A Formal Library for Elliptic Curves

Iro Bartzia Pierre-Yves Strub

Inria Paris - Rocquencourt, France

IMDEA Software Institute, Spain

15/7/2014

← → C fi	https://accounts.google.com/ServiceLogin	?service=sierra&continue=https://checkout.goo	ogle.com/☆ 〓
Goc	accounts.google.com Identity verified		SIGN UP
Malla	Permissions Connection	-	
One wall	The identity of this website has been verified by Google Internet Authority. <u>Certificate Information</u>	Sign in Email	Google
	Your connection to accounts.google.com is encrypted with 128-bit encryption.		
	The connection uses TLS 1.1. The connection is encrypted using RC4_128, with SHA1 for message	Password	
	authentication and ECDHE_RSA as the key exchange mechanism. The connection does not use SSL compression.	ttly Sign in ✓ Stay signed in Can't access your account?	

Elliptic Curves

Definition

An elliptic curve E on a field K (characteristic $\neq 2,3$) is defined

$$E = \{(x, y) \in K^2, y^2 = x^3 + Ax + B\} \cup \{P_{\infty}\}$$

where P_{∞} is the point at infinity and $\Delta = 4A^3 + 27B^2 \neq 0$

Elliptic curves are efficient groups for public-key cryptography:

- addition and scalar multiplication are computationally efficient $(m, P) \rightarrow [m]P = P \bigoplus P \bigoplus ... \bigoplus P$ (m-times)
- the Discrete Logarithm Problem is difficult relative to the size of the parameters

 $[m]P \to (m,P)$

The realisation of cryptographic primitives requires the implementation of cryptographic algorithms. This is a complicated task.

So how do we know that an implementation is correct ? Use Formal Methods !

A formal theory for elliptic curves (outline)

A library for elliptic curves with SSReflect

- Elliptic curves of Weierstrass form
- Rational functions on elliptic curves
- Divisors

Previous formalizations in Coq

Proving the group law for elliptic curves formally.
 L.Thery, G.Hanrot (2007)

The Picard theorem

The set of points of an elliptic curve is isomorphic to its Picard group of divisors.

Consequence: An elliptic curve is a group.

Figure 1: Roadmap to the proof

Figure 1: Roadmap to the proof

Elliptic Curves

Definition

An elliptic curve E on a field K (characteristic $\neq 2,3$) is defined

$$E = \{(x, y) \in K^2, y^2 = x^3 + Ax + B\} \cup \{P_{\infty}\}$$

where P_{∞} is the point at infinity and $\Delta = 4A^3 + 27B^2 \neq 0$

Elliptic Curves of equation $y^2 = x^3 + Ax + B$

```
Record ecutype :=
 {A : K; B : K; _: 4*A^3 + 27*B^2 != 0 }
Inductive point := |EC_Inf |EC_In : K -> K -> point
Notation "(|x,y|)" := (EC_In \times y)
Definition oncurve (p : point) :=
 match p with
  |EC_Inf => true
  |(|x,y|) \Rightarrow y^2 == x^3 + A*x + B
 end
Inductive ec :=
  |EC : forall p : point K, oncurve p -> ec
```


Figure 1: Roadmap to the proof

The ring K[E]

The ring K[E] of polynomials over the curve E is defined as the ring K[x, y] quotiented by the ideal $\langle y^2 - (x^3 + ax + b) \rangle$.

For every class of K[E] there exists a representative of the form p(x) + yq(x). example: $x^2(y^2 + y) = x^2(x^3 + ax + b) + yx^2$ in K[E]

```
Inductive ecring :=
  |ECRing : {poly K} * {poly K} -> ecring.
Notation "[ecp p1 *Y + p2]" := (ECRing (p1, p2)).
```

The function field K(E)

The field K(E) is the field of fractions of K[E].

 $f \in \mathcal{K}(E)$ is of the form $f = \frac{n_1(x) + yn_2(x)}{d_1(x) + yd_2(x)}$

To formalize K(E) we use the type

{fraction ecring}

Order

Order

- A function $u \in K(E)$ is called a uniformizer at $P \in E$ if
 - u(P) = 0 and
 - every non-zero function $f \in K(E)$ can be written in the form $f = u^{v}g$ with $g(P) \neq 0, \infty$.
 - There exists a uniformizer for every point on the curve.
- The exponent v is independent from the choice of the uniformizer and is called the order of f at P.

•
$$v > 0 \Leftrightarrow f(P) = 0$$
 (P is a zero of f)

•
$$v < 0 \Leftrightarrow f(P) = \infty (P \text{ is a pole of } f)$$

Order and evaluation of rational functions

- There exists a uniformizer for every point on the curve.
- For a rational function *f*,
 - the sum of orders on all points of the curve is equal to zero.

Formally, we explicitly give the uniformizers for all points and a way to calculate the order.

Figure 1: Roadmap to the proof

A divisor on an elliptic curve E is a formal sum of points

$$D=\sum_{P\in E}n_P(P),$$

where $n_P \in \mathbb{Z}$, only finitely many nonzero. The degree of D is the sum of the coefficients n_P for all $P \in E$.

example of a divisor D = 3(P) - 7(R)

Figure 1: Roadmap to the proof

Given $f \in K(E)$, $f \neq 0$, the principal divisor Div(f) of f is defined as the formal (finite) sum:

$$Div(f) = \sum_{P \in E} (ord_f(P))(P).$$

Given $f \in K(E)$, $f \neq 0$, the principal divisor Div(f) of f is defined as the formal (finite) sum:

$$Div(f) = \sum_{P \in E} (ord_f(P))(P).$$

```
Definition ecdivp (f : ecring) : {freeg (point)} :=
\sum_((|x, y|) <- ecroots f)
            << (order f (|x,y|)) * (|x,y|) >>
            + << (order f EC_Inf) * EC_Inf >>.
```

To formalize divisors of $f \in K(E)$ we use the fraction construction of ssr.

Figure 1: Roadmap to the proof

 $Princ(E) \subset Div^0 \subset Div$

 $Pic^{0}(E)$ is defined as the quotient of zero-degree divisors by the equivalence relation \sim

 $D_1 \sim D_2$ if and only if $\exists f \in K(E)$ such that $div(f) = D_1 - D_2$.

For every class of $Pic^{0}(E)$ there exists a unique representative of the form $(P) - (P_{\infty})$.

Linear Reduction is used to find the representative of the form $(P) - (P_{\infty})$. Lemma: $(P) + (Q) \sim (P \oplus Q) + (P_{\infty})$

Linear Reduction

$$D = (P_0) + \dots + (P_n) - (Q_0) - \dots (Q_n)$$

$$\sim (P_0 \oplus \dots \oplus P_n) + n(P_\infty) - (Q_0 \oplus \dots \oplus Q_n) - n(P_\infty)$$

$$= (P) - (Q)$$

$$\sim (P \oplus Q) - (P_\infty).$$

$$D = (P_0) + ... + (P_n) - (Q_0) - ... (Q_n)$$

Definition fgpos (D : {freeg K}) :=
\sum_(p <- dom D | coeff p D > 0) << |coeff p D| * p >>.

```
Definition fgneg (D : {freeg K}) :=
\sum_(p <- dom D | coeff p D < 0) << |coeff p D| * p >>.
```

$$D = (P_0) + \dots + (P_n) - (Q_0) - \dots (Q_n)$$

$$\sim (P_0 \oplus \dots \oplus P_n) + n(P_\infty) - (Q_0 \oplus \dots \oplus Q_n) - n(P_\infty)$$

$$= (P) - (Q)$$

$$\sim (P \oplus Q) - (P_\infty).$$

```
Definition lr_r (D : {freeg point}) :=
let iter p n := iterop _ n + p EC_Inf in
\sum_(p <- dom D | p != EC_Inf) (iter p |coeff p D|).</pre>
```

```
Definition lr (D : {freeg point}) : point :=
let: (Dp, Dn) := (fgpos D, fgneg D) in
lr_r Dp - lr_r Dn.
```

$$D = (P_0) + \dots + (P_n) - (Q_0) - \dots (Q_n)$$

$$\sim (P_0 \oplus \dots \oplus P_n) + n(P_\infty) - (Q_0 \oplus \dots \oplus Q_n) - n(P_\infty)$$

$$= (P) - (Q)$$

$$\sim (P \ominus Q) - (P_\infty).$$

Lemma ecdeqv_lr D: all oncurve (dom D) -> D :~: << lr D >> + << (deg D - 1) * EC_Inf >>.

Linear reduction

$$D = (P_0) + \dots + (P_n) - (Q_0) - \dots (Q_n)$$

$$\sim (P_0 \oplus \dots \oplus P_n) + n(P_\infty) - (Q_0 \oplus \dots \oplus Q_n) - n(P_\infty)$$

$$= (P) - (Q)$$

$$\sim (P \oplus Q) - (P_\infty).$$

$$D = (P_0) + ... + (P_n) - (Q_0) - ...(Q_n)$$

$$\sim ((P_0 \oplus P_1) \oplus ... \oplus P_n) \oplus (Q_0 \oplus ... \oplus Q_n) - (P_\infty)$$

$$\sim (P_0 \oplus ... \oplus (P_{n-1} \oplus P_n)) \oplus (Q_0 \oplus ... \oplus Q_n) - (P_\infty)$$

Lemma L_2_40: forall p q, << p >> :~: << q >> -> p = q.

For every class of $Pic^{0}(E)$ there exists a unique representative of the form $(P) - (P_{\infty})$.

The mapping

$$\phi: E o Pic^0(E) \ P o [(P) - (P_\infty)]$$

is an isomorphism.

We have developed a formal library for

- Elliptic curves
- Rational functions on elliptic curves
- Evaluation theory for rational functions
- Divisors and principal divisors
- Formal proof of the Picard theorem 10000 lines of code (3500 definitions, 6500 proof) available at http://strub.nu/research/ec/

- Fast algorithms for scalar multiplication on ECs (GLV)
- Different coordinate systems
- Generalization to more general curves
- EC group structure theorem (needed for EasyCrypt)

Questions ?

Figure 1: Roadmap to the proof

Thank you for your attention !

Order and evaluation of rational functions

Evaluation

- $f \in K(E)$ is regular at $P = (x_P, y_P)$ if there exists a representative $\frac{g}{h}$ of f such that $h(x_P, y_P) \neq 0$.
- If f is regular at P, then $f(P) = \frac{g(x_P, y_P)}{h(x_P, y_P)}$.
- If f is not regular at P, then P is called a pole of f and $f(P) = \infty$.

example:
$$E: y^2 = x^3 - x$$
 and $f(x, y) = \frac{x}{y}$
 $f(0, 0) = \frac{x}{y}(0, 0) = \frac{xy}{y^2}(0, 0) = \frac{xy}{x^3 - x}(0, 0) = \frac{y}{x^2 - 1}(0, 0) = 0$

The GLV Algorithm (2000)

Let E elliptic curve over F_p .

- Let φ : E → E an efficiently computable endomorphism of E such that ∀P ∈ E , φ(P) = λ × P for some λ ∈ Z.
- A decomposition algorithm *D* such that $\forall n \in \mathbb{Z}, D(n) = (n_1, n_2) \in \mathbb{Z} \times \mathbb{Z}$ such that $n = n_1 + \lambda n_2 [modN]$ where *N* is the order of *P*.
- A multiexponentiation algorithm that computes efficiently $a \times P + b \times Q \ \forall a, b \in \mathbb{Z}$ and $\forall P, Q \in E$.

Then $n \times P = n_1 \times P + n_2 \times \phi(P)$.

Group structure of elliptic curves over F_q (Cassel)

- Let *E* elliptic curve over F_q .
- $E(F_q)$ is
 - either cyclic or
 - isomorphic to to a product of two cyclic groups $\mathbb{Z} \setminus L\mathbb{Z} \times \mathbb{Z} \setminus M\mathbb{Z}$ with L|M.

The definition of the operations requires a proof that the operations are internal.

A divisor on an elliptic curve E is a formal sum of points

$$D=\sum_{P\in E}n_P(P),$$

where $n_P \in \mathbb{Z}$, only finitely many nonzero.

```
Definition reduced (D : seq (int * T)) :=
(uniq [seq zx.2 | zx <- D]) && (all [pred zx | zx.1 !=
0]).</pre>
```

```
Record prefreeg : Type := mkPrefreeg {
  seq_of_prefreeg : seq (int * T) ;
  _ : reduced seq_of_prefreeg}.
```

To define the type freeg T of divisors we quotient by the perm-eq equivalence relation.

```
Definition ecdivp (f : ecring) : {freeg (point)} :=
\sum((|x, y|) \leq \text{ecroots } f)
    << (order f (|x,y|)) * (|x,y|) >>
  + << (order f EC_Inf) * EC_Inf >>.
  Definition ecroots f : seq (K * K) :=
let forx := fun x =>
  let sqrts := roots ('X^2 - ('X^3 + A *: 'X + B).[x])
      in
    [seq (x, y) | y < - sqrts \& f.[x, y] == 0]
in
  undup (flatten ([seq forx x | x <- roots (norm f)])).
```

Linear Reduction

Lemma

 $(P)+(Q)\sim (P\oplus Q)+(P_\infty)$

$$Div(I) = (P) + (Q) + (R) - 3(P_{\infty})$$

$$Div(I') = (R) + (-R) - 2(P_{\infty})$$

$$Div(I/I') = Div(I) - Div(I') = (P) + (Q) - (P + Q) - (P_{\infty})$$