Hypermap Specification and Linked Implementation Certification using Orbits

Jean-François Dufourd

ICUBE Laboratory, University of Strasbourg - CNRS, France

FLOC - ITP’2014, Vienna
Introduction

Aim:
- Specify libraries and certify pointer implementations

Use of:
- Algebraic datatypes
- Calculus of Inductive Constructions (CIC) and Coq system
- Simulation of a fragment of C
- Orbits [Dufourd 14, soon in TCS...]:
 central in specification and implementation

Non-use of:
- Floyd-Hoare logic (and Separation logic)

Case study, focused on orbits:
- Combinatorial hypermaps [Cori 70, ..., Gonthier 08, ...]

Applications in Combinatorics and Geometric modeling

Dedicated to George Gonthier...
Orbits in Coq

Context
- A type \(X \), with a decidable equality \(\text{eqd} \ \ X \rightarrow X \rightarrow \text{Prop} \)
- A total function \(f : X \rightarrow X \)
- A finite subdomain \(D : \text{list} \ X \)
 (represented as a finite list without duplication)

Definitions, Notations
For any \(z : X \), consider the \(f \)-iterates:
\[
z_0 := z, \ z_1 := f \ z, \ldots, \ z_k := f \ z(k-1), \ldots
\]
It is proved that there is a smallest \(p \) such that \(z_p \) is not in \(D \) or \(z_p \) is already met among \(z_0, \ldots, \ z(p-1) \).
(i) \(f \)-orbit of \(z \): \(\text{orb} \ \ X \ f \ D \ z := [z_0 \ldots z(p-1)] \) if \(z \) is in \(D \), [] otherwise
(ii) length of \(z \)'s \(f \)-orbit: \(\text{lorb} \ \ X \ f \ D \ z := p \)
(iii) \(f \)-limit of \(z \): \(\text{lim} \ \ X \ f \ D \ z := z_p \)
Orbits

Orbit shapes

The *orbit* of $z : X$ can be:

(i) **empty**: $\sim \text{In } z \ D$

(ii) **line**: $\text{inv_line } X \ f \ D \ z$

(iii) **a (closed) crosier**: $\text{inv_crosier } X \ f \ D \ z$

(iv) **a circuit**: $\text{inv_circ } X \ f \ D \ z$

Example: Orbits (4 positions of z)

![Example diagram showing orbit shapes](image-url)
Connected component shapes

The orbits of all z of D are separated or in collision. In fact, (D, f) is a functional graph, each connected component being:

(i) either a tree

(ii) or a circuit on which trees are grafted

Example: Components (2 positions of z)
Definitions: Inverse, closure

- \(f _1 \ X \ f \ D \ z : \text{inverse} \) of \(f \) at \(z \), when \(z \) has only one \(f \)-predecessor in \(D \)
- \(\text{Cl} \ X \ f \ D : \text{closure} \) of \(f \), when all components are (linear) branches or circuits (\(f \) : partial injection in \(D \))

Example: Inversion, closure

![Diagram](image)

Figure: (a) Branch containing \(z \) / (b) Inversion / (c) Closure.
Addition/deletion

Addition of a new element \(a \) in \(D \), when \(\sim \) In a \(D \).

Deletion of an element \(a \) from \(D \).

Example: Addition/deletion

Figure: Addition (Left) / Deletion (Right).
Mutation

A \textit{mutation} modifies the \textit{f-image} $f(u)$ of an element u into an element u_1 while all the other images do not change:

\begin{verbatim}
Definition Mu(f:X->X)(u u1:X)(z:X):X :=
 if eqd X u z then u1 else f z.
\end{verbatim}

Example: Mutation

\begin{figure}
\centering
\begin{tikzpicture}
 % Diagram code here
\end{tikzpicture}
\caption{Mutation: Cases A and B.}
\end{figure}
Transposition

A *transposition* exchanges the f-images of two elements in circuits and do not change the others (only one element u and its new image u_1 are precised):

\[
\text{Definition } Tu(f:X \rightarrow X)(D: \text{list } X)(u \ u_1:X)(z:X):X := \\
\quad \text{if eqd } X \ u \ z \ \text{then } u_1 \\
\quad \text{else if eqd } X \ (f\ _1 X \ f \ D \ u_1) \ z \ \text{then } f \ u \ \text{else } f \ z.
\]

When:
- u and u_1 are in the same circuit: *split* into two circuits
- u et u_1 are in two circuits: *merge* into one circuit

Example: Transposition

![Diagram showing transposition](image)

Figure: Split (Left) / Merge (Right).
Hypermaps in mathematics

Definition

A **combinatorial (2-dimensional) hypermap** is an algebraic structure, $M = (D, \alpha_0, \alpha_1)$, where:

- D is a finite set, the elements are called *darts*,
- and α_0, α_1 are two *permutations* on D indexed by a *dimension*, 0 or 1.

Example: hypermap

<table>
<thead>
<tr>
<th>D</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
<th>16</th>
</tr>
</thead>
<tbody>
<tr>
<td>α_0</td>
<td>1</td>
<td>5</td>
<td>3</td>
<td>2</td>
<td>4</td>
<td>7</td>
<td>6</td>
<td>8</td>
<td>10</td>
<td>9</td>
<td>12</td>
<td>11</td>
<td>14</td>
<td>13</td>
<td>16</td>
<td>15</td>
</tr>
<tr>
<td>α_1</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>7</td>
<td>6</td>
<td>5</td>
<td>8</td>
<td>4</td>
<td>16</td>
<td>11</td>
<td>10</td>
<td>13</td>
<td>12</td>
<td>15</td>
<td>14</td>
<td>9</td>
</tr>
</tbody>
</table>

Figure: Hypermap embedded in the plane (dart embedding: a Jordan arc beginning by a bullet, ending by a small strike).

J.-F. Dufourd (Strasbourg, ICUBE)
Mathematical recalls

Orbits/components of hypermaps

The *edge* (resp. *vertex*, *face*, *component*) of z is its connected component in the graph (D, α_0) (resp. (D, α_1), $(D, \alpha_1^{-1} \circ \alpha_0^{-1})$, $(D, \{\alpha_0 \cup \alpha_1\})$)

(roughly: edge = small strike, vertex = bullet...).

Classification

The hypermaps are *classified* according to their numbers of edges, vertices, faces and components, thanks to the notions of *Euler characteristic*, *genus* and *planarity*.
Darts, dimensions, hypermaps

(* Type of darts and exception: *)
Definition dart := nat.
Definition nild := 0.
...

(* Type of dimensions: *)
Inductive dim:Type :=
 zero : dim | one : dim.

(* Type of hypermaps: *)
Inductive hmap:Type :=
 V : hmap (* Void (empty) hmap *)
 | I : hmap->dart->hmap (* Insertion of a dart *)
 | L : hmap->dim->dart->dart->hmap. (* k-Linking from a dart to another *)

Example: Hypermap

m1 := I (I (I (I (I V 1) 2) 3) 4) 5) 6.
m2 := L (L m1 zero 4 2) zero 2 5).
m3 := L (L (L m2 one 1 2) one 2 3) one 6 5.

Figure: Partial coding of the example hypermap (The 0- and 1-orbits stay "open" in the specification).
Free map observers (inductively defined)

- **Existence** of a dart \(z \) in the hmap \(m \): \(\text{exd} \ m \ z \)
- **\(k \)-successor** of \(z \) in \(m \): \(\text{pA} \ m \ k \ z \)

returns \(\text{nild} \) when there is no \(k \)-link from \(z \)

- **\(k \)-successor** of \(z \) **in the closure** of \(\text{pA} \ m \ k \ A \ m \ k \ z \)

Note: two successor notions which are useful in the specification

Example: Zoom on an edge of hypermap

![Diagram](image_url)

Figure: An edge: open for \(\text{pA} \), closed for \(A \).

Preconditions, invariant of hypermaps

- **Preconditions** on \(I \) and \(L \) impose that edges and vertices remain open for \(\text{pA} \)
- An **invariant** of hypermaps \(\text{inv_hmap} \ m \) derives.
Orbital properties of hypermaps

Idea: studying pA et A by the properties of their *orbits*:
- The pA-orbits stay (open) *lines*
- The components w.r.t. pA are *branches*
- A is really the *closure* of pA
- The A-orbits are (closed) *circuits*
- The same for the inverses pA^{-1} and A^{-1}

Other properties of the hypermaps

All this leads to fundamental results on discrete topology:
- Incremental definitions of *numbers of edges, vertices, faces, components, Euler characteristic, genus* and *planarity*
- An inductive proof of the *Genus theorem*
- Constructive criteria of *planarity*
- A proof of the *discrete Jordan curve theorem*
Addresses

- The potential *addresses* are the natural numbers
- There is an *exception address* null (= 0)

(* Address type: *)

Definition Addr := nat.

(* Exception: *)

Definition null := 0.

Memories/Validity

- A memory is *non-bounded* and the allocations always succeed
- It is *partitioned* according to the *datatypes*

(* Contexte: *)

Variables (T:Type) (undef:T).

(* Memory type: *)

Inductive Mem:Type:=
- initm : Mem (* empty memory *)
- insm : Mem->Addr->T->Mem. (* insertion of (address, value) *)

(* Validity domain: *)

Fixpoint dom(M:Mem)(z:Addr):list Addr := ...

(* From where a precondition on insm and an invariant inv_Mem... *)
Formalization of Memory

Formalization of Memory (II)

Address generation

- A *fresh address* (invalid and non-null) can always be generated by a function we call *adgen*:

 Parameter adgen: Mem->Addr.

Conservative memory operations

- **allocation**: `alloc M` returns M updated and a fresh address:

 Definition `alloc(M:Mem):(Mem * Addr)%type :=
 let a := adgen M in (insm M a undef, a).

 Inductively specified:
 - **loading**: `load M z`
 - **mutation**: `mut M z t`
 - **releasing**: `free M z`
Cells for the darts, memories of dart cells

(* Dart cell type: *)

Record cell:Type:=
 mkcell { s : dim->Addr; (* "array" of 2 k-successors *)
 p : dim->Addr; (* "array" of 2 k-predecessors *)
 next : Addr (* successor *)
 }.

(* Type of cell memories: *)

Definition Memc := Mem cell.

Example: A dart cell

Figure: Cell of a hypermap representation in a memory M.
Hypermap Representation (II)

Hypermap representation

Any hypermap representation \(R_m \) is a pair composed of:

- a **cell memory** \(M : \text{Memc} \)
- a **pointer** (head of a main list) \(h : \text{Addr} \)

(* Type of hypermap representations: *)

\[
\text{Definition } \text{Rhmap} := (\text{Memc} \times \text{Addr})\%\text{type}.
\]

Observers

(on \(\text{Rhmap} \), names are prefixed by "R";
on \(\text{Memc} \), names are suffixed by "c")

(* Observers of the main list: *)

\[
\text{Definition } \text{Rnext } M z := \text{next} (\text{loadc } M z).
\]

\[
\text{Definition } \text{Rorb } Rm := \text{let } (M, h) := Rm \text{ in}
\]

\[
\quad \text{orb } \text{Addr} (\text{Rnext } M) (\text{domc } M) h.
\]

\[
\text{Definition } \text{Rlim } Rm := \text{let } (M, h) := Rm \text{ in}
\]

\[
\quad \text{lim } \text{Addr} (\text{Rnext } M) (\text{domc } M) h.
\]

(* Observers of hypermap: *)

\[
\text{Definition } \text{Rexd } Rm z := \text{In } z (\text{Rorb } Rm).
\]

\[
\text{Definition } \text{RA } M k z := s (\text{loadc } M z) k.
\]

\[
\text{Definition } \text{RA}_1 M k z := p (\text{loadc } M z) k.
\]

...
Invariant of representation

For any hypermap representation R_m, some features are required:

1. A *main singly-linked list* of darts representations: a *line* with valid darts and a null *limit*:

 Definition $\text{inv_Rhmap1}(R_m:\text{Rhmap}) := \text{let } (M, h) := R_m \text{ in}$

 $\text{inv_Memc} M \underset{\text{\lor}}{\text{\lor}} (h = \text{null} \underset{\text{\lor}}{\text{\lor}} \text{In} h (\text{domc} M)) \underset{\text{\lor}}{\text{\lor}} \text{Rlim} R_m = \text{null}.$

2. For each dart, 4 *circular singly-linked lists* for the k-links: each one is a *circuit* with darts in the main list, and $\text{RA}_1 M k$ is always the *inverse* of $\text{RA} M k$:

 Definition $\text{inv_Rhmap2}(R_m:\text{Rhmap}) := \text{let } (M, h) := R_m \text{ in}$

 $\forall k \forall z, \text{Rxd} R_m z \rightarrow$

 $\text{inv_circ} \text{Addr} (\text{RA} M k) (\text{Rorb} R_m) z \underset{\text{\lor}}{\text{\lor}}$

 $\text{RA}_1 M k z = f_1 \text{Addr} (\text{RA} M k) (\text{Rorb} R_m) z.$

 Definition $\text{inv_Rhmap}(R_m:\text{Rhmap}) := \text{inv_Rhmap1} R_m \underset{\text{\lor}}{\text{\lor}} \text{inv_Rhmap2} R_m.$
User update operations (I): Empty hypermap

Ideas:
- providing a set of specified operations which must be: _conservative_ (w.r.t. invariants), _minimal, complete, ready-to-assemble, safe_ (hiding pointer manipulations).
- simulating the C language

Empty hypermap: RV

Definition RV(M:Memc): Rhmap := (M, null).

Properties

Correct behavior w.r.t. the observer _Rexd_:

Lemma Rexd_RV: forall M z, inv_Memc M -> ~Rexd (RV M) z.
Insertion of a new isolated dart: RI

Definition $RI(Rm:Rhrefmap):Rhrefmap :=$

\[
\text{let } (M, h) := Rm \text{ in } \\
\text{let } (M1, x) := \text{alloc} M \text{ in } \\
\text{let } M2 := \text{mut} M1 \ x \ (\text{modnext} (\text{ficell} \ x) \ h) \text{ in } (M2, x).
\]

Example: Insertion of an isolated dart

![Diagram](image)

Figure: RI: insertion of a dart in Rm (Left) giving $RI \ Rm$ (Right).

Properties

- Correct observational behavior w.r.t. $Rexd, RA, RA_1$, e.g.:

 For any k, the new dart is a fixpoint w.r.t. $RA \ M2 \ k$ and $RA_1 \ M2 \ k$

- Proofs inherited from the general orbits: addition and mutation properties
User update operations (III): Transposition

Transposition of two darts at dimension k: RL

Definition \(RL(Rm:Rhmap)(k:dim)(x y:Addr): Rhmap := \)
\[
\text{let } (M, h) := Rm \text{ in } \\
\text{let } x_k := RA M k x \text{ in let } y_k := RA_1 M k y \text{ in } \\
\text{let } M3 := mutc M x (mods (loadc M x) k y) \text{ in } \\
\text{let } M4 := mutc M3 y (modp (loadc M3 y) k x) \text{ in } \\
\text{let } M5 := mutc M4 y_k (mods (loadc M4 y_k) k x_k) \text{ in } \\
\text{let } M6 := mutc M5 x_k (modp (loadc M5 x_k) k y_k) \text{ in } \\
(M6, h).
\]

Definition \(\text{prec}_R L Rm k x y := \text{In } x (Rorb Rm) \land \text{In } y (Rorb Rm). \)

Exemple: Transposition of two darts \(x \) and \(y \) at dimension 1

Figure: RL: Transposition in \(Rm \) (Left) giving \(RL Rm \ one \ x \ y \) (Right).

Properties

- **Correct observational behavior w.r.t.** \(R\text{exd}, RA, RA_1 \), e.g.:
 - \(y \) is the new \(k \)-successor of \(x \): RL splits or merges (circular) \(k \)-orbits w.r.t. \(RA \ M \ k \) and \(RA_1 \ M \ k \)
- **Proofs inherited from the general orbits: transposition properties**
Deletion of an isolated dart: RD

Definition \(RD(Rm:Rhmap)(x:Addr)(H: \text{inv}_Rhmap1 \ Rm): Rhmap := \)

let \((M,h) := Rm\) in

if \(\text{eqd} \ Addr \ h \ \text{null} \) then \(Rm \)

else if \(\text{eqd} \ Addr \ x \ \text{null} \) then \(Rm \)

else let \(h1 := \text{Rnext} \ M \ h \) in

let \(M1 := \text{freec} \ M \ h \) in \((M1, h1)\)

else let \(x_1 := \text{Rnext}_1 \ Rm \ H \ x \) in

if \(\text{eqd} \ Addr \ x_1 \ \text{null} \) then \(Rm \)

else let \(M2 := \text{mutc} \ M \ x_1 \) (modnext (loadc M x_1) \((\text{Rnext} \ M \ x))\) in

let \(M3 := \text{freec} \ M2 \ x \) in \((M3, h)\).

Definition \(\text{prec RD} \ Rm \ x := \)

forall \(k, \text{Rexd} \ Rm \ x \rightarrow RA \ (\text{fst} \ Rm) \ k \ x = x /\ RA_1 (\text{fst} \ Rm) \ k \ x = x. \)

Example: Deletion of an isolated dart

![Image of dart deletion example](image.png)

Properties

Correct behavior w.r.t. the observers \(\text{Rexd}, RA, RA_1, \) with proofs inherited from the general orbits: mutation and deletion properties
Observational Equivalence (I)

Abstraction function (morphism): Abs

Abs sends any hypermap representation which is *built by using* RV, RI, RL, RD onto an abstract hypermap which is *built by using* V, I, L.

Properties

Abs *correctly carries* the observations by $Rexd, RA, RA_1$ onto the observations by exd, A, A_1.
Observational Equivalence (II)

Representation function (morphism): \(\text{Rep} \)

\(\text{Rep} \) sends any abstract hypermap which is **built by using** \(V, I, L \) with \textit{darts generated by successive uses of} \(\text{adgen} \) onto a hypermap representation which is **built by using** \(RV, RI, RL \).

Properties

\(\text{Rep} \) **correctly carries** the observations by \(\text{exd}, A, A_1 \) onto the observations by \(\text{Rexd}, RA, RA_1 \).
Comments

- This appendix contains a C operational program for the concrete types, data structures and functions which correspond to the hypermap linked Coq representation.
- It is obtained by a direct translation where the memory is a global implicit object, memory variables are removed, addresses are pointers on cells, and R_m is identified to h.
- A run on a test game needs a simple wrapping in ad hoc types and functions to refer darts in play, e.g. by integers, and to traverse the data structures.
Listing (I)

/* Programming in C the hypermap Coq representation */

#define MALLOC(t) ((t *) malloc(sizeof(t)))
#define null NULL

typedef enum {zero, one} dim;

typedef struct scell {
 struct scell * s[2];
 struct scell * p[2];
 struct scell * next;
} cell, * Addr, * Rhmap;

cell mkcell (Addr s[], Addr p[], Addr n) {
 cell c; int k;
 for(k=0;k<2;k++) {c.s[k] = s[k]; c.p[k] = p[k];}
 c.next := n;
 return c;
}
Listing (II)

(* CRm:CRhmap Rm is an inductive predicate stating that Rm is
created exclusively by using RV, RI, RL and RD: *)

Fixpoint Abs(Rm: Rhmap)(CRm:CRhmap Rm) {struct CRm}: fmap :=
 match CRm with ...

 cell mods(cell c, dim k, Addr m) { c.s[k] = m; return c; }

 cell modp(cell c, dim k, Addr m) { c.p[k] = m; return c; }

 cell modnext(cell c, Addr m) { c.next = m; return c; }

 cell ficell(Addr x) {
 cell c; int k;
 for(k=0;k<2;k++) { c.s[k] = c.p[k] = x; }
 c.next = null;
 return c;
 }

 cell initcell() {
 cell c; int k;
 for(k=0;k<2;k++) { c.s[k] = c.p[k] = null; }
 c.next = null;
 return c;
 }

J.-F. Dufourd (Strasbourg, ICUBE)
Listing (III)

cell load(Addr z) { return *z; }

void mut(Addr z, cell c) { *z = c; }

Addr alloc() {
 Addr x = MALLOC(cell);
 *x = initcell();
 return x;
}

/* free (z:Addr) BUILT-IN */

Addr Rnext (Addr z) { return z->next; }

Addr RA (dim k, Addr z) { return z->s[k]; }

Addr RA_1 (dim k, Addr z) { return z->p[k]; }
```c
Rhmap RV() { return null; }

Rhmap RI(Rhmap Rm) {
    Addr x = alloc();
    mut(x, (modnext(ficell(x), Rm)));
    return x;
}

Rhmap RL(Rhmap Rm, dim k, Addr x, Addr y) {
    Addr xk = RA(k, x);
    Addr y_k = RA_1(k, y);
    mut(x, (mods(load(x), k, y)));
    mut(y, (modp(load(y), k, x)));
    mut(y_k, (mods(load(y_k), k, x_k)));
    mut(xk, (modp(load(xk), k, y_k)));
    return Rm;
}
```
Listing (V)

Addr Rnext_1(Rhmap Rm, Addr x) {
 if(Rnext(Rm) == x) return Rm;
 return Rnext_1(Rnext(Rm), x);
}

Rhmap RD(Rhmap Rm, Addr x) {
 Addr h1, x_1;
 if (Rm == null || x == null) return Rm;
 if (Rm == x)
 {
 h1 = Rnext(Rm);
 free (Rm);
 return h1;
 }
 x_1 = Rnext_1(Rm,x);
 if (x_1 == null) return Rm;
 mut(x_1, (modnext (load(x_1), Rnext(x))));
 free(x);
 return Rm;
}
Related Work

Topics

- Static proofs of programs
 Floyd, Hoare, Reynolds, O’Hearn...
- Inductive types and algebraic specifications
 Bornat, Mehta-Nipkow, Marché, Conway-Barrett, Berdine et al..., Guttag, Goguen, Wirsing...
- Models of memory and of programming
 Leroy-Blazy, Chlipala...
- Separation and collision
 Burstall, Bornat, Reynolds, O’Hearn, Enea et al...
- Specification and implementation of hypermaps
 Cori, Gonthier, Dufourd, Bertrand, Bertot...
- Dedicated proof systems
 Malecha-Morrisett, Chlipala et al., Filliâtre...
Conclusion

Summary

- Interest for *libraries* with complex data structures
- Point of view of an *algebraic specifier*
- Exclusive use of a *higher-order logic (CIC)*: no Hoare logic, no Separation logic
- Intensive use of a *generic orbit library*: to handle arrays, singly- or doubly-linked lists, linear or circular, possibly nested
- *Coq development* for this study: 9,000 lines
 (with the memory model, but without the orbits, 60 definitions, 630 lemmas and theorems)
Conclusion

Future work

- Generalize *orbits* to *multiple functions*: to deal with trees, forests and general graphs.
- Connect *orbits* with *Separation logic*: orbits help to state and solve collision and separation problems.
- Connect *orbits* with *proof platforms*: Why3, Frama-C, Ynot, Bedrock...
- **Compile** the "imperative Coq fragment" to C.
- Develop other case studies with *complex data and algorithms*, particularly in computational geometry (Example: Delaunay / Voronoi diagrams in 3D).

Thank you for your attention!