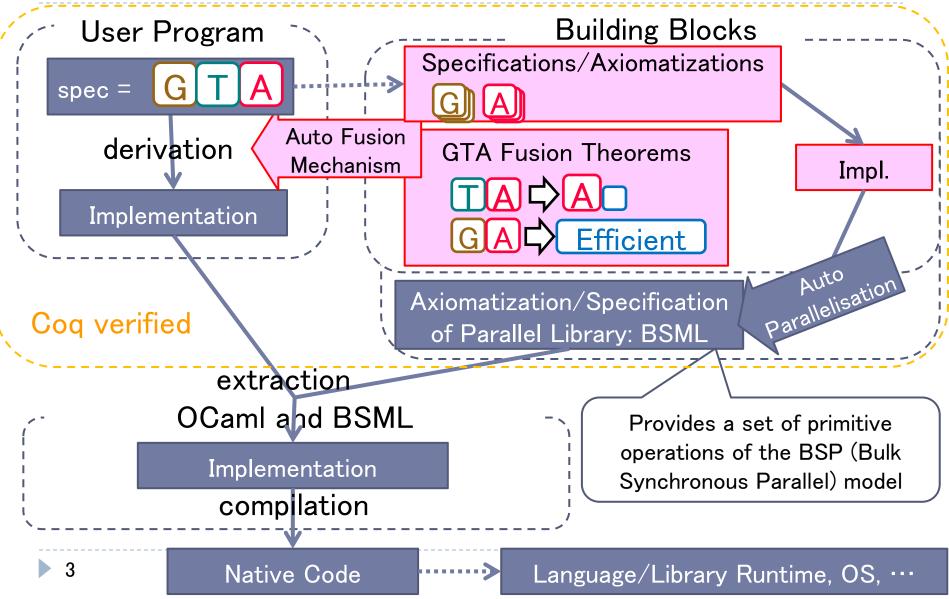
A Verified Generate-Test-Aggregate Coq Library for Parallel Programs Extraction

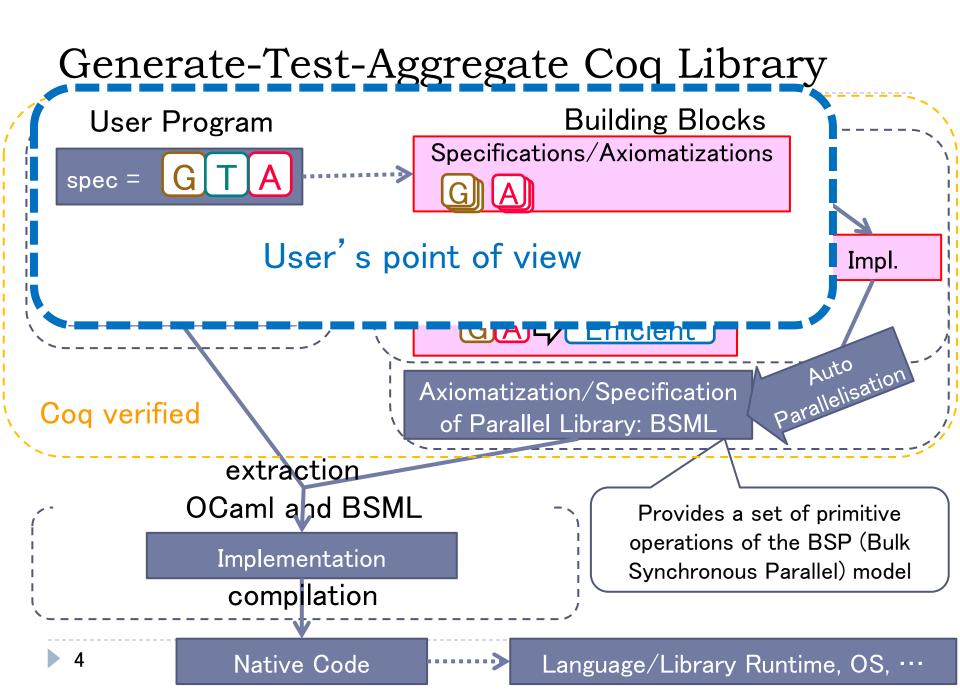
Kyushu Institute of Technology, Japan Joint work with Frédéric Loulergue and Julien Tesson Université d'Orléans and Université Paris-Est, France

Background & Motivation

- Parallel programming is necessary, but not easy
 - Parallelism is the only way to gain performance
 - Writing/maintaining code with low-level parallelism is difficult
- High-level parallel programming has been proposed (e.g., skeletal parallel programming [Cole 89])
 - Writing code by composing building blocks hiding low-level parallelism
 - Easy to write/maintain parallel programs
- Generate-test-aggregate programming [Emoto et al. ESOP '12]
 - Naïve program = composition of generator, tester and aggregator
 - Theory to derive efficient implementation from a naïve program
 - Prototype Scala library with automatic derivation [Liu et al. PMAM' 13]
- Question: Is such a library correctly implemented?
- This study: Verified generate-test-aggregate library on Coq

Generate-Test-Aggregate Coq Library





User's Point of View

Running Example: 0-1 Knapsack Problem

 Given a knapsack and a set of items, find the most valuable selection of items adhering to the knapsack's weight restriction

▶ The best total value is \$120 by choosing () () and ∭

Writing Your Naïve Code in GTA Form

Definition naive_prog := aggregate :o: test :o: generate.

- Generate all candidate substructures of the input
- Test and discard unnecessary candidates
- Aggregate the valid candidates to make the final result

Writing Your Naïve Code in GTA Form

Definition knapsack w := maxValue :o: validWeight w :o: allSelections.

- allSelects generates all item selections
- validWeight filters out selections with total weight heavier than w
- maxValue takes the maximum total value (for simplicity, value only)

Given a knapsack and a set of items, find the most valuable selection of items adhering to the knapsack's weight restriction

---Writing Your Naïve Code---

Generator: Generating All Candidates

Definition knapsack w := maxValue :o: validWeight w :o: allSelections.

- generate : [A] -> { [A] }
 - { X } is the type of bags (multi-sets) of X
- You may design your generators, but it is not easy
- The library provides a set of ready-made generators
 - subs for all sublists
 - segs/inits/tails for all contiguous sublists/prefixes/suffixes
- For the knapsack problem, we choose the subs generator:

Definition allSelections := subs .

---Writing Your Naïve Code---

Tester: Discarding Invalid Candidates

Definition knapsack w := maxValue :o: validWeight w :o: allSelections.

test : { [A] } -> { [A] }

- A filter operation of a bag with predicate p of a specific kind: Definition p := ok :o: fold_right (☉) i_☉ :o: map f
 - ok : a lightweight judgment
 - \blacktriangleright \odot : a monoid operator with the identity element i_\odot

(Monoid: an associative binary operator with its identity element)

For the knapsack problem, p checks the total weight:

Definition totalWeight := fold_right (+) 0 :o: map getWeight . Definition p w := (fun a => a <= w) :o: totalWeight . Definition validWeight w := filter (p w).

User's Point of View

---Writing Your Naïve Code---

Aggregator: Making the Final Result

Definition knapsack w := maxValue :o: validWeight w :o: allSelections.

- aggregate :: { [A] } -> S
 - S is a type of the final result
- You may design your aggregators, but it is not easy
- The library provides a set of ready-made aggregators
 - maxsum f for finding the maximum f-weighted sum
 - sumprod f, count, maxsumSolution f, longest, top-k variants, ···
- For the knapsack problem, we can use the maxsum aggregator:

Definition maxValue := maxsum getValue .

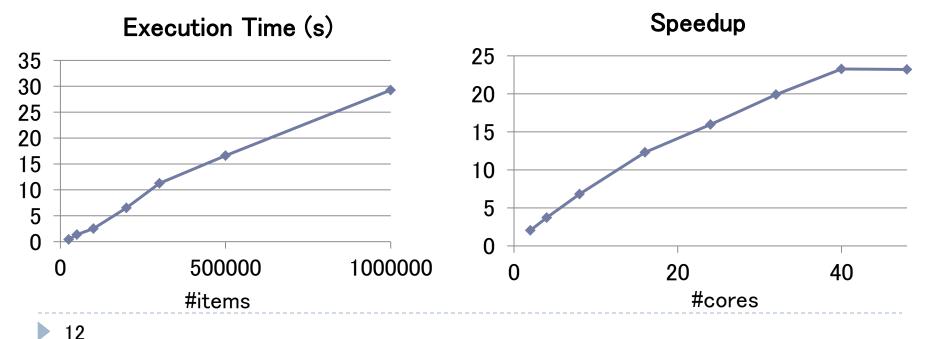
All You Need to Do

Definition allSelections := subs. Definition totalWeight := fold_right (+) 0 :o: map getWeight . Definition $p w := (fun a => a \le w)$:o: totalWeight . Definition validWeight w := filter (p w). Definition maxValue := maxsum getValue . Definition knapsack w := maxValue :o: validWeight w :o: allSelections. (* check the naïve program *) Eval compute in (knapsack 3 [item 2 1; item 2 2; item 3 2]). (* small proofs related to the naïve program *) Program Instance totalWeight monoidOp : isUsingMonoidOp totalWeight getWeight plus 0 := fold_right_monoid. Program Instance proper_getWeight : Proper (eq_item ==> eq) getWeight. Next Obligation. (* omit *) Defined.

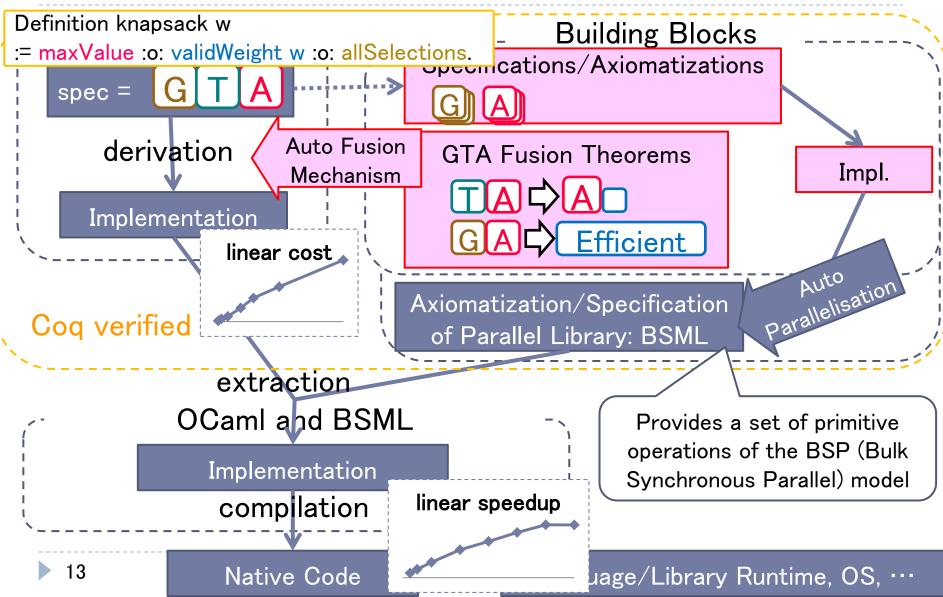
Definition knapsack_opt w := fused (tgt := knapsack w). (* auto derivation*)

Experiment Results on Extracted Code

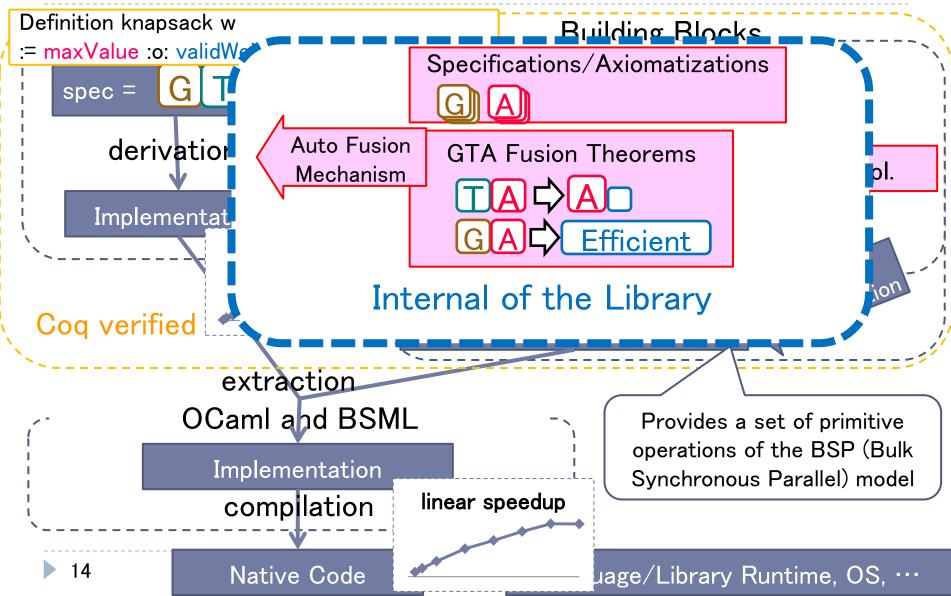
- knapsack_opt (auto optimized, parallelized knapsack) has been extracted to OCaml + BSML (BSP primitives)
- Cost is linear in #items, although the naïve program looks an exponential cost program
- Good speedup (except for the fully busy case)
 - 64GB shared memory, 48 cores = 12 cores x 4 processors



Generate-Test-Aggregate Coq Library



Generate-Test-Aggregate Coq Library



Derived Implementation of knapsack

E.g., knapsack_opt 2kg [(1kg, \$10), (1kg, \$20), (2kg, \$20)]

Parallel time complexity: $O(wn/p + w^2 \log p)$ (n = #items, p = #cores)

 Auto-derivation mechanism derives this by using two verified transformation theorems

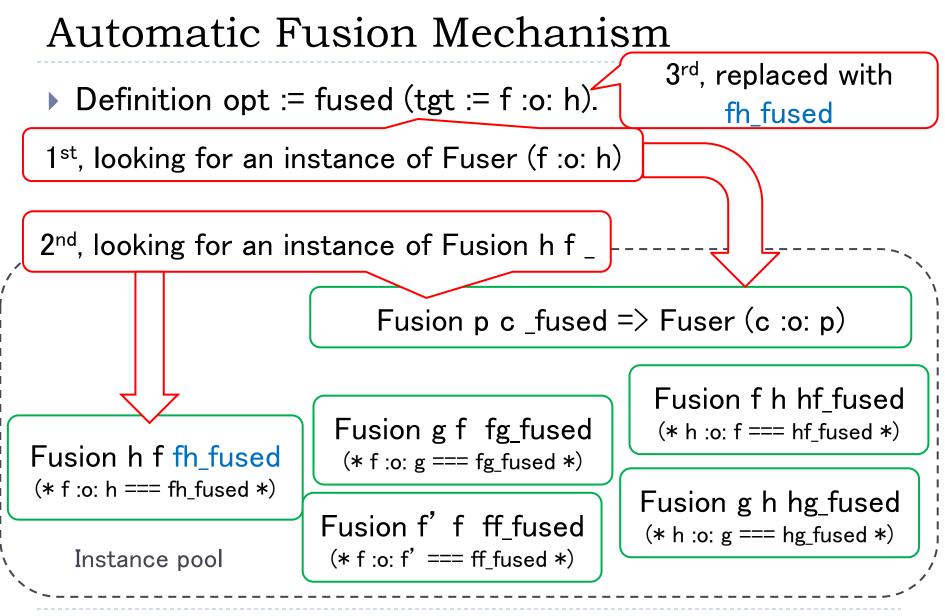
Automatic Fusion

Fusion: eliminating intermediate data structures between two funcs:

- E.g., map f (map g x) = map (f :o: g) x
- Basic idea: Use the typeclass resolver for an automatic search
 - Auto-parallelization has been implemented by the same tech. [Tesson 11]
- Two typeclasses: Fusion for a rule DB and Fuser for a trigger

Class Fusion `(producer : B -> C) `(consumer : C -> D) (_fused : B -> D) := { _spec : forall b, consumer (producer b) === _fused b }.

Class Fuser `(tgt : B -> D) := {
 fused : B -> D; spec : forall b, tgt b === fused b }.
Global Program Instance fuser `{fusion : Fusion producer consumer _fused}
: Fuser (consumer :o: producer) := { fused := _fused; spec := _spec }.



Verified Fusion Theorems

- Filter-embedding Fusion TA ↓
 - New aggregator does computation on tables

Theorem filterEmbeddingFusion

- `(c1 : isNestedFoldsWithSemiring aggregate f oplus otimes ep et)
- `(c2 : isFilterWithFoldWithMonoid test h odot e ok dec)

: forall x,

(aggregate :o: test) x === (postproc :o: nestedFolds mkTable semiringOnTables) x.

- Semiring Fusion GA C Efficient
 - A kind of shortcut fusion (substitution of consumer's operators)

Theorem semiringFusion

- `(c1 : isNestedFoldsWithSemiring aggregate f oplus otimes ep et)
- `(c2 : isSemiringPolymorphicGenerator generate polygen)
- : forall x, (aggregate :o: generate) x === (polygen f (oplus, otimes, ep, et)) x.

Other Applications Include...

- More restriction on selections in the Knapsack Problem
 - E.g., "Item B must be contained if item C is contained", "The number of items with value > \$100 is at most 5", "Select an even number of items", etc.
 - Your GTA program can have multiple testers
- Finding the most likely sequence of hidden events from a sequence of observed events (Viterbi and its variants)
- Finding the longest (most valuable) segment (region) satisfying a set of conditions

etc

Conclusion

- A Verified Generate-Test-Aggregate Coq Library
 - Equipped with an automatic fusion mechanism
 - Proofs of two fusion theorems
 - You can write an easy-to-design/verify/modify naïve program, but get an efficient parallel program
 - Extracted code runs on BSML/OCaml on parallel machines
 - Axiomatization/Implementation of Bags, typeclass-based Maps, Monoid semiring (algebra of tables), ···
- Subjects in future studies
 - Extension of the theory to trees and graphs
 - Use of efficient implementation of 'tables'
 - Code extraction for execution on Hadoop/MapReduce

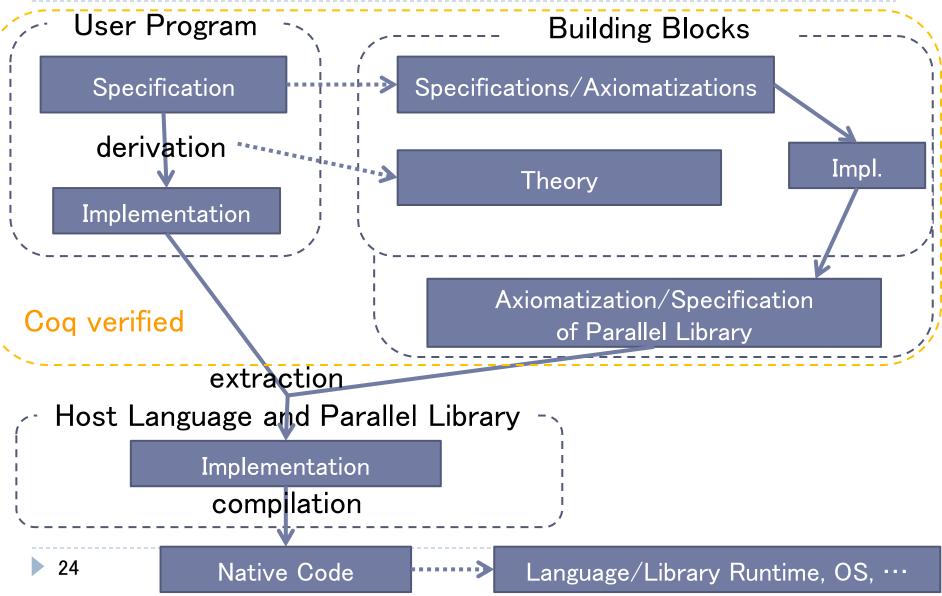
Thank you for listening.

Visit the following URL for the library code:

http://traclifo.univ-orleans.fr/SyDPaCC

 Systematic Development of Programs for Parallel and Cloud Computing

SyDPaCC: Systematic Development of Programs for Parallel and Cloud Computing



Finitization and Automatic Finitization

- Making the range R of the homomorphism in a filter is important to the performance of the derived program
 - The cost of the multiplication operator on tables: $O(|R|^2)$
- We can use { x : nat | x <= w + 1 } as R, instead of nat, for Definition p := comparison_with w :o: sum_of_nats

The comparison may be (<= w), (==w), (>=w), (==)

(** automatic finitization of the predicate *)
Definition weightLimit' (w : nat) := rewrite_p (p := weightLimit w).
Definition validWeight' (w : nat) := filterB (weightLimit' w) dec_spec.
Definition knapsack' (w : nat) := maxvalue :o: validWeight' w :o: subs.
(** The linear cost program. *)

Definition knapsack'_opt (w : nat) := Eval simpl in fused (f := knapsack' w).

1st Fusion Theorem: Filter-embedding Fusion

Theorem filterEmbeddingFusion

`(c1 : isNestedFoldsWithSemiring aggregate f oplus otimes ep et)

`(c2 : isFilterWithFoldWithMonoid test h odot e ok dec)

: forall x,

(aggregate :o: test) x === (postproc :o: nestedFolds mkTable semiringOnTables) x.

The first condition says

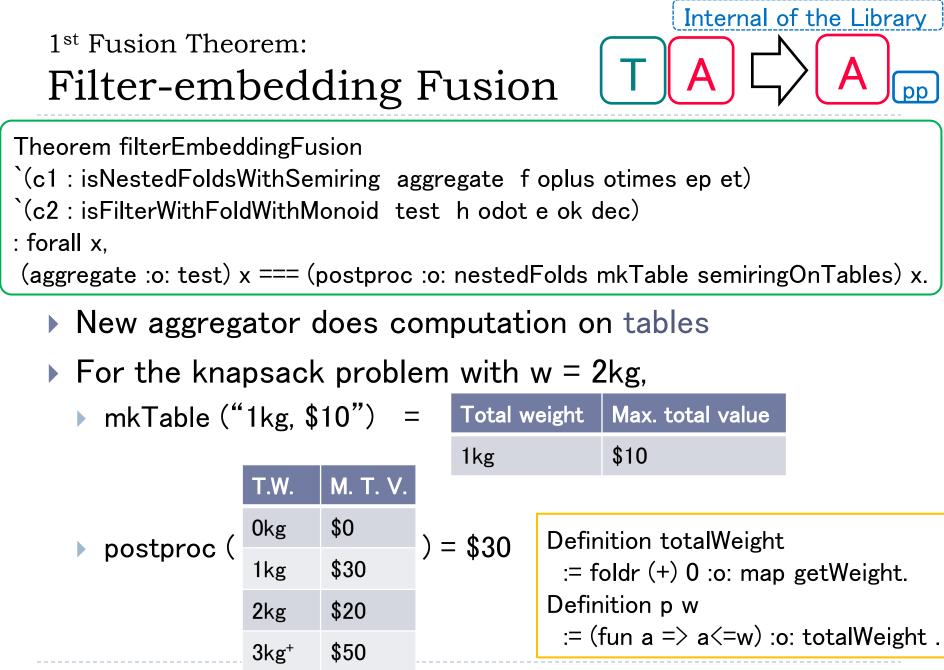
an aggregator is a nested folds with semiring operators:

Definition nestedFolds f (\oplus , \otimes , i_{\oplus} , i_{\otimes})

:= fold_{bag} (⊕) i_⊕ :o: map_{bag} (fold_right (⊗) i_⊗ :o: map f).

Internal of the Library

- Semiring: monoid op. \otimes distributes over commutative monoid op. $\oplus,$ and i_\oplus is the absorbing element of \otimes .
- New aggregator does computation on tables
 - The structure of tables is derived from the tester & aggregator



Two table merge operations \oplus and \otimes (w = 2kg)

T.W.	M. T. V.		T.W.	M. T. V.		T.W.	M. T. V.	(row-wise
0kg	\$0	Ð	0kg	\$0	-	0kg	\$0	maximum)
1kg	\$30		2kg	\$20		1kg	\$30	
2kg	\$10					2kg	\$20	
					1			(all possible
I.W .	M. T. V.		T.W.	M. T. V.		T.W.	M. T. V.	(all possibl
T.W. Okg	M. T. V. \$0	\otimes	T.W. Okg	M. T. V. \$0	=	T.W. Okg	M. T. V. \$0	(all possibl combinati
		8	_		=			-
0kg	\$0	8	0kg	\$0	=	0kg	\$0	-

Note: since the weight limit w = 2kg, entries greater than 3kg are unnecessary. This finitization of tables can be done automatically in a similar way to the fusion 2nd Fusion Theorem: Semiring Fusion

GA C Efficient

Theorem semiringFusion

- `(c1 : isNestedFoldsWithSemiring aggregate f oplus otimes ep et)
- `(c2 : isSemiringPolymorphicGenerator generate polygen)
- : forall x, (aggregate :o: generate) x === (polygen f oplus otimes ep et) x.
- The second condition (instance) says
 - generate = polygen + "constructors of bags of lists", and
 - polygen accepts any semiring operators (i.e., polymorphic)
- Constructors of basg of lists:
 - Cross-concatenation: $\{x, y\} \times_{++} \{z, w\} = \{x++z, x++w, y++z, y++w\}$
 - Union: $\{x, y\} \cup \{z, w\} = \{x, y, z, w\}$
- Definition poly_subs f (op, ot, ep, et) := fold_right ot et :o: map (fun x => op (f x) et)
- Definition subs := poly_subs (fun x => { [x] }) (×₊₊) (U) { [] } { }
 - ▶ E.g., subs $[1, 2] = (\{ [1] \} \cup \{ [] \}) \times_{++} (\{ [1] \} \cup \{ [] \})$ = { [1], [] } ×_{++} { [2], [] } = { [1,2], [1], [2], [] }

Property of Polymorphic Functions

Class isSemiringPolymorphicFunction (pgen : forall {V:Type}, (T -> V) -> (V->V->V) -> (V->V->V) -> (V) -> (V) -> V) :={semiringPolymorphism : forall {V:Type} (f : T -> V) (oplus : V->V->V) (otimes : V->V->V) (ep et : V), FSHom f oplus otimes ep et (pgen FS_F FS_OPLUS FS_OTIMES FS_EP FS_ET) = pgen f oplus otimes ep et

- > All instances of a polymorphic function act in the same way.
 - Evaluation of a computation tree constructed by a polymoprhic function produces the same result as computing the result directly by the polymorphic function

FreeSemiring and its Homomorphism

```
Inductive FreeSemiring :=

| FS_F : T -> FreeSemiring

| FS_OPLUS : FreeSemiring -> FreeSemiring -> FreeSemiring

| FS_OTIMES : FreeSemiring -> FreeSemiring -> FreeSemiring

| FS_EP : FreeSemiring

| FS_ET : FreeSemiring.
```

Semiring (⊕,⊗,0,1)

- Associativity: $X \oplus (Y \oplus Z) = (X \oplus Y) \oplus Z$ $X \otimes (Y \otimes Z) = (X \otimes Y) \otimes Z$
- Commutativity: $X \oplus Y = Y \oplus X$
- ► Distributivity: $X \otimes (Y \oplus Z) = (X \otimes Y) \oplus (X \otimes Z)$
- Identities: $X \oplus O = O \oplus X = X$ $x \otimes i = i \otimes x = x$
- Absorbing: $X \otimes O = O \otimes X = O$
 - Semiring (⊕,⊗,0,1)
 - = Monoid (\otimes, i) + Commutaive Monoid $(\oplus, 0)$
 - + Distributivity + Absorbing

Monoid Semiring

Given a semiring (⊕, ⊗, 0, i) on S and monoid (⊙, e) on M, we can make a new semiring on linear combinations (tables).

(table view:

m₁

 m_{ν}

S₁

S

• Linear combination: $s_1 m_1 + \cdots + s_k m_k$

Multiplication:

$$(s_1 m_1 + \dots + s_k m_k) \times (t_1 n_1 + \dots + t_j n_j) = (s_1 \otimes t_1) (m_1 \odot n_1) + \dots + (s_k \oplus t_1) (m_k \odot n_1) + \dots + (s_1 \otimes t_j) (m_1 \odot n_j) + \dots + (s_k \oplus t_j) (m_k \odot n_j)$$

All Assignments Generator