
A Verified Generate-Test-Aggregate Coq Library

for Parallel Programs Extraction

Kento EMOTO
Kyushu Institute of Technology, Japan

Joint work with Frédéric Loulergue and Julien Tesson
Université d'Orléans and Université Paris-Est, France

Background & Motivation

2

 Parallel programming is necessary, but not easy
 Parallelism is the only way to gain performance

 Writing/maintaining code with low-level parallelism is difficult

 High-level parallel programming has been proposed
 (e.g., skeletal parallel programming [Cole 89])
 Writing code by composing building blocks hiding low-level parallelism

 Easy to write/maintain parallel programs

 Generate-test-aggregate programming [Emoto et al. ESOP ’12]

 Naïve program = composition of generator, tester and aggregator

 Theory to derive efficient implementation from a naïve program

 Prototype Scala library with automatic derivation [Liu et al. PMAM’13]

 Question: Is such a library correctly implemented?

 This study: Verified generate-test-aggregate library on Coq

OCaml and BSML

Building Blocks

Generate-Test-Aggregate Coq Library

3

Implementation

derivation
Impl.

Axiomatization/Specification
of Parallel Library: BSML

Implementation

Native Code Language/Library Runtime, OS, …

compilation

Coq verified

GTA Fusion Theorems

T A A
Efficient G A

Auto Fusion
Mechanism

extraction

Provides a set of primitive
operations of the BSP (Bulk
Synchronous Parallel) model

User Program Building Blocks

spec =
Specifications/Axiomatizations

G A T

G G G A A A

OCaml and BSML

Building Blocks

Generate-Test-Aggregate Coq Library

4

Implementation

derivation
Impl.

Axiomatization/Specification
of Parallel Library: BSML

Implementation

Native Code Language/Library Runtime, OS, …

compilation

Coq verified

GTA Fusion Theorems

T A A
Efficient G A

Auto Fusion
Mechanism

extraction

Provides a set of primitive
operations of the BSP (Bulk
Synchronous Parallel) model

User’s point of view

User Program Building Blocks

spec =
Specifications/Axiomatizations

G A T

G G G A A A

Running Example: 0-1 Knapsack Problem

 Given a knapsack and a set of items, find the most
valuable selection of items adhering to the knapsack’s
weight restriction

 The best total value is $120 by choosing , and

5

User’s Point of View

Writing Your Naïve Code in GTA Form

 GTA Form

 Generate all candidate substructures of the input

 Test and discard unnecessary candidates

 Aggregate the valid candidates to make the final result

6

 Definition naive_prog := aggregate :o: test :o: generate.

User’s Point of View

Writing Your Naïve Code in GTA Form

 GTA Form

 allSelects generates all item selections

 validWeight filters out selections with total weight heavier than w

 maxValue takes the maximum total value (for simplicity, value only)

 Definition knapsack w := maxValue :o: validWeight w :o: allSelections.

7

Given a knapsack and a set of items, find the most valuable selection of
items adhering to the knapsack’s weight restriction

User’s Point of View

---Writing Your Naïve Code---

Generator: Generating All Candidates

Definition allSelections := subs .

8

 Definition knapsack w := maxValue :o: validWeight w :o: allSelections.

 generate : [A] -> { [A] }

 { X } is the type of bags (multi-sets) of X

 You may design your generators, but it is not easy

 The library provides a set of ready-made generators

 subs for all sublists

 segs/inits/tails for all contiguous sublists/prefixes/suffixes

 ...

 For the knapsack problem, we choose the subs generator:

Definition allSelections := subs .

User’s Point of View

9

 Definition knapsack w := maxValue :o: validWeight w :o: allSelections.

---Writing Your Naïve Code---

Tester: Discarding Invalid Candidates

 test : { [A] } -> { [A] }

 A filter operation of a bag with predicate p of a specific kind:
 Definition p := ok :o: fold_right () i

 :o: map f

 ok : a lightweight judgment

 : a monoid operator with the identity element i

 (Monoid: an associative binary operator with its identity element)

 For the knapsack problem, p checks the total weight:

 Definition totalWeight := fold_right (+) 0 :o: map getWeight .
Definition p w := (fun a => a <= w) :o: totalWeight .
Definition validWeight w := filter (p w).

User’s Point of View

10

 Definition knapsack w := maxValue :o: validWeight w :o: allSelections.

---Writing Your Naïve Code---

Aggregator: Making the Final Result

 aggregate :: { [A] } -> S

 S is a type of the final result

 You may design your aggregators, but it is not easy

 The library provides a set of ready-made aggregators

 maxsum f for finding the maximum f-weighted sum

 sumprod f, count, maxsumSolution f, longest, top-k variants, …

 For the knapsack problem, we can use the maxsum aggregator:

Definition maxValue := maxsum getValue .

User’s Point of View

All You Need to Do

11

Definition allSelections := subs .
Definition totalWeight := fold_right (+) 0 :o: map getWeight .
Definition p w := (fun a => a <= w) :o: totalWeight .
Definition validWeight w := filter (p w).
Definition maxValue := maxsum getValue .
Definition knapsack w := maxValue :o: validWeight w :o: allSelections.

(* check the naïve program *)

Eval compute in (knapsack 3 [item 2 1; item 2 2; item 3 2]).

(* small proofs related to the naïve program *)

Program Instance totalWeight_monoidOp :
 isUsingMonoidOp totalWeight getWeight plus 0 := fold_right_monoid.
Program Instance proper_getWeight : Proper (eq_item ==> eq) getWeight.
Next Obligation. (* omit *) Defined.

Definition knapsack_opt w := fused (tgt := knapsack w). (* auto derivation*)

User’s Point of View

Experiment Results on Extracted Code

 knapsack_opt (auto optimized, parallelized knapsack)
has been extracted to OCaml + BSML (BSP primitives)

 Cost is linear in #items,
although the naïve program looks an exponential cost program

 Good speedup (except for the fully busy case)

 64GB shared memory, 48 cores = 12 cores x 4 processors

12

0
5

10
15
20
25
30
35

0 500000 1000000

Execution Time (s)

0

5

10

15

20

25

0 20 40

Speedup

#items #cores

User’s Point of View

OCaml and BSML

Building Blocks

User Program Building Blocks

Generate-Test-Aggregate Coq Library

13

spec =

Implementation

derivation

Specifications/Axiomatizations

Impl.

Axiomatization/Specification
of Parallel Library: BSML

Implementation

Native Code Language/Library Runtime, OS, …

compilation

Coq verified

G A T

GTA Fusion Theorems

T A A
Efficient G A

G G G A A A
Auto Fusion
Mechanism

extraction
Provides a set of primitive

operations of the BSP (Bulk
Synchronous Parallel) model

linear speedup

linear cost

Definition knapsack w
:= maxValue :o: validWeight w :o: allSelections.

OCaml and BSML

Building Blocks

User Program Building Blocks

Generate-Test-Aggregate Coq Library

14

spec =

Implementation

derivation
Impl.

Axiomatization/Specification
of Parallel Library: BSML

Implementation

Native Code Language/Library Runtime, OS, …

compilation

Coq verified

G A T

extraction
Provides a set of primitive

operations of the BSP (Bulk
Synchronous Parallel) model

linear speedup

linear cost

Definition knapsack w
:= maxValue :o: validWeight w :o: allSelections.

Internal of the Library

Specifications/Axiomatizations

GTA Fusion Theorems

T A A
Efficient G A

G G G A A A
Auto Fusion
Mechanism

Derived Implementation of knapsack

 E.g., knapsack_opt 2kg [(1kg, $10), (1kg, $20), (2kg, $20)]

= postproc (⊗ ⊗)

= postproc (⊗) = postproc ()

 = $30

Parallel time complexity: O(wn/p + w2 log p) (n = #items, p = #cores)

 Auto-derivation mechanism derives this
by using two verified transformation theorems

15

0kg $0

1kg $10

0kg $0

1kg $20

0kg $0

2kg $20

0kg $0

1kg $20

2kg $30

0kg $0

2kg $20

d

0kg $0

1kg $20

2kg $30

3kg+ $50

Internal of the Library

Automatic Fusion

 Fusion: eliminating intermediate data structures between two funcs:

 E.g., map f (map g x) = map (f :o: g) x

 Basic idea: Use the typeclass resolver for an automatic search

 Auto-parallelization has been implemented by the same tech. [Tesson 11]

 Two typeclasses: Fusion for a rule DB and Fuser for a trigger

 Class Fusion `(producer : B -> C) `(consumer : C -> D) (_fused : B -> D) := {
 _spec : forall b, consumer (producer b) === _fused b }.

Class Fuser `(tgt : B -> D) := {
 fused : B -> D; spec : forall b, tgt b === fused b }.

Global Program Instance fuser `{fusion : Fusion producer consumer _fused}
: Fuser (consumer :o: producer) := { fused := _fused; spec := _spec }.

16

Internal of the Library

Automatic Fusion Mechanism

 Definition opt := fused (tgt := f :o: h).

 1st, looking for an instance of Fuser (f :o: h)

Fusion h f fh_fused
(* f :o: h === fh_fused *)

Fusion f’ f ff_fused
(* f :o: f’ === ff_fused *)

Fusion p c _fused => Fuser (c :o: p)

2nd, looking for an instance of Fusion h f _

3rd, replaced with
fh_fused

Instance pool

17

Fusion g h hg_fused
(* h :o: g === hg_fused *)

Fusion g f fg_fused
(* f :o: g === fg_fused *)

Fusion f h hf_fused
(* h :o: f === hf_fused *)

Internal of the Library

Verified Fusion Theorems

 Filter-embedding Fusion

 New aggregator does computation on tables

 Semiring Fusion

 A kind of shortcut fusion (substitution of consumer’s operators)

T A A pp

18

Theorem filterEmbeddingFusion
`(c1 : isNestedFoldsWithSemiring aggregate f oplus otimes ep et)
`(c2 : isFilterWithFoldWithMonoid test h odot e ok dec)
: forall x,
 (aggregate :o: test) x === (postproc :o: nestedFolds mkTable semiringOnTables) x.

Internal of the Library

Efficient G A

Theorem semiringFusion
`(c1 : isNestedFoldsWithSemiring aggregate f oplus otimes ep et)
`(c2 : isSemiringPolymorphicGenerator generate polygen)
: forall x, (aggregate :o: generate) x === (polygen f (oplus, otimes, ep, et)) x.

Other Applications Include…

 More restriction on selections in the Knapsack Problem

 E.g., “Item B must be contained if item C is contained”,

 “The number of items with value > $100 is at most 5”,

 “Select an even number of items”, etc.

 Your GTA program can have multiple testers

 Finding the most likely sequence of hidden events from
a sequence of observed events (Viterbi and its variants)

 Finding the longest (most valuable) segment (region)
satisfying a set of conditions

 etc

19

Conclusion

 A Verified Generate-Test-Aggregate Coq Library
 Equipped with an automatic fusion mechanism

 Proofs of two fusion theorems

 You can write an easy-to-design/verify/modify naïve program,
but get an efficient parallel program

 Extracted code runs on BSML/OCaml on parallel machines

 Axiomatization/Implementation of Bags, typeclass-based Maps,
Monoid semiring (algebra of tables), …

 Subjects in future studies
 Extension of the theory to trees and graphs

 Use of efficient implementation of ‘tables’

 Code extraction for execution on Hadoop/MapReduce

20

21

Thank you for listening.

Visit the following URL for the library code:

 http://traclifo.univ-orleans.fr/SyDPaCC

 Systematic Development of Programs for
Parallel and Cloud Computing

http://traclifo.univ-orleans.fr/SyDPaCC
http://traclifo.univ-orleans.fr/SyDPaCC
http://traclifo.univ-orleans.fr/SyDPaCC

22

23

Host Language and Parallel Library

Building Blocks

User Program Building Blocks

SyDPaCC: Systematic Development of

Programs for Parallel and Cloud Computing

24

Specification

Implementation

derivation

Specifications/Axiomatizations

Impl.

Axiomatization/Specification
of Parallel Library

Implementation

Native Code Language/Library Runtime, OS, …

compilation

Coq verified

Theory

extraction

Finitization and Automatic Finitization

25

 Making the range R of the homomorphism in a filter is
important to the performance of the derived program

 The cost of the multiplication operator on tables: O(|R|2)

 We can use { x : nat | x <= w + 1 } as R, instead of nat,
for Definition p := comparison_with w :o: sum_of_nats

 The comparison may be (<= w), (==w), (>=w), (==)

 (** automatic finitization of the predicate *)
 Definition weightLimit' (w : nat) := rewrite_p (p := weightLimit w).
 Definition validWeight' (w : nat) := filterB (weightLimit' w) dec_spec.
 Definition knapsack' (w : nat) := maxvalue :o: validWeight' w :o: subs.

 (** The linear cost program. *)
 Definition knapsack'_opt (w : nat) := Eval simpl in fused (f := knapsack' w).

1st Fusion Theorem:

Filter-embedding Fusion

 The first condition says
an aggregator is a nested folds with semiring operators:
 Definition nestedFolds f (⊕, ⊗, i⊕, i⊗)
 := foldbag (⊕) i⊕ :o: mapbag (fold_right (⊗) i⊗ :o: map f).

 Semiring: monoid op. ⊗ distributes over commutative monoid op. ⊕,
 and i⊕ is the absorbing element of ⊗ .

 New aggregator does computation on tables

 The structure of tables is derived from the tester & aggregator

T A A pp

26

Theorem filterEmbeddingFusion
`(c1 : isNestedFoldsWithSemiring aggregate f oplus otimes ep et)
`(c2 : isFilterWithFoldWithMonoid test h odot e ok dec)
: forall x,
 (aggregate :o: test) x === (postproc :o: nestedFolds mkTable semiringOnTables) x.

Internal of the Library

1st Fusion Theorem:

Filter-embedding Fusion

 New aggregator does computation on tables

 For the knapsack problem with w = 2kg,

 mkTable (“1kg, $10”) =

 postproc ()) = $30

27

Theorem filterEmbeddingFusion
`(c1 : isNestedFoldsWithSemiring aggregate f oplus otimes ep et)
`(c2 : isFilterWithFoldWithMonoid test h odot e ok dec)
: forall x,
 (aggregate :o: test) x === (postproc :o: nestedFolds mkTable semiringOnTables) x.

Total weight Max. total value

1kg $10

T.W. M. T. V.

0kg $0

1kg $30

2kg $20

3kg+ $50

Definition totalWeight
 := foldr (+) 0 :o: map getWeight.
Definition p w
 := (fun a => a<=w) :o: totalWeight .

T A A pp

Internal of the Library

1st Fusion Theorem:

Filter-embedding Fusion

 Two table merge operations ⊕ and ⊗ (w = 2kg)

 ⊕ =

 ⊗ =

Note: since the weight limit w = 2kg, entries greater than 3kg are unnecessary.

This finitization of tables can be done automatically in a similar way to the fusion

28

T.W. M. T. V.

0kg $0

1kg $30

2kg $10

T.W. M. T. V.

0kg $0

2kg $20

T.W. M. T. V.

0kg $0

1kg $30

2kg $20

T.W. M. T. V.

0kg $0

1kg $30

2kg $10

T.W. M. T. V.

0kg $0

2kg $20

T.W. M. T. V.

0kg $0

1kg $30

2kg $20

3kg+ $50

(row-wise
 maximum)

(all possible
 combination)

T A A pp

Internal of the Library

2nd Fusion Theorem:

Semiring Fusion

 The second condition (instance) says
 generate = polygen + “constructors of bags of lists”, and
 polygen accepts any semiring operators (i.e., polymorphic)

 Constructors of basg of lists:
 Cross-concatenation: {x, y} ×++ {z, w} = { x++z, x++w, y++z, y++w}
 Union: {x, y} ∪ {z, w} = {x, y, z, w}

 Definition poly_subs f (op, ot, ep, et)
 := fold_right ot et :o: map (fun x => op (f x) et)

 Definition subs := poly_subs (fun x => { [x] }) (×++) (∪) { [] } { }
 E.g., subs [1, 2] = ({ [1] } ∪ { [] }) ×++ ({ [1] } ∪ { [] })

 = { [1], [] } ×++ { [2], [] } = { [1,2], [1], [2], [] }

Efficient G A

29

Theorem semiringFusion
`(c1 : isNestedFoldsWithSemiring aggregate f oplus otimes ep et)
`(c2 : isSemiringPolymorphicGenerator generate polygen)
: forall x, (aggregate :o: generate) x === (polygen f oplus otimes ep et) x.

Property of Polymorphic Functions

30

Class isSemiringPolymorphicFunction
 (pgen : forall {V:Type}, (T -> V) -> (V->V->V) -> (V->V->V) -> (V) -> (V) -> V)
 :={semiringPolymorphism :
 forall {V:Type} (f : T -> V) (oplus : V->V->V) (otimes : V->V->V) (ep et : V),
 FSHom f oplus otimes ep et (pgen FS_F FS_OPLUS FS_OTIMES FS_EP FS_ET)
 = pgen f oplus otimes ep et
}.

 All instances of a polymorphic function act in the same way.

 Evaluation of a computation tree constructed by a polymoprhic
function produces the same result as computing the result
directly by the polymorphic function

FreeSemiring and its Homomorphism

31

Inductive FreeSemiring :=
 | FS_F : T -> FreeSemiring
 | FS_OPLUS : FreeSemiring -> FreeSemiring -> FreeSemiring
 | FS_OTIMES : FreeSemiring -> FreeSemiring -> FreeSemiring
 | FS_EP : FreeSemiring
 | FS_ET : FreeSemiring.

Fixpoint FSHom {V:Type} (f : T -> V) (oplus otimes : V->V->V) (ep et : V) (x)
:= match x with
 | FS_F a => f a
 | FS_OPLUS l r =>
 oplus (FSHom f oplus otimes ep et l) (FSHom f oplus otimes ep et r)
 | FS_OTIMES l r =>
 otimes (FSHom f oplus otimes ep et l) (FSHom f oplus otimes ep et r)
 | FS_EP => ep
 | FS_ET => et
 end.

Semiring (⊕,⊗,o,i)

32

 Associativity: x ⊕ (y ⊕ z) = (x ⊕ y) ⊕ z
 x ⊗ (y ⊗ z) = (x ⊗ y) ⊗ z

 Commutativity: x ⊕ y = y ⊕ x

 Distributivity: x ⊗ (y ⊕ z) = (x ⊗ y) ⊕ (x ⊗ z)

 Identities: x ⊕ o = o ⊕ x = x
 x ⊗ i = i ⊗ x = x

 Absorbing: x ⊗ o = o ⊗ x = o

 Semiring (⊕,⊗,o,i)
= Monoid (⊗,i) + Commuataive Monoid (⊕,o)
 + Distributivity + Absorbing

Monoid Semiring

33

 Given a semiring (⊕,⊗,o,i) on S and monoid (⊙,e) on M,

we can make a new semiring on linear combinations (tables).

 Linear combination: s1 m1 + … + sk mk (table view:)

 Addition: s1 m + s2 m = (s1 ⊕ s2) m

 (otherwise no effect)

 Multiplication:
 (s1 m1 + … + sk mk) × (t1 n1 + … + tj nj)
 = (s1 ⊗ t1) (m1 ⊙ n1) + … + (sk ⊕ t1) (mk ⊙ n1)

 + …
 + (s1 ⊗ tj) (m1 ⊙ nj) + … + (sk ⊕ tj) (mk ⊙ nj)

m1 s1

… …

mk sk

All Assignments Generator

34

 assign [T,F] [a, b, c]
= { [(a, T), (b, T), (c, T)],
 [(a, T), (b, T), (c, F)],
 [(a, T), (b, F), (c, T)],
 [(a, T), (b, F), (c, F)],
 [(a, F), (b, T), (c, T)],
 [(a, F), (b, T), (c, F)],
 [(a, F), (b, F), (c, T)],
 [(a, F), (b, F), (c, F)] }

