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Background & Motivation 
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 Parallel programming is necessary, but not easy 
 Parallelism is the only way to gain performance 

 Writing/maintaining code with low-level parallelism is difficult 

 High-level parallel programming has been proposed 
 (e.g., skeletal parallel programming [Cole 89]) 
 Writing code by composing building blocks hiding low-level parallelism 

 Easy to write/maintain parallel programs 

 Generate-test-aggregate programming [Emoto et al. ESOP ’12] 

 Naïve program = composition of generator, tester and aggregator 

 Theory to derive efficient implementation from a naïve program 

 Prototype Scala library with automatic derivation [Liu et al. PMAM’13] 

 Question: Is such a library correctly implemented? 

 This study: Verified generate-test-aggregate library on Coq 
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Running Example: 0-1 Knapsack Problem 

 Given a knapsack and a set of items, find the most 
valuable selection of items adhering to the knapsack’s 
weight restriction 

 

 

 

 

 

 

 

 The best total value is $120 by choosing          ,       and   
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User’s Point of View 



Writing Your Naïve Code in GTA Form 

 GTA Form   
 

 Generate all candidate substructures of the input 

 Test and discard unnecessary candidates 

 Aggregate the valid candidates to make the final result 
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 Definition naive_prog := aggregate :o: test :o: generate. 

User’s Point of View 



Writing Your Naïve Code in GTA Form 

 GTA Form   
 

 allSelects generates all item selections 

 validWeight filters out selections with total weight heavier than w 

 maxValue takes the maximum total value (for simplicity, value only) 

 Definition knapsack w := maxValue :o: validWeight w :o: allSelections. 
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Given a knapsack and a set of items, find the most valuable selection of 
items adhering to the knapsack’s weight restriction 

User’s Point of View 



---Writing Your Naïve Code--- 

Generator: Generating All Candidates 

Definition allSelections  := subs . 
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 Definition knapsack w := maxValue :o: validWeight w :o: allSelections. 

 generate : [A] -> { [A] } 

 { X } is the type of bags (multi-sets) of X 

 You may design your generators, but it is not easy 

 The library provides a set of ready-made generators 

 subs  for all sublists  

 segs/inits/tails  for all contiguous sublists/prefixes/suffixes 

 ... 

 For the knapsack problem, we choose the subs generator: 

Definition allSelections  := subs . 

User’s Point of View 
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 Definition knapsack w := maxValue :o: validWeight w :o: allSelections. 

---Writing Your Naïve Code---  

Tester: Discarding Invalid Candidates 

 test : { [A] } -> { [A] } 

 A filter operation of a bag with predicate p of a specific kind: 
 Definition p := ok :o: fold_right () i


 :o: map f  

 ok : a lightweight judgment  

  : a monoid operator with the identity element i


 

 (Monoid: an associative binary operator with its identity element) 

 For the knapsack problem, p checks the total weight: 
 

 Definition totalWeight := fold_right (+) 0 :o: map getWeight . 
Definition p w := (fun a => a <= w) :o: totalWeight . 
Definition validWeight w := filter (p w). 

User’s Point of View 
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 Definition knapsack w := maxValue :o: validWeight w :o: allSelections. 

---Writing Your Naïve Code---  

Aggregator: Making the Final Result 

 aggregate :: { [A] } -> S 

 S is a type of the final result 

 You may design your aggregators, but it is not easy 

 The library provides a set of ready-made aggregators 

 maxsum f   for finding the maximum f-weighted sum 

 sumprod f, count, maxsumSolution f, longest, top-k variants, … 

 For the knapsack problem, we can use the maxsum aggregator:  
 

 

 

 

 

 

 

 

Definition maxValue := maxsum getValue . 

User’s Point of View 



 

All You Need to Do 
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Definition allSelections  := subs . 
Definition totalWeight := fold_right (+) 0 :o: map getWeight . 
Definition p w := (fun a => a <= w) :o: totalWeight . 
Definition validWeight w := filter (p w). 
Definition maxValue := maxsum getValue . 
Definition knapsack w := maxValue :o: validWeight w :o: allSelections. 
 

(* check the naïve program *) 

Eval compute in (knapsack 3 [item 2 1; item 2 2; item 3 2 ]). 
 

(* small proofs related to the naïve program *) 

Program Instance totalWeight_monoidOp :  
  isUsingMonoidOp totalWeight getWeight plus 0 := fold_right_monoid. 
Program Instance proper_getWeight : Proper (eq_item ==> eq) getWeight. 
Next Obligation. (* omit *) Defined. 

Definition knapsack_opt w := fused (tgt := knapsack w ). (* auto derivation*) 

User’s Point of View 



Experiment Results on Extracted Code 

 knapsack_opt (auto optimized, parallelized knapsack)  
has been extracted to OCaml + BSML (BSP primitives) 

 Cost is linear in #items,  
although the naïve program looks an exponential cost program 

 Good speedup (except for the fully busy case) 

 64GB shared memory, 48 cores = 12 cores x 4 processors  
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Derived Implementation of knapsack 

 E.g., knapsack_opt 2kg [ (1kg, $10), (1kg, $20), (2kg, $20) ]  
  

= postproc (                ⊗                ⊗         ) 

 

 

= postproc (                 ⊗         ) = postproc (                  ) 

 
      = $30 

Parallel time complexity: O(wn/p + w2 log p)  (n = #items, p = #cores) 

 Auto-derivation mechanism derives this  
by using two verified transformation theorems 
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Internal of the Library 



Automatic Fusion 

 Fusion: eliminating intermediate data structures between two funcs: 

 E.g., map f (map g x) = map (f :o: g) x 

 Basic idea: Use the typeclass resolver for an automatic search 

 Auto-parallelization has been implemented by the same tech. [Tesson  11] 

 Two typeclasses: Fusion for a rule DB and Fuser for a trigger 

 Class Fusion `(producer : B -> C) `(consumer : C -> D) (_fused : B -> D) := { 
    _spec : forall b, consumer (producer b) === _fused b }. 

Class Fuser `(tgt : B -> D) := {  
  fused : B -> D;     spec : forall b, tgt b === fused b }. 
 

Global Program Instance fuser `{fusion : Fusion producer consumer _fused}  
: Fuser (consumer :o: producer) := { fused := _fused; spec := _spec }. 
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Internal of the Library 



Automatic Fusion Mechanism 

 Definition opt := fused (tgt := f :o: h). 

 1st, looking for an instance of Fuser (f :o: h)   

Fusion h f fh_fused 
(* f :o: h === fh_fused *) 

Fusion f’ f  ff_fused 
(* f :o: f’ === ff_fused *)  

Fusion p c _fused => Fuser (c :o: p) 

2nd, looking for an instance of Fusion h f _   

3rd, replaced with 
fh_fused 

Instance pool 
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Fusion g h hg_fused 
(* h :o: g === hg_fused *)  

Fusion g f  fg_fused 
(* f :o: g === fg_fused *)  

Fusion f h hf_fused 
(* h :o: f === hf_fused *)  

Internal of the Library 



Verified Fusion Theorems 

 Filter-embedding Fusion 

 New aggregator does computation on tables 

 

 

 

 

 Semiring Fusion  

 A kind of shortcut fusion (substitution of consumer’s operators ) 

 

   

T A A pp 
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Theorem filterEmbeddingFusion 
`(c1 : isNestedFoldsWithSemiring  aggregate  f oplus otimes ep et) 
`(c2 : isFilterWithFoldWithMonoid  test  h odot e ok dec) 
: forall x, 
 (aggregate :o: test) x === (postproc :o: nestedFolds mkTable semiringOnTables) x. 

Internal of the Library 

Efficient G A 

Theorem semiringFusion 
`(c1 : isNestedFoldsWithSemiring         aggregate   f oplus otimes ep et) 
`(c2 : isSemiringPolymorphicGenerator generate     polygen) 
: forall x, (aggregate :o: generate) x === (polygen f (oplus, otimes, ep, et)) x. 



Other Applications Include… 

 More restriction on selections in the Knapsack Problem 

 E.g., “Item B must be contained if item C is contained”, 

 “The number of items with value > $100 is at most 5”, 

 “Select an even number of items”, etc. 

 Your GTA program can have multiple testers 

 Finding the most likely sequence of hidden events from  
a sequence of observed events (Viterbi and its variants) 

 Finding the longest (most valuable) segment (region) 
satisfying a set of conditions 

 etc 
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Conclusion 

 A Verified Generate-Test-Aggregate Coq Library 
 Equipped with an automatic fusion mechanism 

 Proofs of two fusion theorems  

 You can write an easy-to-design/verify/modify naïve program, 
but get an efficient parallel program 

 Extracted code runs on BSML/OCaml on parallel machines 

 Axiomatization/Implementation of Bags, typeclass-based Maps, 
Monoid semiring (algebra of tables), … 

 Subjects in future studies 
 Extension of the theory to trees and graphs 

 Use of efficient implementation of ‘tables’ 

 Code extraction for execution on Hadoop/MapReduce 
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Thank you for listening. 
 

Visit the following URL for the library code: 
 

   http://traclifo.univ-orleans.fr/SyDPaCC  
 

  

 

   

 Systematic Development of Programs for 
Parallel and Cloud Computing 

http://traclifo.univ-orleans.fr/SyDPaCC
http://traclifo.univ-orleans.fr/SyDPaCC
http://traclifo.univ-orleans.fr/SyDPaCC
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User Program Building Blocks 

SyDPaCC: Systematic Development of 

Programs for Parallel and Cloud Computing 
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Finitization and Automatic Finitization 
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 Making the range R of the homomorphism in a filter is 
important to the performance of the derived program 

 The cost of the multiplication operator on tables: O(|R|2) 

 We can use { x : nat | x <= w + 1 } as R, instead of nat,  
for Definition p := comparison_with w :o: sum_of_nats  

 The comparison may be (<= w), (==w), (>=w), (==) 

 (** automatic finitization of the predicate *) 
  Definition weightLimit' (w : nat) := rewrite_p (p := weightLimit w). 
  Definition validWeight' (w : nat) := filterB (weightLimit' w) dec_spec. 
  Definition knapsack' (w : nat) := maxvalue :o: validWeight' w :o: subs. 
 

  (** The linear cost program. *) 
  Definition knapsack'_opt (w : nat) := Eval simpl in fused (f := knapsack' w). 



1st Fusion Theorem: 

Filter-embedding Fusion 
 

 

 

   

 The first condition says 
an aggregator is a nested folds with semiring operators: 
     Definition nestedFolds f (⊕, ⊗, i⊕, i⊗)  
                   := foldbag (⊕) i⊕ :o: mapbag (fold_right (⊗) i⊗ :o: map f).  

 Semiring: monoid op. ⊗ distributes over commutative monoid op. ⊕, 
              and i⊕ is the absorbing element of ⊗ . 

 New aggregator does computation on tables 

 The structure of tables is derived from the tester & aggregator 

T A A pp 

26 

Theorem filterEmbeddingFusion 
`(c1 : isNestedFoldsWithSemiring  aggregate  f oplus otimes ep et) 
`(c2 : isFilterWithFoldWithMonoid  test  h odot e ok dec) 
: forall x, 
 (aggregate :o: test) x === (postproc :o: nestedFolds mkTable semiringOnTables) x. 

Internal of the Library 



1st Fusion Theorem: 

Filter-embedding Fusion 
 

 

 

   

 New aggregator does computation on tables 

 For the knapsack problem with w = 2kg,  

 mkTable (“1kg, $10”)  = 

 

 

 postproc (   )                ) = $30 
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Theorem filterEmbeddingFusion 
`(c1 : isNestedFoldsWithSemiring  aggregate  f oplus otimes ep et) 
`(c2 : isFilterWithFoldWithMonoid  test  h odot e ok dec) 
: forall x, 
 (aggregate :o: test) x === (postproc :o: nestedFolds mkTable semiringOnTables) x. 

Total weight  Max. total value 

1kg $10 

T.W. M. T. V. 

0kg $0 

1kg $30 

2kg $20 

3kg+ $50 

Definition totalWeight  
  := foldr (+) 0 :o: map getWeight. 
Definition p w  
  := (fun a => a<=w) :o: totalWeight . 

T A A pp 

Internal of the Library 



1st Fusion Theorem: 

Filter-embedding Fusion 

 Two table merge operations ⊕ and ⊗ (w = 2kg) 
 

  ⊕     = 

 

 

 

  ⊗      = 

 

 
  
   

Note: since the weight limit w = 2kg, entries greater than 3kg are unnecessary.  

This finitization of tables can be done automatically in a similar way to the fusion 
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T.W. M. T. V. 

0kg $0 

1kg $30 

2kg $10 

T.W. M. T. V. 

0kg $0 

2kg $20 

T.W. M. T. V. 

0kg $0 

1kg $30 

2kg $20 

T.W. M. T. V. 

0kg $0 

1kg $30 

2kg $10 

T.W. M. T. V. 

0kg $0 

2kg $20 

T.W. M. T. V. 

0kg $0 

1kg $30 

2kg $20 

3kg+ $50 

(row-wise 
 maximum) 

(all possible 
 combination) 

T A A pp 

Internal of the Library 



2nd Fusion Theorem:  

Semiring Fusion 

 
 
 
 

 The second condition (instance) says  
 generate = polygen + “constructors of bags of lists”, and 
 polygen accepts any semiring operators (i.e., polymorphic)  

 Constructors of basg of lists:  
 Cross-concatenation: {x, y} ×++ {z, w} = { x++z, x++w, y++z, y++w} 
 Union: {x, y} ∪ {z, w} = {x, y, z, w} 

 Definition poly_subs f (op, ot, ep, et)  
    := fold_right ot et :o: map (fun x => op (f x)  et) 

 Definition subs := poly_subs (fun x => { [x] }) (×++ ) (∪)  { [ ] }  { } 
 E.g., subs [1, 2] = ( { [1] } ∪ { [ ] } ) ×++ ( { [1] } ∪ { [ ] } ) 

                      = { [1], [ ] } ×++ { [2], [ ] } = { [1,2], [1], [2], [ ] } 

Efficient G A 

29 

Theorem semiringFusion 
`(c1 : isNestedFoldsWithSemiring         aggregate   f oplus otimes ep et) 
`(c2 : isSemiringPolymorphicGenerator generate     polygen) 
: forall x, (aggregate :o: generate) x === (polygen f oplus otimes ep et) x. 



Property of Polymorphic Functions 
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Class isSemiringPolymorphicFunction 
  (pgen : forall {V:Type}, (T -> V) -> (V->V->V) -> (V->V->V) -> (V) -> (V) -> V)  
  :={semiringPolymorphism :  
     forall {V:Type} (f : T -> V) (oplus : V->V->V) (otimes : V->V->V)  (ep et : V), 
      FSHom f oplus otimes ep et (pgen FS_F FS_OPLUS FS_OTIMES FS_EP FS_ET)  
        = pgen f oplus otimes ep et 
}. 

 All instances of a polymorphic function act in the same way. 

 Evaluation of a computation tree constructed by a polymoprhic 
function produces the same result as computing the result 
directly by the polymorphic function  



FreeSemiring and its Homomorphism 
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Inductive FreeSemiring := 
      | FS_F : T -> FreeSemiring 
      | FS_OPLUS : FreeSemiring -> FreeSemiring -> FreeSemiring 
      | FS_OTIMES : FreeSemiring -> FreeSemiring -> FreeSemiring 
      | FS_EP : FreeSemiring 
      | FS_ET : FreeSemiring. 
 
Fixpoint FSHom {V:Type} (f : T -> V) (oplus otimes : V->V->V)  (ep et : V) (x)  
:= match x with 
   | FS_F a => f a 
   | FS_OPLUS l r =>  
              oplus (FSHom f oplus otimes ep et l) (FSHom f oplus otimes ep et r) 
   | FS_OTIMES l r =>  
             otimes (FSHom f oplus otimes ep et l) (FSHom f oplus otimes ep et r) 
   | FS_EP => ep 
   | FS_ET => et 
  end. 



Semiring (⊕,⊗,o,i) 
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 Associativity:  x ⊕ (y ⊕ z) = (x ⊕ y) ⊕ z 
   x ⊗ (y ⊗ z) = (x ⊗ y) ⊗ z 

 Commutativity:  x ⊕ y = y ⊕ x 

 Distributivity:  x ⊗ (y ⊕ z) = (x ⊗ y) ⊕ (x ⊗ z) 

 Identities:   x ⊕ o = o ⊕ x = x  
   x ⊗ i = i ⊗ x = x 

 Absorbing:   x ⊗ o = o ⊗ x = o 

 
 Semiring (⊕,⊗,o,i)  
= Monoid (⊗,i) + Commuataive Monoid (⊕,o)  
   + Distributivity + Absorbing 
    

 

 

 

 



Monoid Semiring 
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 Given a semiring (⊕,⊗,o,i) on S and monoid (⊙,e) on M, 

we can make a new semiring on linear combinations (tables). 

 Linear combination:  s1 m1 + … + sk mk      (table view:             )  
 

 Addition: s1 m + s2 m = (s1 ⊕ s2) m 

  (otherwise no effect) 
 

 Multiplication: 
 (s1 m1 + … + sk mk) × (t1 n1 + … + tj nj) 
      = (s1 ⊗ t1) (m1 ⊙ n1) + … + (sk ⊕ t1) (mk ⊙ n1)  

         + …  
            + (s1 ⊗ tj) (m1 ⊙ nj) + … + (sk ⊕ tj) (mk ⊙ nj)  

 

m1 s1 

… … 

mk sk 



All Assignments Generator 
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 assign [T,F] [a, b, c]  
= { [(a, T), (b, T), (c, T)], 
 [(a, T), (b, T), (c, F)], 
 [(a, T), (b, F), (c, T)], 
 [(a, T), (b, F), (c, F)], 
 [(a, F), (b, T), (c, T)], 
 [(a, F), (b, T), (c, F)], 
 [(a, F), (b, F), (c, T)], 
 [(a, F), (b, F), (c, F)]  } 
 

 

 

 

 

 


