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Theorem (currying) : (C1 - (C, — D)) = (C1 X Cy > D)
Proof: howmework ®
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How theorem provers should work:

Theorem (currying) : (Cl - (Cy = D)) = (C{xXCy, - D)
Proof: howmework ®

Theorem currying : (C1 - (C, » D)) = (Cy X C, » D).
Proof.

trivial.
Qed.




How theorem provers should work:

| Theorem (currying) : (Cl - (Cy — D)) = (C{xXCy, - D)
Proof: —: F = A (cq,¢2). F(cq)(c2); wmorphisms stmilarly

—: F = Acy.Acy. F(cq, €2); morphisms similarly
Functoriality, naturality, and congruence: straightforward.

Theorem currying : (C1 - (C, » D)) = (Cy X C, » D).
Proof.

esplit.

{ by refine (Ag (F = (Ag (c = K, €1 ¢2))))- }

{ by refine (Ag (F = (A (c; = (Ap (c2 » F, (¢1,¢2)))))). }

all: trivial.
Qed.




How theorem provers should work:

| Theorem (currying) : (Cl - (Cy — D)) = (C{xXCy, - D)
Proof: —: F = A (cq,¢2). F(cq)(c2); wmorphisms stmilarly

—: F = Acy.Acy. F(cq, €2); morphisms similarly
Functoriality, naturality, and congruence: straightforward.

Theorem currying : (C1 - (C, » D)) = (Cy X C, » D).
Proof.
esplit.
{ by refine (Ag (F » (Ag (¢ » Fy 1 63) (sdm o (F, dy)m my o (Fp mq), 7))
(FGT = (At (c = T ¢ ¢3))))- }
{ by refine (Ap (F = (Ag (1 P (Ap (2 » F, (€1,¢2)) (s d m — Fy (1,m))))
(FGT (A (¢1 = (A1 (cz = T (c1,c2))))))- }
all: trivial.
Qed.




How theorem provers do work:

Theorem (currying) : (Cl - (Cy = D)) = (C{xXCy, - D)

Proof: —: F = A (cq,¢2). F(cq)(c2); wmorphisms stmilarly ~0s
—: F = Acy.Acy. F(cq, €2); morphisms similarly

Fuwctoriatita, naturality, and congruence: straightforward. _
———
17 s 2m 46 s !1! (5 s, if we use UIP)

Theorem currying : (C1 - (C, » D)) = (Cy X C, » D).
Proof.
esplit.
{ by refine (Ag (F » (Ag (¢ » Fy 1 63) (sdm o (F, dy)m my o (Fp mq), 7))
(FGT = (At (c = T ¢ ¢3))))- }
{ by refine (Ap (F = (Ag (1 P (Ap (2 » F, (€1,¢2)) (s d m — Fy (1,m))))
(FGT (A (¢1 = (A1 (cz = T (c1,c2))))))- }
all: trivial.
Qed.




Performance is important!

If we're not careful, obvious or trivial things can be
very, very slow.




Why you should listen to me

Theorem : You should listen to me.
Proof.

by experience.
Qed.




Why you should listen to me

Category theory in Coq: https://github.com/HoTT/HoTT
(subdirectory theories/categories):

Concepts Formalized: . Cl=(C;1¢=1

1-precategories (in the sense of the HoTT Book)
univalent/saturated categories (or just categories, in the HoTT Book)
functor precategories C = D
dual functor isomorphisms Cat — Cat; and (C - D)°P — (C°P — D°P)
the category Prop of (U-small) hProps
the category Set of (U-small) hSets
the category Cat of (U-small) strict (pre)categories (strict in the sense of the
objects being hSets)
pseudofunctors
profunctors
. identity profunction (the hom functor C°P x C — Set)
adjoints
. equivalences between a number of definitions:
. unit-counit + zig-zag definition
. unit + UMP definition
. counit + UMP definition
. universal morphism definition
. hom-set definition (porting from old version in progress)
. composition, identity, dual
+  pointwise adjunctions in the library, G 4 F¢ and EF < C€ from an
adjunction F 4 G for functors F: C S D: G and E a precategory
(still too slow to be merged into the library proper; code here)
Yoneda lemma
Exponential laws
+  (C9=1;0¢=0given an objectin C

«  CAYBx(cAx(CE

+  (AXB)‘= A¢ x B¢

. (AB)CE ABXC
Product laws

. CxXxD=DXC

. Cx0=0xC=0

. Cxl=1xC=C
Grothendieck construction (oplax colimit) of a pseudofunctor to Cat
Category of sections (gives rise to oplax limit of a pseudofunctor to Cat when
applied to Grothendieck construction
functor composition is functorial (there's a functor A: (C - D) —» (D -
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https://github.com/HoTT/HoTT
https://github.com/JasonGross/HoTT/blob/finished-but-slow-adjoint-pointwise/theories/categories/Adjoint/Pointwise.v

Presentation is not mainly about:



Presentation is not mainly about:

e category theory or diagram chasing
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Cartoon from xkcd, adapted by Alan Huang
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Presentation is not mainly about:

* category theory or diagram chasing 28 e o =g

* my library
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Presentation is not mainly about:

FIELDS asranoep 8y PORITY

* category theory or diagram chasin bl
13 Rl 1

* my library

* Coq
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Presentation is not ma'nly about:

* category theory or diagram chasing % “X %T e

* my library

* Coq (though what | say might not always generalize nicely)
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Presentation is about:

e performance

* the design of proof assistants and type theories to
assist with performance

* the kind of performance issues | encountered
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Presentation is for:

* Users of proof assistants (and Coq in particular)
 Who want to make their code faster

* Designers of (type-theoretic) proof assistants
 Who want to know where to focus their optimization efforts



Outline

 Why should we care about performance?

 What makes theorem provers (mainly Coq) slow?

. ' o A
Examples of particular slowness Q E> §;

* For users (workarounds)
* Arguments vs. fields and packed records
* Proof by duality as proof by unification
* Abstraction barriers ﬁ
e Proof by reflection

* For developers (features)
* Primitive projections

* Higher inductive types
* Uni Poly phi
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Performance

* Question: What makes programs, particularly theorem
provers or proof scripts, slow?




Performance

* Question: What makes programs, particularly theorem
provers or proof scripts, slow?

e Answer: Doing too much stuff!
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Performance

* Question: What makes programs, particularly theorem
provers or proof scripts, slow?

* Answer: Doing too much stuff!
* doing the same things repeatedly

22
Snail from http://naolito.deviantart.com/art/Repetitive-task-258126598



Performance

* Question: What makes programs, particularly theorem
provers or proof scripts, slow?

* Answer: Doing too much stuff!
* doing the same things repeatedly

* doing lots of stuff for no good reason

Running rooster from http://d.wapday.com:8080/animation/ccontennt/15545-f/mr_rooster_running.gif



Performance

* Question: What makes programs, particularly theorem
provers or proof scripts, slow?

* Answer: Doing too much stuff!
* doing the same things repeatedly

* doing lots of stuff for no good reason '

e using a slow language when you could be
using a quicker one



Proof assistant performance

* What kinds of things does Coq do?

* Type checking
e Term building
* Unification

* Normalization



Proof assistant performance (pain)

e When are these slow?

* when you duplicate work

* when you do work on a part of a term you end up not caring
about

* when you do them too many times

 when your term is large



Proof assistant performance (size)

 How large is slow?



Proof assistant performance (size)

 How large is slow?
 Around 150,000—500,000 words



100 s

10s

1s

0.1s

0.01s
1.0E+0

Durations of Various Tactics vs. Term Size (Coq v8.4, 2.4 GHz Intel Xeon CPU, 16 GB RAM)
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Proof assistant performance (size)

 How large is slow?
 Around 150,000—500,000 words

Do terms actually get this large?



Proof assistant performance (size)

 How large is slow?
 Around 150,000—500,000 words

Do terms actually get this large?

YES!



Proof assistant performance (size)

* A directed graph has:
* atype of vertices (points)
» for every ordered pair of vertices, a type of arrows

W
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Proof assistant performance (size)

* A directed 2-graph has:
* atype of vertices (0-arrows)
 for every ordered pair of vertices, a type of arrows (1-arrows)

* for every ordered pair of 1-arrows between the same vertices, a
type of 2-arrows

34




Proof assistant performance (size)

* A directed arrow-graph comes from turning arrows into
vertices:

35




Proof assistant performance (pain)

* When are these slow?
* When your term is large

* Smallish example (29 000 words): Without Proofs:
{I| LCCMFp = _\_inducedfp (my; o my,);
LCCMT =A7 (A (c:dy /F)> my c.fomyqc.B) |}=
{| LCCMp := _\_inducedp my, o _\_inducedg my;;
LCCMT =247 (A (c:dy [ F) = myc.fo(dy)y Temyqc.fel) |}
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Proof assistant performance (pain)

* When are these slow?
* When your term is large

e Smallish example (29 000 words): Without Proofs:

{I| LCCMFf = _\_inducedfp (my; o my,);
LCCMT =Ar (A (c:d) [ F) > myc.fomyq c.[3)
(I=pfs, (Ar (A (c: C) > myy c omyq C)
(o1 —pt My myq)) (Maz °oMy3)) [}=
{| LCCMp := _\_inducedp my, o _\_inducedg my;;
LCCMT =Ar (A(c:d) [F) > myc.fo(di) lomyqc.fol)
(1 —pf (A @A(c:d;y /F)=>my c.fp)(I-pf
Ar (A(c:dy [F)=(dy)1Temyqc.fol)
(e —pf  (Ar (A(c:dy [F)=>(d
(co =pf(Ar (A (c:dy [ F) =

(TT—nfc.1m. . mMm..




Proof assistant performance (pain)

* When are these slow?
* When your term is large

e Smallish example (29 000 words): Without Proofs:

{| LCCMF == _\_inducedp (my, o my,);
LCCMT =47 (A(c:dy /F)=>myic.fomyqc.[3)
(II—pfsy (Ar (A (c : C) = my; comy; C)
(o1 —pf myq myq)) (Myy 0 myy)) |}=
{| LCCMp = _\_inducedp mq, o _\_inducedp my,;
LCCMT =247 (A(c:dy /F)=>myic.fo(d) lomyc.fol)
(e1 —pf (Ar A (c:d; /F) = my c. ) (II—-pfd, my; myy)))
(Ar A(c:dy /F)=>(d)ylemyc.fol)
(1 —pf (Ar A (c:dy /F) > (dy)g lemyy c.f5)
(co —pf (A7 (A (c:d, /F) > myc.f)
(Il—pf s, my; myy)) 1)) 1)) |}
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Proof assistant performance (fixes)

* How do we work around this?



Proof assistant performance (fixes)

* How do we work around this?

* By hiding from the proof checker!

40
Fence from http://imgarcade.com/1/hiding-clipart/



Proof assistant performance (fixes)

* How do we work around this?
* By hiding from the proof checker!

e How do we hide?



Proof assistant performance (fixes)

* How do we work around this?
* By hiding from the proof checker!

e How do we hide?
* Good engineering

» Better proof assistants



Proof assistant performance (fixes)

Careful Engineering



Outline

 Why should we care about performance?

 What makes theorem provers (mainly Coq) slow?
A

* Examples of particular slowness

* For users (workarounds)

* Arguments vs. fields and packed records
* Proof by duality as proof by unification

* Abstraction barriers ﬁ
* Proof by reflection

Dam image from http://www.flickr.com/photos/gammaman/7803829282/ by Eli Christman, CC by 2.0
Fence image from http://www.picgifs.com/clip-art/playing-children/clip-art-playing-children-362018-689955/

AV
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Proof assistant performance (fixes)

* How?
e Pack your records!



Proof assistant performance (fixes)

* How?
e Pack your records!

arrows to arrows

A mapping of graphs is a mapping of vetices to vertices and
@
c
v'\\ r’@r
Z _—
Z_— of

5
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Proof assistant performance (fixes)

* How?
e Pack your records!

At least two options to define graph:
Record Graph:={V:Type; E:V >V - Type }.
Record IsGraph (V: Type) (E: V>V - Type) :={ }.

47



Proof assistant performance (fixes)

Record Graph:={V:Type; E:V >V - Type }.
Record IsGraph (V: Type) (E: V- V- Type) :={ }.
Big difference for size of functor:
Mapping : Graph = Graph - Type.
VS.

[sMapping : V (V; : Type) (Vy : Type)

(Eg : Vg = Vi = Type) (Ey : Vg = Vi = Type),
f ﬂ@% IsGraph V; E; - IsGraph Vy Ey - Type.

ot
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Proof assistant performance (fixes)

* How?
* Exceedingly careful engineering to get proofs for free



Proof assistant performance (fixes)

* Duality proofs for free



Proof assistant performance (fixes)

* Duality proofs for free

* |dea: One proof, two theorems



Proof assistant performance (fixes)

* Duality proofs for free

* Recall: A directed graph has:
e atype of vertices (points)
» for every ordered pair of vertices, a type of arrows

~
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Proof assistant performance (fixes)

* Duality proofs for free

* Two vertices are isomorphic if there is exactly one edge
between them in each direction

/I‘\}; /
e~
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Proof assistant performance (fixes)

* Duality proofs for free

* Two vertices are isomorphic if there is exactly one edge
between them in each direction

* An initial (bottom) vertex is a vertex with exactly one edge
to every other vertex
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Proof assistant performance (fixes)

* Duality proofs for free

* Two vertices are isomorphic if there is exactly one edge
between them in each direction

* An initial (bottom) vertex is a vertex with exactly one edge
to every other vertex

* A terminal (top) vertex is a vertex with exactly one edge
from every other vertex

N
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Proof assistant performance (fixes)

 Theorem: Initial vertices are unique

Theorem initial_unique : V¥ (G : Graph) (x y : G.V),
is_initial x = is_initialy - x = y

* Proof:

Exercise for the audience

/I\;
e~
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Proof assistant performance (fixes)

 Theorem: Terminal vertices are unique
Theorem terminal_unique : V (G : Graph) (x y : G.V),
is_terminal x —» is_terminaly - x = y
* Proof:
AGxyHH' = initial_unique G°°? yx H'H

/I\;
e~
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Proof assistant performance (fixes)

e How?
e Either don’t nest constructions, or don't unfold nested
constructions

* Coq only cares about unnormalized term size — “What | don't
know can't hurt me”



Proof assistant performance (fixes)

* How?
* More systematically, have good abstraction barriers



Proof assistant performance (fixes)

e How?
* Have good abstraction barriers 0

Leaky abstraction barriers
generally only torture
programmers

60
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Proof assistant performance (fixes)

* How?
* Have good abstraction barriers 0

Leaky abstraction barriers
torture Coq, too!

61
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Proof assistant performance (fixes)

e How?
* Have good abstraction barriers

Example: Pairing

Two ways to make use of elements of a pair:
let (x,y):=pin [ x y. (pattern matching)
f (fstp) (snd p). (projections)



Proof assistant performance (fixes)

e How?
* Have good abstraction barriers

Example: Pairing

Two ways to make use of elements of a pair:

let (x,y):=pin [ x y. (pattern matching)

f (et (x,y):=pinx) (let (x,y) :=piny). (projections)

These ways do not unify!



Proof assistant performance (fixes

e How?
* Have good abstraction barriers

Leaky abstraction barriers
torture Coq, too!

Rooster Image from
http://www.animationlibrary.com/animation/18342/Chicken_blows_up/
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Proof assistant performance (fixes)

e How?
* Have good abstraction barriers 0

Leaky abstraction barriers
torture Coq, too!

66
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Proof assistant performance (fixes)
Concrete Example (Old Version)

Local Notation mor_of Y, ¥; f:=
(let ny,:= IsInitialMorphism_morphism (@HM Y;) in
(@center _ (IsInitialMorphism_property (@HM Yy) _ (17y, © f))) 1) (only parsing).
Lemma composition_of x y z g f: mor_of __(f eg) =mor_ofyz f emor_ofxy g.
Proof.
simpl.
match goal with | [ - ((@center 7A?H) ,) 1= _] = erewrite (@contr A H (center _; (_;_))) end.
simpl; reflexivity.
Grab Existential Variables.
simpl in *.
repeat match goal with | [ - appcontext[(?x ;) 1 | ] = generalize (x ,); intro end.
rewrite ?composition_of.
repeat try_associativity_quick (idtac; match goal with | [ - appcontext[?x ;] ] = simpl rewrite x , end).

rewrite ?left_identity, ?right_identity, ?associativity.
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Proof assistant performance (fixes)
Concrete Example (New Version)

Local Notation mor_of Y, ¥; f:=
(let ny,:= IsInitialMorphism_morphism (@HM Y;) in
[sInitialMorphism_property_morphism (@HM Y;) _ (ny, © f)) (only parsing).
Lemma composition_of x y z g f: mor_of __(f eg) =mor_ofyz f emor_ofxy g.
Proof.
simpl.
erewrite IsInitialMorphism_property_morphism_unique; [ reflexivity | ].
rewrite ?composition_of.
repeat try_associativity_quick rewrite IsInitialMorphism_property_morphism_property.

reflexivity.

Qed.
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Proof assistant performance (fixes

Concrete Example (Old Interface)

Definition IsInitialMorphism_object (M : IsInitialMorphism A¢) : D := CommaCategory.b A¢.
Definition IsInitialMorphism_morphism (M : IsInitialMorphism A¢) : morphism C X (U o (IsInitialMorphism_object M)) := CommaCategory.f A¢.
Definition IsInitialMorphism_property (M : IsInitialMorphism A¢g) (Y : D) (f : morphism C X (U o Y))
: Contr { m : morphism D (IsInitialMorphism_object M) Y | U 1 m o (IsInitialMorphism_morphism M) = f }.
Proof.
(*+* We could just [rewrite right_identity], but we want to preserve judgemental computation rules. *)
pose proof (@trunc_equiv’ __ (symmetry __ (@CommaCategory.issig_morphism ___1X U __)) -2 (M (CommaCategory.Build_object IX U ttY f))) as H'.
simpl in H'.
apply contr_inhabited_hprop.
- abstract (
apply @trunc_succ in H';
eapply @trunc_equiv’; [ | exact H' J;
match goal with
| [ - appcontext[?m o I] ] = simpl rewrite (right_identity ___m)
| [ - appcontext[l o ?m] | = simpl rewrite (left_identity ___m)
end;
simpl; unfold IsInitialMorphism_object, IsInitialMorphism_morphism;
let A := match goal with - Equiv ?4 ?B = constr:(4) end in
let B := match goal with + Equiv ?4 ?B = constr:(B) end in
apply (equiv_adjointify (A x : A= x 5) (A x: B = (tt; x)));
[ intro; reflexivity | intros [[]]; reflexivity |
).
- (exists ((@center _H") 3) 1).
abstract (etransitivity; [ apply ((@center _H") ;) 5 | auto with morphism ]).
Defined.

Total file time: 7 s
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Proof assistant performance (fixes
Concrete Example (New Interface)

Definition IsInitialMorphism_object (M : IsInitialMorphism A¢) : D := CommaCategory.b A¢.
Definition IsInitialMorphism_morphism (M : IsInitialMorphism A¢) : morphism C X (U o (IsInitialMorphism_object M)) := CommaCategory.f A¢.
Definition IsInitialMorphism_property_morphism (M : IsInitialMorphism A¢) (Y : D) (f: morphism C X (U ¢ Y)) : morphism D (IsInitialMorphism_object M) Y
:= CommacCategory.h (@center _ (M (CommaCategory.Build_object IX U tt Y f))).
Definition [sInitialMorphism_property_morphism_property (M : IsInitialMorphism A¢) (Y : D) (f : morphism C X (U ( Y))
: U 1 (IsInitialMorphism_property_morphism M Y f) o (IsInitialMorphism_morphism M) = f
:= CommacCategory.p (@center _ (M (CommaCategory.Build_object !X U ttY f))) @ right_identity ___ _.
Definition IsInitialMorphism_property_morphism_unique (M : IsInitialMorphism A¢) (Y : D) (f: morphism C X (U ¢ Y)) m’ (H : U ; m’ o IsInitialMorphism_morphism M = f)
: IsInitialMorphism_property_morphism MY f =m/'
:=ap (@CommacCategory.h _______ )
(@contr _ (M (CommaCategory.Build_object !X U tt Y f)) (CommaCategory.Build_morphism A¢ (CommaCategory.Build_object !X U ttY f) ttm' (H @ (right_identity ____) ~1))).
Definition [sInitialMorphism_property (M : IsInitialMorphism A¢) (Y : D) (f: morphism C X (U ( Y))
: Contr { m : morphism D (IsInitialMorphism_object M) Y | U 1 m o (IsInitialMorphism_morphism M) = f }.
:= {| center := (IsInitialMorphism_property_morphism M Y f; IsInitialMorphism_property_morphism_property M Y f);
contr m’ := path_sigma _ (IsInitialMorphism_property_morphism M Y f; IsInitialMorphism_property_morphism_property M Y f)
m' (@ IsInitialMorphism_property_morphism_unique M Y f m" ; m’ ;) (center ) |}.

Total file time: 7 s
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Concrete Example 2 (Generalization)

Lemma pseudofunctor_to_cat_assoc_helper {x xq : C} {x, : morphism C x x0} {x1 : C}
{x5 : morphism C xq x1} {x4 : C} {x7 : morphism C x; x4}
{p po : PreCategory} {f : morphism C x x, = Functor p, p}
{p1 p2 : PreCategory} {f, : Functor p, p} {f1 : Functor p; p,} {f, : Functor py p,} {f5 : Functor py p1} {f4 : Functor p; p}
{x16 : morphism (L= ) (f (x7 © x5 ° x2)) (Ja ° f3)%functor}
{x15 : morphism (_—_) f> (f1 ° f3)%functor} {H,: Islsomorphism x5}
{x11 : morphism (L= ) (f (x7 ° (x5 © x2))) (fo ° f2)%functor}
{H;: Islsomorphism x4} {xq : morphism (_—=_) f4 (f, ° f1)%functor} {fst_hyp : x; o x5 0o x, = x5 o (x50 x,)}
(rew_hyp :V x3 : pg,
(idtoiso (po = p) (ap f fst_hyp) : morphism___) x5 =x1; ~txz 0 (fo 1 (x15 7" x3) © (I o (x9 (f3 X3) © X136 X3))))
{Hy : Islsomorphism x;¢} {H; : [sIsomorphism xq} {x13 : p} {x3 : Do} {X6 : P1} {X10 : P2}
{x14 : morphism p (fy x10) x13} {x12 : morphism p, (fi x6) x10} {xg : morphism p; (f3 x3) x¢}
: existT (4 f5 : morphism C x x4, = morphism p ((f f5) x3) x13)
(x7 ° x5 0 x7)
(14 © (fo 1 X12 © X9 X¢) © (fa 1 X8 © X16 X3)) = (X7 © (X5 © X3); X14 © (fo 1 (X12 © (f1 1 X8 © X15 X3)) ° X171 X3)).
Proof.
helper_t assoc_before_commutes_tac.
assoc_fin_tac.
Qed.

Speedup: 100x for the file, from 4m 53s to 28 s
Time spent: a few hours
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Outline

 Why should we care about performance?

 What makes theorem provers (mainly Coq) slow?
A

* Examples of particular slowness

* For users (workarounds)

* Arguments vs. fields and packed records
* Proof by duality as proof by unification

* Abstraction barriers ﬁ
* Proof by reflection

Dam image from http://www.flickr.com/photos/gammaman/7803829282/ by Eli Christman, CC by 2.0
Fence image from http://www.picgifs.com/clip-art/playing-children/clip-art-playing-children-362018-689955/
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Outline

 Why should we care about performance?

 What makes theorem provers (mainly Coq) slow?

. ' o A
Examples of particular slowness Q E> §;

* For users (workarounds)
* Arguments vs. fields and packed records
* Proof by duality as proof by unification
* Abstraction barriers ﬁ
e Proof by reflection

* For developers (features)
* Primitive projections
Universe Polymorphism
H ig h e r i n d u Ctive types \ Universes image from Abell NGC2218 hst big, NASA
- Qu : Y Py http://en.wikipedia.o.rg_/wiki/AbeII 2.218#m_elcm%/er/ﬁle:A
More judgmental rules g e

157652/, released in Public Domain CCO, combined in

HaShconSi ng Photoshop by Jason Gross

Dam image from http://www.flickr.com/photos/gammaman/7803829282/ by Eli Christman, CC by 2.0
Fence image from http://www.picgifs.com/clip-art/playing-children/clip-art-playing-children-362018-689955/
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http://www.flickr.com/photos/gammaman/7803829282/
https://creativecommons.org/licenses/by/2.0/
http://antwrp.gsfc.nasa.gov/apod/ap080210.html
http://en.wikipedia.org/wiki/Abell_2218#mediaviewer/File:Abell_NGC2218_hst_big.jpg
http://commons.wikimedia.org/wiki/File:Abell_NGC2218_hst_big.jpg
http://pixabay.com/en/blue-bubble-shiny-157652/
http://pixabay.com/go/?t=http://creativecommons.org/publicdomain/zero/1.0/deed.en

Proof assistant performance (fixes)

* How?
* Primitive projections
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e How?

* Primitive projections

Definition 2-Graph :=

.x .
< o
{V : Type & %. %

{1IE :V->V->Type&
Vv, v, lIEv; v, - 1Ev; v, = Type }.
Definition V' (G : 2-Graph) := pri G .
Definition 1E (G : 2-Graph) := pr; (pr, G).
Definition 2E (G : 2-Graph) := pr, (pr, G).
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Proof assistant performance (fixes)

Definition 2-Graph :=
{V. Type&
{1E :V—>V—>Type&

Y vy v, 1Evy v, - 1Ev; v, = Type }
Definition V' (G : 2-Graph) := pri G .
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Proof assistant performance (fixes)

Definition 2-Graph :=
{V. Type&
{1E :V—>V—>Type&

vV v, vy, 1IEv; v, » 1E vy v, - Type }.
Definition V' (G : 2-Graph) :=
@pr; Type (A V: Type =
{1E : V>V ->Type &
V vy vy, 1Ev; v, > 1E vy v, - Type })

G. .



Proof assistant performance (fixes)

Definition 2-Graph :=
{V. Type&
{1E :V—>V—>Type&

Y vy v, 1Evy v, - 1Ev; v, = Type }
Definition V' (G : 2-Graph) := pri G .
Definition 1E (G : 2-Graph) := pr; (pr, Q).
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Proof assistant performance (fixes)

Definition 1E (G : 2-Graph) :=
@pr,
(@pr,; Type (1 V:Type =
{1E : V>V ->Type &
VY vy v, 1IEvy v, > 1Ev; v, - Type })
G-
@pr,; Type (AV: Type =
{1E : V>V ->Type &
Vv, v, 1Evy v, > 1Ev; v, - Type })
G-
Type)
(A1E: @pr, Type (A V: Type =

{ 1EV—>V—>Type& 83



Proof assistant performance (fixes)

Definition 1E (G : 2-Graph) :=
@pry
(@pr; Type (AV: Type=
{1E: V>V ->Type &
Y vy vy, 1E vy v, = 1E vy v, = Type })
G-
@pr, Type (AV: Type =
{1E: V>V ->Type &
Y vy vy, 1E vy v, = 1E vy v, = Type })
G-
Type)
(A 1E: @pr; Type (A V: Type =
{1E: V>V > Type &
Y vy vy, 1E vy v, = 1E vy v, = Type })
G-
@pr, Type (AV: Type =
{1E:V >V > Type &
Y vy vy, 1E vy v, = 1E vy v, = Type })
G-
Type =
Y vy vy, 1E v; v, = 1E v v, = Type)
(@pr;, Type (A V:Type =
{1E :V->V->Type&
Y vy vy, 1E v; vy = 1E vy v, = Type }
G)
84



Proof assistant performance (fixes)

Definition 1E (G : 2-Graph) :=

@pr,
(@pr; Type (AV:Type=>{1E: V>V ->Type &V (v;: V) (v,:V),1Ev; v, > 1Ev; v, > Type }) G-
@pr, Type (AV:Type=>{1E: V>V ->Type &V (v, :V) (v,:V),1Ev, v, - 1Ev; v, > Type}) G-

Type)

(A1E: @pry Type (AV:Type=>{1E: V>V ->Type &V (v;:V) (v,:V),1Ev; v, - 1Ev; v, > Type }) G-
@pr, Type (AV:Type=>{1E: V>V ->Type &V (v;:V) (v,:V), 1Ev, v, - 1Ev; v, > Type}) G-
Type =

V(v,: @pr; Type (AV:Type={1E: V>V >Type &Y (v1:V) (v,:V),1Ev; v, = 1Ev; v, = Type }) Q)
(vy: @pry Type (AV:Type=>{1E: V>V ->Type &V (v;:V) (v,: V), 1Ev; v, = 1E vy v, = Type }) G),
1E v, v, = 1E v; v, - Type)

(@pr, Type (AV:Type=>{1E: V>V >Type &Y (v;:V) (v,:V),1Ev; v, = 1Ev; v, = Type }) G)

:@pry Type (AV:Type=>{1E: V>V ->Type &V (v;:V) (v,:V),1Ev; v, 5> 1Ev; v, > Type }) G-
@pr, Type (AV:Type=>{1E: V>V ->Type &V (v, :V) (v,:V),1Ev, v, - 1Ev; v, = Type}) G-
Type

Recall: Original was:
Definition 1E (G : 2-Graph) := pr; (pr, G).
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Proof assistant performance (fixes)

* How?
* Primitive projections

* They eliminate the unnecessary arguments to projections,
cutting down the work Coq has to do.



Proof assistant performance (fixes)

e How?
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* How?
e Don’t use setoids, use higher inductive types instead!



Proof assistant performance (fixes)

* How?
* Don’t use setoids, use higher inductive types instead!

Setoids add lots of baggage to everything

89
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* How?
e Don’t use setoids, use higher inductive types instead!
Higher inductive types (when implemented) shove the

baggage into the meta-theory, where the type-checker
doesn’t have to see it



Take-away messages

 Performance matters

(even in proof assistants)

* Term size matters for performance

Q

Q

* Performance can be improved by
 careful engineering of developments
*improving the proof assistant

o

@

%ﬂ

or the metatheory

AN



Thank You!

The paper and presentation will be available at
http://people.csail.mit.edu/jgross/#category-coqg-experience

The library is available at
https://github.com/HoTT/HoTT

subdirectory theories/categories

Questions?
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