Assistant July 11, 2014

8/47

Mechanization and Experimentation!

Mechanization) Experimentation |

A

5%
's

D Less error prone 2 Adding new computations

2 Easier to propagate changes 2 Adding new types

2 Positive feedback loop 2 Exploring type theory
> Additive 2 Changing the theory

Vincent Rahli Towards a Formally Verified Proof Assistant July 11, 2014 9/47

What do we cover?

Constable Hone
e (1989) Kreitz ot ai
- (1999) Bickford Anand
Constuctive Mathematics Equality in Lazy Outon et o setormarce ckter Rahii
s a Programming Logic I: Computation System nolnstaniet o e g0 (2014)
ST T 3 T TRy am et N e s Towards a Formally Verified
|" uotientand settypes | | Computational Equivalence e e ALy Proof Assistant
\ Semantics (VPrl))
— () (\ TR R e T AT
Constable et al. e P Rahli, Bickford, Anand
(" Constable o
g (1995) (2004) 013)
Knoblock Implementing Mathematics Enhancing the Nuprl Proof Type Theoretical Foundations for Formal Program Optimization in Nuprl
F1988) Cufintiie (s e Development System and Azplying It to [Data|Strichires) ClassezYand|Objects using Computational Equivalence
(e e g S tion Abstract Algebra and Partial Types
C mbda PR J \ Nupri Book—-CTT86 J { Rewriting package J \ (EEEEn e CEMES] L Reasoning
‘ >
Constable (Constable \ (Siowe) Y (Hickey " e Constable 0
(1971) ndler 55 (o) Bickford
G i L (2985) Semantic Foundations for The MetaPRL Logical ()
omatic Recursive Defintions Embedding HOL in Nupri Programming Environment Intuitionistic Completeness
{__Program Writers) inType Theor Set Theoretical Semantics MetaPAL | ot)
Recursive and Subtype Types _— R
7 Schiper et al
(" cConstable)| Crary (Allen et al 1 (2014) »
Allen (2006) Developing Correctly Replicated
emantics of Evidence | (1987) () Innovation in Computation Type Theroy | [- P212%3ses bsing Forma) Tools
: " T i Using Nuprl
A Non-Type-Theoretic Semantics | | "YP® T"ef::e;:::::‘a':“‘“'wy no b
for Type-Theoretic Language e U AT e L 4
(R EEnEies Partial Types and Objects

Stuart Allen had his own meta-theory that was meant to be
meaningful on its own and needs not be framed into type
theory. We chose to use Coq and Agda.

Vincent Rahli Towards a Formally Verified Proof Assistant July 11, 2014

10/47

Nuprl — Stack

(Refiner J
(Inference rules J

(Allen's PER semantics J

[Howe's computational equality J

[An untyped lambda-calculus J

Vincent Rahli Towards a Formally Verified Proof Assistant July 11, 2014 11/47

Nuprl — Environment

Distributed)

Runs in the cloud

Structure editor)

Shared library

Tactic language: Classic ML J

Vincent Rahli Towards a Formally Verified Proof Assistant July 11, 2014

12/47

Nuprl — Types

Equality: a=be T
Dependent function: a:A — B3]
Dependent product: a:A x BJa]

Universe: U;

Vincent Rahli Towards a Formally Verified Proof Assistant July 11, 2014 13/47

Nuprl — Types

Partial: A]

Intersection: Na:A.BJa]

Subset: {a: A | Bla]}
Computational equivalence: t; ~ t,
Image: Img(A,f)

PER: per(R), with R a partial equivalence relation.

Vincent Rahli Towards a Formally Verified Proof Assistant July 11, 2014 14/47

Nuprl — Types
2 Rich type language facilitates specification

2 Makes type checking harder

Inductive types?)

2 Using W types.

2 In Nuprl, we used to define inductive types using Mendler's
recursive types. PER semantics?

2 We now use Brouwer's bar induction rule to define W types.
Validity?

Vincent Rahli Towards a Formally Verified Proof Assistant July 11, 2014 15/47

Nuprl — Trusted core

Nuprl's proof engine is called a refiner.

A generic goal directed reasoner:

. f
2 a rule interpreter proo
proof
2 a proof manager tree
Vincent Rahli Towards a Formally Verified Proof Assistant July 11, 2014

extract

16/47

Nuprl — Trusted core

Nuprl's proof engine is called a refiner.

A generic goal directed reasoner:

proof

2 a rule interpreter

proof

2 a proof manager tree

Parameterized by a collection of rules

extract

> We proved that Nuprl’s rules are valid

2 Next step is to build a verified refiner

Vincent Rahli Towards a Formally Verified Proof Assistant July 11, 2014

17/47

What we implemented in Coq

[Refiner]
(Inference rules J

(Allen's PER semantics)

[Howe's computational equality J

[An untyped lambda-calculus J

Vincent Rahli Towards a Formally Verified Proof Assistant July 11, 2014 18/47

What we implemented in Coq

[Refiner]
(Inference rules J

(Allen's PER semantics)

[Howe's computational equality J

> [An untyped lambda-calculus J

Vincent Rahli Towards a Formally Verified Proof Assistant July 11, 2014 19/47

An untyped lambda-calculus

A “nominal” approach:]

Inductive NTerm : Set :=

| vterm: NVar — NTerm

| oterm: Opid — list BTerm — NTerm
with BTerm : Set :=

| bterm: list NVar — NTerm — BTerm.

For example:
oterm (Can NLambda) [bterm [nvar 0] (vterm (nvar 0))]
represents a \-term of the form Ax.x.

Vincent Rahli Towards a Formally Verified Proof Assistant July 11, 2014 20/47

An untyped lambda-calculus

We have the usual computation rules J

with a -reduction rule, pair and injection destructors, a
call-by-value operator, a fix operator, exceptions, ...

Provides a generic framework for defining and reasoning about
programming languages using a “nominal” style

2 See Abhishek’s LFMTP talk on Thursday

Vincent Rahli Towards a Formally Verified Proof Assistant July 11, 2014 21/47

What we have to implement

[Refiner]
(Inference rules J

(Allen's PER semantics)

[Howe's computational equality J

> [An untyped lambda-calculus J

Vincent Rahli Towards a Formally Verified Proof Assistant July 11, 2014 22/47

What we have to implement

[Refiner]
(Inference rules J

(Allen's PER semantics)

> [Howe's computational equality J

[An untyped lambda-calculus J

Vincent Rahli Towards a Formally Verified Proof Assistant July 11, 2014 23/47

Howe's computational equality

One can think of approx as the greatest fixpoint of the
following operator on binary relations:

Definition close_compute
(R : NTerm— NTerm —Type)
(a b: NTerm) : Type :=
programs [a, b]
x ¥ (c : CanonicalOp) (as : list BTerm),
a |l oterm (Can ¢) as
— {bs : list BTerm
& (b | oterm (Can c) bs)
x 1blift (olift R) as bs }.

Vincent Rahli Towards a Formally Verified Proof Assistant July 11, 2014

24/47

Howe's computational equality

One would like to define

CoInductive approx (a b : NTerm) : Type :=
| approx_fold: close_compute approx a b — approx a b.

Unfortunately, because of cofix's conservative productivity
checking, we had to use parametrized coinduction.

Definition cequiv a b := approx a b x approx b a.

approx (=) and cequiv (~) are congruences J

Vincent Rahli Towards a Formally Verified Proof Assistant July 11, 2014 25/47

Constructive domain theory (Crary)
Let L be fix(Ax.x).

Vincent Rahli Towards a Formally Verified Proof Assistant July 11, 2014 26/47

Constructive domain theory (Crary)
Let L be fix(Ax.x).

Least element

Vt. approx L t.

Vincent Rahli Towards a Formally Verified Proof Assistant July 11, 2014

27/47

Constructive domain theory (Crary)
Let L be fix(Ax.x).

Least element)

Vt. approx L t.

Least upper bound principle J

VG f. G(£fix(f)) is the lub of the (approx) chain G(f"(L))
for n € N.

Vincent Rahli Towards a Formally Verified Proof Assistant July 11, 2014 28/47

Constructive domain theory (Crary)

Let L be fix(Ax.x).

Least element)

Vt. approx L t.

Least upper bound principle J

VG f. G(£fix(f)) is the lub of the (approx) chain G(f"(L))
for n € N.

Compactness J

if G(£ix(f)) converges, then there exists a natural number n
such that G(f"(_L)) converges.

Vincent Rahli Towards a Formally Verified Proof Assistant July 11, 2014 29/47

What we have to implement

[Refiner]
(Inference rules J

(Allen's PER semantics)

> [Howe's computational equality J

[An untyped lambda-calculus J

Vincent Rahli Towards a Formally Verified Proof Assistant July 11, 2014 30/47

What we have to implement

[Refiner]
(Inference rules J

) (Allen's PER semantics)

[Howe's computational equality J

[An untyped lambda-calculus J

Vincent Rahli Towards a Formally Verified Proof Assistant July 11, 2014 31/47

Allen’'s PER semantics

Agda

Universe 2

Universe 0 <€

~

Coq

Universe 3
Universe 2
Universe 1

Universe 0

000l

Vincent Rahli

Towards a Formally Verified Proof Assistant

Axiom of functional
choice

July 11, 2014

32/47

Allen's PER semantics
fi=hex:A— B J

(x:A — B) type AVay, ar. ay=ar €A = fi(a1)=h(a2) EB[x\ai]

Vincent Rahli Towards a Formally Verified Proof Assistant July 11, 2014 33/47

Allen's PER semantics
fi=hex:A— B J

(x:A — B) type AVay, ar. ay=ar €A = fi(a1)=h(a2) EB[x\ai]

ti=t,EBase J
tl ~ tg
Ax=Ax€(a=b € A))

(a= b€ A) type A a=bEA

ti=t,EA J

(Z) type A (tllJ/ < t2~U/) AN (tlU = tlthEA)

Vincent Rahli Towards a Formally Verified Proof Assistant July 11, 2014 34/47

Allen’'s PER semantics

X1:A1 = Bi=x2:A, — B, J

A1£A2 A ‘v’al, an. 31532€A1 = Bl [X1\31]EBQ[X2\32]

Vincent Rahli Towards a Formally Verified Proof Assistant July 11, 2014 35/47

Allen’'s PER semantics

X1:A1 = Bi=x2:A, — B,

A1£A2 A ‘v’al, an. 315326141 = Bl [X1\31]EBQ[X2\32]

Base=Base

(al = ay € A)E(bl = b2 & B)

A=B A (a1=b1EAV a1 ~ b)) A (ax=b €AV ay ~ by)

A=B

A=B A (Va. a€A = al))

Vincent Rahli Towards a Formally Verified Proof Assistant July 11, 2014

36/47

Allen’'s PER semantics

This definition can be made formal using induction-recursion]

Simple induction mechanisms such as in Coq are not enough]

2 Definition is non-strictly-positive

Allen suggests that the definition should be valid because it is
“half-positive” (achieved by induction-recursion)

Instead of using induction-recursion, Allen defines ternary
relations between types and equalities

2 Translation of a mutually inductive-recursive definition to a

single inductive definition (Capretta).
Vincent Rahli Towards a Formally Verified Proof Assistant July 11, 2014 37/47

Allen’'s PER semantics

Ternary relations

candidate type systems:
cts = CTerm — CTerm — per — Univ

where per = CTerm — CTerm — Univ

Vincent Rahli Towards a Formally Verified Proof Assistant July 11, 2014

38/47

Allen’'s PER semantics

Ternary relations

candidate type systems:
cts = CTerm — CTerm — per — Univ
where per = CTerm — CTerm — Univ

Type constructors

Definition per_function (ts : cts) : cts = ...

Vincent Rahli Towards a Formally Verified Proof Assistant July 11, 2014

39/47

Allen’'s PER semantics

Ternary relations

candidate type systems:
cts = CTerm — CTerm — per — Univ
where per = CTerm — CTerm — Univ

Type constructors

Definition per_function (ts : cts) : cts = ...

Closure

Inductive close (ts : cts) : cts := ...

Vincent Rahli Towards a Formally Verified Proof Assistant July 11, 2014

40/47

Allen’'s PER semantics

Ternary relations

candidate type systems:
cts = CTerm — CTerm — per — Univ
where per = CTerm — CTerm — Univ

Type constructors

Definition per_function (ts : cts) : cts = ...

Closure

Inductive close (ts : cts) : cts := ...

Universes

Fixpoint univi (/ : nat) : cts := ...

Vincent Rahli Towards a Formally Verified Proof Assistant July 11, 2014

41/47

Allen’'s PER semantics

Fixpoint univi (/ : nat) (T T': CTerm) (eq : per) : Prop :=
match / with
| 0 = False
|Sn=

eq <2= (fun A A’ = {eqa : per, close (univi n) A A’ eqa})
end.

Has to be in Prop, otherwise we can only define a finite
number of universes

Vincent Rahli Towards a Formally Verified Proof Assistant July 11, 2014 42/47

Allen's PER semantics

Definitionuniv T T eq:= {i : nat, univii T T’ eq}. J

Definition nuprl := close univ. J

ti=th€T = {eq : per , nuprl T T eq X eq t; t} J

T=T" = {eq : per , nuprl T T' eq} J
Interesting fact: ~ m:N — U(n) is a Nuprl type J
oy I = = z wace

Vincent Rahli Towards a Formally Verified Proof Assistant July 11, 2014 43/47

What we have to implement

[Refiner]
(Inference rules J

) (Allen's PER semantics)

[Howe's computational equality J

[An untyped lambda-calculus J

Vincent Rahli Towards a Formally Verified Proof Assistant July 11, 2014 44/47

What we have to implement

[Refiner]
) (Inference rules J

(Allen's PER semantics)

[Howe's computational equality J

[An untyped lambda-calculus J

Vincent Rahli Towards a Formally Verified Proof Assistant July 11, 2014 45/47

Inference rules

We verified over 70 rules)

The more rules the better |

2 Expose more of the metatheory

2 Encode Mathematical knowledge

Gives us the basis to formally define a refiner J

Vincent Rahli Towards a Formally Verified Proof Assistant July 11, 2014 46/47

What next?

Adding new types J

Extend our formalization with
a library of definitions

Adding new computations }

Build a verified refiner)

Write a parser J

Type checker/type inferencer?J

Build a proof assistant J

Implement Allen’s semantics
of Atoms

What about Mendler’'s
recursive types?

What can you do with it?]

Vincent Rahli Towards a Formally Verified Proof Assistant July 11, 2014 47 /47

