
Hypermap Specification
and Linked Implementation Certification

using Orbits

Jean-François Dufourd

ICUBE Laboratory, University of Strasbourg - CNRS, France

FLOC - ITP’2014, Vienna

J.-F. Dufourd (Strasbourg, ICUBE) Combinatorial Hypermap Certification 14-17th July 2014 1 / 35

Introduction

Introduction

Aim:
- Specify libraries and certify pointer implementations
Use of:
- Algebraic datatypes
- Calculus of Inductive Constructions (CIC) and Coq system
- Simulation of a fragment of C
- Orbits [Dufourd 14, soon in TCS...]:
central in specification and implementation
Non-use of:
- Floyd-Hoare logic (and Separation logic)
Case study, focused on orbits:
- Combinatorial hypermaps [Cori 70, ..., Gonthier 08, ...]
Applications in Combinatorics and Geometric modeling

Dedicated to George Gonthier...

J.-F. Dufourd (Strasbourg, ICUBE) Combinatorial Hypermap Certification 14-17th July 2014 2 / 35

Introduction

Outline

1 Introduction

2 Orbits in Coq

3 Combinatorial Hypermaps

4 Formalization of Memory

5 Hypermap Linked Implementation

6 Equivalence Specification / Implementation

7 Program in C

8 Related Work

9 Conclusion

J.-F. Dufourd (Strasbourg, ICUBE) Combinatorial Hypermap Certification 14-17th July 2014 3 / 35

Orbits in Coq

Orbits in Coq

Context
- A type X, with a decidable equality eqd X:X->X->Prop
- A total function f:X->X
- A finite subdomain D:list X
(represented as a finite list without duplication)

Definitions, Notations
For any z:X, consider the f-iterates:
z0 := z, z1 := f z,..., zk := f z(k-1),...
It is proved that there is a smallest p such that zp is not in D or zp is
already met among z0,..., z(p-1).
(i) f-orbit of z: orb X f D z :=
[z0...z(p-1)] if z is in D, [] otherwise
(ii) length of z’s f-orbit: lorb X f D z := p
(iii) f-limit of z: lim X f D z := zp

J.-F. Dufourd (Strasbourg, ICUBE) Combinatorial Hypermap Certification 14-17th July 2014 4 / 35

Orbits in Coq

Orbits

Orbit shapes
The orbit of z:X can be:
(i) empty: ~ In z D
(ii) a line: inv_line X f D z
(iii) a (closed) crosier: inv_crosier X f D z
(iv) a circuit: inv_circ X f D z

Example: Orbits (4 positions of z)

z z= p

z z= p

z p

z p

Shapes

z
p−1

z

circuit

lim

z
p−1

lim

lim

D

z

z

1

1

z

z

p−1

empty shape

line

crosier

J.-F. Dufourd (Strasbourg, ICUBE) Combinatorial Hypermap Certification 14-17th July 2014 5 / 35

Orbits in Coq

Connected components

Connected component shapes
The orbits of all z of D are separated or in collision. In fact,
(D,f) is a functional graph, each connected component being:
(i) either a tree
(ii) or a circuit on which trees are grafted

Example: Components (2 positions of z)

Components

z

z

z
z

p

p

p−1

p−1z

z

tree
circuit

trees

D

J.-F. Dufourd (Strasbourg, ICUBE) Combinatorial Hypermap Certification 14-17th July 2014 6 / 35

Orbits in Coq

Operations on orbits (I)

Definitions: Inverse, closure
- f_1 X f D z: inverse of f at z, when z has only one
f-predecessor in D
- Cl X f D: closure of f, when all components are (linear) branches
or circuits (f : partial injection in D)

Example: Inversion, closure

1f_

1f_

1f_

1f_

1f_

1f_

z

f

D

(a)

f

f

f

f

f

lim

line

branch

z

D
(b)

lim = exc X

line

branch

z

Cl f

Cl f

Cl f

Cl f

Cl f

(c)

circuit

D

Figure : (a) Branch containing z / (b) Inversion / (c) Closure.

J.-F. Dufourd (Strasbourg, ICUBE) Combinatorial Hypermap Certification 14-17th July 2014 7 / 35

Orbits in Coq

Operations on orbits (II)

Addition/deletion
Addition of a new element a in D, when ~ In a D.
Deletion of an element a from D.

Example: Addition/deletion

z

z1

p−1

z

line

a1 = pza

D

Da

z

line

z

1

a = z
j

D
D_a

a1

Figure : Addition (Left) / Deletion (Right).

J.-F. Dufourd (Strasbourg, ICUBE) Combinatorial Hypermap Certification 14-17th July 2014 8 / 35

Orbits in Coq

Operations on orbits (III)

Mutation
A mutation modifies the f-image f u of an element u into an element
u1 while all the other images do not change:

Definition Mu(f:X->X)(u u1:X)(z:X):X :=
if eqd X u z then u1 else f z.

Example: Mutation

u

u1

u

u1

D

Case A Case B

circuit

line

Mutation

u

circuit

u

u1

line

Case A Case B

line

u1
D

f u f u

f uf u

Figure : Mutation: Cases A and B.

J.-F. Dufourd (Strasbourg, ICUBE) Combinatorial Hypermap Certification 14-17th July 2014 9 / 35

Orbits in Coq

Operations on orbits (IV)

Transposition
A transposition exchanges the f-images of two elements in circuits
and do not change the others (only one element u and its new image
u1 are precised):

Definition Tu(f:X->X)(D: list X)(u u1:X)(z:X):X :=
if eqd X u z then u1
else if eqd X (f_1 X f D u1) z then f u else f z.

When:
- u and u1 are in the same circuit: split into two circuits
- u et u1 are in two circuits: merge into one circuit

Example: Transposition

(merge)u1

f u

−1

u

u1

f u

f u1

u D
D

Transposition

(split)

u1

−1

−1

f u1 f u1 f u1
−1

u1
u

Transposition
f u f u

u
D D

Figure : Split (Left) / Merge (Right).

J.-F. Dufourd (Strasbourg, ICUBE) Combinatorial Hypermap Certification 14-17th July 2014 10 / 35

Combinatorial Hypermaps

Hypermaps in mathematics

Definition
A combinatorial (2-dimensional) hypermap is an algebraic structure,
M = (D, α0, α1), where:
- D is a finite set, the elements are called darts,
- and α0, α1 are two permutations on D indexed by a dimension, 0 or 1.

Example: hypermap

11

13

14

15

10

9

16

12

1 2 4 5 10 11D

α0 2

14 15 16

1

2

5

1 7

7

5

6

8 4

10

 166 11

9 12

10

14

1312

13 16 15

3

3

3

4

6 7 8

8

9

11

13 12 15 14 9α1

1
3

5

6

8

α0

α1

α1

α0

α0
α1

7

4

2

Figure : Hypermap embedded in the plane
(dart embedding: a Jordan arc beginning by a bullet, ending by a small strike).

J.-F. Dufourd (Strasbourg, ICUBE) Combinatorial Hypermap Certification 14-17th July 2014 11 / 35

Combinatorial Hypermaps

Mathematical recalls

Orbits/components of hypermaps
The edge (resp. vertex, face, component) of z is its connected
component in the graph (D, α0) (resp. (D, α1), (D, α−1

1 ◦ α
−1
0),

(D, {α0 ∪ α1}))
(roughly: edge = small strike, vertex = bullet...).

Classification
The hypermaps are classified according to their numbers of edges,
vertices, faces and components, thanks to the notions of Euler
characteristic, genus and planarity.

J.-F. Dufourd (Strasbourg, ICUBE) Combinatorial Hypermap Certification 14-17th July 2014 12 / 35

Combinatorial Hypermaps

(Constructive) Hypermaps in Coq (I)
Darts, dimensions, hypermaps
(* Type of darts and exception: *)

Definition dart := nat.
Definition nild := 0.
...

(* Type of dimensions: *)
Inductive dim:Type :=

zero : dim | one : dim.

(* Type of hypermaps: *)
Inductive hmap:Type :=

V : hmap (* Void (empty) hmap *)
| I : hmap->dart->hmap (* Insertion of a dart *)
| L : hmap->dim->dart->dart->hmap. (* k-Linking from a dart

to another *)

Example: Hypermap
m1 := I (I (I (I (I (I V 1) 2) 3) 4) 5) 6.
m2 := L (L m1 zero 4 2) zero 2 5).
m3 := L (L (L m2 one 1 2) one 2 3) one 6 5.

1
2

3

4

6

5

Figure : Partial coding of the example hypermap
(The 0- and 1-orbits stay "open" in the specification).

J.-F. Dufourd (Strasbourg, ICUBE) Combinatorial Hypermap Certification 14-17th July 2014 13 / 35

Combinatorial Hypermaps

Hypermaps in Coq (II)

Free map observers (inductively defined)
- Existence of a dart z in the hmap m: exd m z
- k-successor of z in m: pA m k z
returns nild when there is no k-link from z
- k-successor of z in the closure of pA m k: A m k z
Note: two successor notions which are useful in the specification

Example: Zoom on an edge of hypermap

nild

5

2

44

L2

5

L

AccessCoding

pA = A

pA = A

pA

A

Figure : An edge: open for pA, closed for A.

Preconditions, invariant of hypermaps
- Preconditions on I and L impose that edges and vertices remain
open for pA
- An invariant of hypermaps inv_hmap m derives.

J.-F. Dufourd (Strasbourg, ICUBE) Combinatorial Hypermap Certification 14-17th July 2014 14 / 35

Combinatorial Hypermaps

Hypermaps in Coq (III)

Orbital properties of hypermaps
Idea: studying pA et A by the properties of their orbits:
- The pA-orbits stay (open) lines
- The components w.r.t. pA are branches
- A is really the closure of pA
- The A-orbits are (closed) circuits
- The same for the inverses pA_1 and A_1

Other properties of the hypermaps
All this leads to fundamental results on discrete topology:
- Incremental definitions of numbers of edges, vertices, faces,
components, Euler characteristic, genus and planarity
- An inductive proof of the Genus theorem
- Constructive criteria of planarity
- A proof of the discrete Jordan curve theorem

J.-F. Dufourd (Strasbourg, ICUBE) Combinatorial Hypermap Certification 14-17th July 2014 15 / 35

Formalization of Memory

Formalization of Memory (I)

Addresses
- The potential addresses are the natural numbers
- There is an exception address null (= 0)

(* Address type: *)
Definition Addr := nat.

(* Exception: *)
Definition null := 0.

Memories/Validity
- A memory is non-bounded and the allocations always succed
- It is partitioned according to the datatypes

(* Contexte: *)
Variables (T:Type) (undef:T).

(* Memory type: *)
Inductive Mem:Type:=

initm : Mem (* empty memory *)
| insm : Mem->Addr->T->Mem. (* insertion of (address, value) *)

(* Validity domain: *)
Fixpoint dom(M:Mem)(z:Addr):list Addr := ...

(* From where a precondition on insm and an invariant inv_Mem... *)

J.-F. Dufourd (Strasbourg, ICUBE) Combinatorial Hypermap Certification 14-17th July 2014 16 / 35

Formalization of Memory

Formalization of Memory (II)

Address generation
- A fresh address (invalid and non-null) can always be generated by
a function we call adgen:

Parameter adgen: Mem->Addr.

Conservative memory operations
- allocation: alloc M returns M updated and a fresh address:

Definition alloc(M:Mem):(Mem * Addr)%type :=
let a := adgen M in (insm M a undef, a).

Inductively specified:
- loading: load M z
- mutation: mut M z t
- releasing: free M z

J.-F. Dufourd (Strasbourg, ICUBE) Combinatorial Hypermap Certification 14-17th July 2014 17 / 35

Hypermap Linked Implementation

Hypermap Representation (I)

Cells for the darts, memories of dart cells
(* Dart cell type: *)

Record cell:Type:=
mkcell { s : dim->Addr; (* "array" of 2 k-successors *)

p : dim->Addr; (* "array" of 2 k-predecessors *)
next : Addr (* successor *)

}.

(* Type of cell memories: *)
Definition Memc := Mem cell.

Example: A dart cell

nexts one

p onep zero
z

s zero
(RA M zero z) (RA M one z) (Rnext M z)

(RA_1 M zero z) (RA_1 M one z)

Figure : Cell of a hypermap representation in a memory M.

J.-F. Dufourd (Strasbourg, ICUBE) Combinatorial Hypermap Certification 14-17th July 2014 18 / 35

Hypermap Linked Implementation

Hypermap Representation (II)

Hypermap representation
Any hypermap representation Rm is a pair composed of:
- a cell memory M:Memc
- a pointer (head of a main list) h:Addr

(* Type of hypermap representations: *)
Definition Rhmap := (Memc * Addr)%type.

Observers
(on Rhmap, names are prefixed by "R";
on Memc, names are suffixed by "c")
(* Observers of the main list: *)

Definition Rnext M z := next (loadc M z).
Definition Rorb Rm := let (M, h) := Rm in

orb Addr (Rnext M) (domc M) h.
Definition Rlim Rm := let (M, h) := Rm in

lim Addr (Rnext M) (domc M) h.

(* Observers of hypermap: *)
Definition Rexd Rm z := In z (Rorb Rm).
Definition RA M k z := s (loadc M z) k.
Definition RA_1 M k z := p (loadc M z) k.
...

(* Note that the representation of pA is useless...)

J.-F. Dufourd (Strasbourg, ICUBE) Combinatorial Hypermap Certification 14-17th July 2014 19 / 35

Hypermap Linked Implementation

Hypermap Representation (III)

Invariant of representation
For any hypermap representation Rm, some features are required:
(1) A main singly-linked list of darts representations: a line with valid
darts and a null limit:

Definition inv_Rhmap1(Rm:Rhmap) := let (M, h) := Rm in
inv_Memc M /\ (h = null \/ In h (domc M)) /\ Rlim Rm = null.

(2) For each dart, 4 circular singly-linked lists for the k-links: each one
is a circuit with darts in the main list, and RA_1 M k is always the
inverse of RA M k:

Definition inv_Rhmap2(Rm:Rhmap) := let (M, h) := Rm in
forall k z, Rexd Rm z ->

inv_circ Addr (RA M k) (Rorb Rm) z /\
RA_1 M k z = f_1 Addr (RA M k) (Rorb Rm) z.

Definition inv_Rhmap(Rm:Rhmap) := inv_Rhmap1 Rm /\ inv_Rhmap2 Rm.

J.-F. Dufourd (Strasbourg, ICUBE) Combinatorial Hypermap Certification 14-17th July 2014 20 / 35

Hypermap Linked Implementation

User update operations (I): Empty hypermap

Ideas:
- providing a set of specified operations which must be:
conservative (w.r.t. invariants), minimal, complete, ready-to-assemble,
safe (hiding pointer manipulations).
- simulating the C language

Empty hypermap: RV
Definition RV(M:Memc): Rhmap := (M, null).

Properties
Correct behavior w.r.t. the observer Rexd:

Lemma Rexd_RV: forall M z, inv_Memc M ->
~Rexd (RV M) z.

J.-F. Dufourd (Strasbourg, ICUBE) Combinatorial Hypermap Certification 14-17th July 2014 21 / 35

Hypermap Linked Implementation

User update operations (II): Dart insertion

Insertion of a new isolated dart: RI
Definition RI(Rm:Rhmap):Rhmap :=
let (M, h) := Rm in
let (M1, x) := allocc M in
let M2 := mutc M1 x (modnext (ficell x) h) in (M2, x).

Example: Insertion of an isolated dart

nexts zero s one

p onep zero
hx

nexts zero s one

p onep zero

x x x x null

RI Rm:h

nexts zero s one

p onep zero

null

Rm:

Figure : RI: insertion of a dart in Rm (Left) giving RI Rm (Right).

Properties
- Correct observational behavior w.r.t. Rexd,RA,RA_1, e.g.:
For any k, the new dart is a fixpoint w.r.t. RA M2 k and RA_1 M2 k
- Proofs inherited from the general orbits: addition and mutation
properties

J.-F. Dufourd (Strasbourg, ICUBE) Combinatorial Hypermap Certification 14-17th July 2014 22 / 35

Hypermap Linked Implementation

User update operations (III): Transposition

Transposition of two darts at dimension k: RL
Definition RL(Rm:Rhmap)(k:dim)(x y:Addr): Rhmap :=
let (M, h) := Rm in
let xk := RA M k x in let y_k := RA_1 M k y in
let M3 := mutc M x (mods (loadc M x) k y) in
let M4 := mutc M3 y (modp (loadc M3 y) k x) in
let M5 := mutc M4 y_k (mods (loadc M4 y_k) k xk) in
let M6 := mutc M5 xk (modp (loadc M5 xk) k y_k) in (M6, h).

Definition prec_RL Rm k x y:= In x (Rorb Rm) /\ In y (Rorb Rm).

Exemple: Transposition of two darts x and y at dimension 1

next

p onep zero

nexts zero s one

y_k
p zero

s zero

xk

y_k

xk

next

p onep zero

nexts zero s one

x

s zero

p zero

y

x

y

RL Rm k x y:

next

p onep zero
y

nexts zero s one

y_k
p zero

s zero

y_k

y

next

p onep zero
xk

nexts zero s one

s zero

p zero

xk

x

x

Rm:

Figure : RL: Transposition in Rm (Left) giving RL Rm one x y (Right).

Properties
- Correct observational behavior w.r.t. Rexd,RA,RA_1, e.g.:
y is the new k-successor of x: RL splits or merges (circular) k-orbits
w.r.t. RA M k and RA_1 M k
- Proofs inherited from the general orbits: transposition properties

J.-F. Dufourd (Strasbourg, ICUBE) Combinatorial Hypermap Certification 14-17th July 2014 23 / 35

Hypermap Linked Implementation

User update operations (IV): Dart deletion
Deletion of an isolated dart: RD

Definition RD(Rm:Rhmap)(x:Addr)(H: inv_Rhmap1 Rm): Rhmap :=
let (M,h) := Rm in
if eqd Addr h null then Rm
else if eqd Addr x null then Rm

else if eqd Addr h x
then let h1 := Rnext M h in

let M1 := freec M h in (M1, h1)
else let x_1 := Rnext_1 Rm H x in

if eqd Addr x_1 null then Rm
else let M2 := mutc M x_1 (modnext (loadc M x_1)

(Rnext M x)) in
let M3 := freec M2 x in (M3,h).

Definition prec_RD Rm x :=
forall k, Rexd Rm x -> RA (fst Rm) k x = x /\ RA_1 (fst Rm) k x = x.

Example: Deletion of an isolated dart

nexts zero s one

p onep zero

null

nexts zero s one

p onep zero

x_1

h
Rm:

nexts zero s one

p onep zero
x

nexts zero s one

p onep zero
x1

null

nexts zero s one

p onep zero

x_1

h
z

x1
RD Rm x:

Rm:

x1

x1

x x x x

Figure : RD: Deletion of a dart of Rm (Top) giving RD Rm x (Bottom).

Properties
Correct behavior w.r.t. the observers Rexd,RA,RA_1, with proofs
inherited from the general orbits: mutation and deletion properties

J.-F. Dufourd (Strasbourg, ICUBE) Combinatorial Hypermap Certification 14-17th July 2014 24 / 35

Equivalence Specification / Implementation

Observational Equivalence (I)

Abstraction function (morphism): Abs
Abs sends any hypermap representation which is built by using
RV,RI,RL,RD onto an abstract hypermap which is built by using
V,I,L

Properties
Abs correctly carries the observations by Rexd,RA,RA_1 onto the
observations by exd,A,A_1.

J.-F. Dufourd (Strasbourg, ICUBE) Combinatorial Hypermap Certification 14-17th July 2014 25 / 35

Equivalence Specification / Implementation

Observational Equivalence (II)

Representation function (morphism): Rep
Rep sends any abstract hypermap which is built by using V,I,L with
darts generated by successive uses of adgen onto a hypermap
representation which is built by using RV,RI,RL

Properties
Rep correctly carries the observations by exd,A,A_1 onto the
observations by Rexd,RA,RA_1.

J.-F. Dufourd (Strasbourg, ICUBE) Combinatorial Hypermap Certification 14-17th July 2014 26 / 35

Program in C

Program in C

Comments
- This appendix contains a C operational program for the concrete
types, data structures and functions which correspond to the
hypermap linked Coq representation.
- It is obtained by a direct translation where the memory is a global
implicit object, memory variables are removed, addresses are pointers
on cells, and Rm is identified to h.
- A run on a test game needs a simple wrapping in ad hoc types and
functions to refer darts in play, e.g. by integers, and to traverse the
data structures.

J.-F. Dufourd (Strasbourg, ICUBE) Combinatorial Hypermap Certification 14-17th July 2014 27 / 35

Program in C

C Program

Listing (I)
/* Programming in C the hypermap Coq representation */

#define MALLOC(t) ((t *) malloc(sizeof(t)))
#define null NULL

typedef enum {zero, one} dim;

typedef struct scell {
struct scell * s[2];
struct scell * p[2];
struct scell * next;

} cell, * Addr, * Rhmap;

cell mkcell (Addr s[], Addr p[], Addr n) {
cell c; int k;
for(k=0;k<2;k++){c.s[k] = s[k]; c.p[k] = p[k];}
c.next := n;
return c;

}

J.-F. Dufourd (Strasbourg, ICUBE) Combinatorial Hypermap Certification 14-17th July 2014 28 / 35

Program in C

C Program

Listing (II)
(* CRm:CRhmap Rm is an inductive predicate stating that Rm is

constructed exclusively by using RV, RI, RL and RD: *)

Fixpoint Abs(Rm: Rhmap)(CRm:CRhmap Rm) {struct CRm}: fmap :=
match CRm with ...

cell mods(cell c, dim k, Addr m) { c.s[k] = m; return c; }

cell modp(cell c, dim k, Addr m) { c.p[k] = m; return c; }

cell modnext(cell c, Addr m) { c.next = m; return c; }

cell ficell(Addr x) {
cell c; int k;
for(k=0;k<2;k++){c.s[k] = c.p[k] = x;}
c.next = null;
return c;

}

cell initcell() {
cell c; int k;
for(k=0;k<2;k++){c.s[k] = c.p[k] = null;}
c.next = null;
return c;

}

J.-F. Dufourd (Strasbourg, ICUBE) Combinatorial Hypermap Certification 14-17th July 2014 29 / 35

Program in C

C Program

Listing (III)
cell load(Addr z) { return *z; }

void mut(Addr z, cell c) { *z = c;}

Addr alloc() {
Addr x = MALLOC(cell);

*x = initcell();
return x;

}

/* free (z:Addr) BUILT-IN */

Addr Rnext (Addr z) { return z->next; }

Addr RA (dim k, Addr z) { return z->s[k]; }

Addr RA_1 (dim k, Addr z) { return z->p[k]; }

J.-F. Dufourd (Strasbourg, ICUBE) Combinatorial Hypermap Certification 14-17th July 2014 30 / 35

Program in C

C Program

Listing (IV)
Rhmap RV() { return null;}

Rhmap RI(Rhmap Rm) {
Addr x = alloc();
mut(x, (modnext(ficell(x), Rm)));
return x;
}

Rhmap RL(Rhmap Rm, dim k, Addr x, Addr y) {
Addr xk = RA(k, x);
Addr y_k = RA_1(k, y);
mut(x, (mods(load(x), k, y)));
mut(y, (modp(load(y), k, x)));
mut(y_k, (mods(load(y_k), k, xk)));
mut(xk, (modp(load (xk), k, y_k)));
return Rm;

}

J.-F. Dufourd (Strasbourg, ICUBE) Combinatorial Hypermap Certification 14-17th July 2014 31 / 35

Program in C

C Program

Listing (V)
Addr Rnext_1(Rhmap Rm, Addr x) {
if(Rnext(Rm) == x) return Rm;
return Rnext_1(Rnext(Rm), x);

}

Rhmap RD(Rhmap Rm, Addr x) {
Addr h1, x_1;
if (Rm == null || x == null) return Rm;
if (Rm == x)
{
h1 = Rnext(Rm);
free (Rm);
return h1;

}
x_1 = Rnext_1(Rm,x);
if (x_1 == null) return Rm;
mut(x_1, (modnext (load(x_1), Rnext(x))));
free(x);
return Rm;

}

J.-F. Dufourd (Strasbourg, ICUBE) Combinatorial Hypermap Certification 14-17th July 2014 32 / 35

Related Work

Related Work

Topics
Static proofs of programs
Floyd, Hoare, Reynolds, O’Hearn...
Inductive types and algebraic specifications
Bornat, Mehta-Nipkow, Marché, Conway-Barrett, Berdine et al...,
Guttag, Goguen, Wirsing...
Models of memory and of programming
Leroy-Blazy, Chlipala...
Separation and collision
Burstall, Bornat, Reynolds, O’Hearn, Enea et al...
Specification and implementation of hypermaps
Cori, Gonthier, Dufourd, Bertrand, Bertot...
Dedicated proof systems
Malecha-Morrisett, Chlipala et al., Filliâtre...

J.-F. Dufourd (Strasbourg, ICUBE) Combinatorial Hypermap Certification 14-17th July 2014 33 / 35

Conclusion

Conclusion

Summary
Interest for libraries with complex data structures
Point of view of an algebraic specifier
Exclusive use of a higher-order logic (CIC): no Hoare logic, no
Separation logic
Intensive use of a generic orbit library: to handle arrays, singly- or
doubly-linked lists, linear or circular, possibly nested
Coq development for this study: 9,000 lines
(with the memory model, but without the orbits,
60 definitions, 630 lemmas and theorems)

J.-F. Dufourd (Strasbourg, ICUBE) Combinatorial Hypermap Certification 14-17th July 2014 34 / 35

Conclusion

Conclusion

Future work
Generalize orbits to multiple functions: to deal with trees, forests
and general graphs
Connect orbits with Separation logic: orbits help to state and solve
collision and separation problems
Connect orbits with proof platforms: Why3, Frama-C, Ynot,
Bedrock...
Compile the "imperative Coq fragment" to C
Develop other case studies with complex data and algorithms,
particularly in computational geometry
(Example: Delaunay / Voronoi diagrams in 3D)

Thank you for your attention!

J.-F. Dufourd (Strasbourg, ICUBE) Combinatorial Hypermap Certification 14-17th July 2014 35 / 35

	Introduction
	Orbits in Coq
	Combinatorial Hypermaps
	Formalization of Memory
	Hypermap Linked Implementation
	Equivalence Specification / Implementation
	Program in C
	Related Work
	Conclusion

