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Summary of results

PLT
(unpointed)

∂PLT
(pointed)

L

U

×	 	 Product
+	 	 Disjoint Sum
⇒	 	 Function Space
℘	 	 Powerdomains
disc(X)	 Finite discrete domains
UL  Lifting monad

⊗	 	 Smash Product
⊕	 	 Coalesced Sum
⊸	 	 Strict Function Space
℘
⊥
	 	 Powerdomains

flat(X)	 Countable	flat	domains
μF	 	 Recursive Domains
LU  Lifting comonad

⊣

Pointed = having a least element, ⊥, representing nontermination
Unpointed = not necessarily having a least element
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What is novel?

• Theory of algebraic domains formalized in Coq   
  Previous efforts formalize only CPOs in Coq and 
  lack some standard constructions, like powerdomains

• Fully constructive	presentation	of	profinite	domains 
  The library and examples are developed in the 
  constructive metalogic of Coq using no axioms

• Two category setup (PLT/∂PLT) differs from textbook 
domain theory; provides some advantages
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The competition: in Coq

Benton, Kennedy, Varming. “Some Domain Theory 
and Denotational Semantics in Coq.”  TPHOLS 2009.

Constructive, CPOs with some of the usual constructions, including 
recursive CPOs.

They	report	difficulty	defining	⊗,	and	do	not	define	powerdomains.

Coinductive	ε-streams	used	to	define	lifted	domains.

Their examples implicitly use axiom K via the dependent 
destruction tactic; functional extensionality is also assumed.
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The competition: in Isabelle/HOL

Brian	Huffman.	“A	Purely	Definitional	Universal	
Domain.”  TPHOLS 2009.

Formalized	profinite	domains	in	Isabelle/HOL,	based	on	the	
construction of a universal domain.  Now integrated into HOLCF.

HOL is a classical logic with strong choice principles.

Different	proof	strategy:		Huffman	defines	a	particular	universal	
domain and uses it to get other domains of interest.

I	instead	directly	define	the	category	PLT	and	take	colimits	to	build	
recursive domains.
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Why two categories?

Textbook presentations work with pointed domains and nonstrict 
continuous functions.

• This	allows	a	general	fixpoint	operator.

• But, this category has strange properties, e.g. no coproducts.

DOMAIN
pointed

nonstrict homs
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Why two categories?

• Accurate semantics for normalizing calculi in PLT

• Can handle “unboxed” types and total functions

• Both categories have coproducts

• PLT is cartesian closed / ∂PLT is symmetric monoidal closed

• UL is a monad of recursion / LU is a comonad of laziness

PLT
unpointed

nonstrict homs

∂PLT
pointed

strict homs

L

U

⊣
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General recursion

Problem 1:	there	is	no	fixpoint	operator	in	PLT	that	
applies to all domains.

Suppose A,B:PLT and let f:A → (B ⇒	B)	be	a	PLT-hom.		We	cannot	
apply	Kleene’s	fixpoint	theorem	because	B	might	not	have	a	least	
element.
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General recursion

Problem 1:	there	is	no	fixpoint	operator	in	PLT	that	
applies to all domains.

Suppose A,B:PLT and let f:A → (B ⇒	B)	be	a	PLT-hom.		We	cannot	
apply	Kleene’s	fixpoint	theorem	beacuse	B	might	not	have	a	least	
element.

Problem 2:	the	fixpoint	operator	in	∂PLT is trivial.

Suppose A,B:∂PLT and let f:A → (B ⊸ B) be a ∂PLT-hom.	The	least	
fixpoint	of	f	exists;	but	it	is	always	⊥ because f represents a strict 
function.
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General recursion

Fact: a domain A:PLT has a least element iff A ≅ U(B) 
for some B:∂PLT.

Solution: fixpoints	in	PLT,	but	only	for	∂PLT objects. 

Let A:PLT, B:∂PLT, f : A →	(U(B) ⇒ U(B)).

Then	we	can	construct	μf	:	A	→	U(B),	the	least	fixpoint	of	f.		In	
particular,	μf	is	the	least	hom	such	that:

	 μf	=	apply	∘	<	f,	μf	>	
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Why constructive domains?

• Philosophy: a theory of computation ought to have a constructive 
foundation.

• Challenge: every “useful” mathematical theory has some 
constructive counterpart which may be discovered if we expend 
sufficient	effort.

• Pragmatics: a Coq library relying on no axioms can be used in any 
axiomatic extension of Coq, even, say, anticlassical extensions, or 
ones that refute axiom K (HoTT).  The basic ideas should also be 
quite portable to other type theories.
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Enumerable sets
Let	<A, ≈>	be	a	setoid.

eset A  ≡  N → option A
x ∈	S	≡	∃n	y.	S	n	=	Some	y	∧	x	≈	y

empty : eset A
single : A → eset A

union : eset A (eset A) → eset A
image : (A → B) → eset A → eset B
union2 : eset A → eset A → eset A

intersect2 : eset A → eset A → eset A *

esubset P S : semidec P → ∑T,	x	∈	T	⟷	x	∈	S	∧ P	x
indefinite_description	S	:	(∃x,	x	∈	S) → (∑x,	x	∈	S)

*when	A	has	a	decidable	setoid	equality
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PLT = Effective Plotkin Orders

PLT objecsts are effective Plotkin orders, which have:
  an enumerable set of elements
  a decidable preorder relation
  certain closure properties based on minimal upper bounds.

PLT morphisms are enumerable approximable relations:
  must be enumerable as a set of pairs
  same as approx. relations as for Scott information systems

PLT ≅	effective	profinite	domains	via	ideal	completions.

See	the	paper	for	definitions	and	details...
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An Example

CBV	λ-calculus	with	booleans	and	fixpoints
soundness and adequacy

http://rwd.rdockins.name/domains/html/st_lam_fix.html
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Ongoing	and	Future	Work
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Ongoing work: continuous domains

Continuous domains are more general than algebraic domains.

Every continuous DCPO arises as a retract of an algebraic DCPO.

The category of retracts of PLT (∂PLT)	is	a	well-behaved	cartesian	
(monoidal) closed category called cPLT (c∂PLT).

The	objects	of	cPLT	can	be	defined	as	<A,	r>	where	r:	A→A is an 
idempotent PLT hom. This lets us reuse many constructions from 
PLT with very little work; likewise for c∂PLT.

Still to do: bilimits and powerdomains (no problems expected).
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Ongoing work: exact real computation

A continuous (but not algebraic!) domain for exact real computation 
can	be	defined	via	a	basis	consisting	of	closed	intervals	with	rational	
endpoints.

IR	=	Real	Interval	Domain

Domains	for	real	numbers	lets	us	define	semantics	for	languages	
that	deal	with	constructive	real	computations	as	first-class	entities.
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Future work: invariant relations

Recursively-defined	domains	are	difficult	to	reason	about.	

Pitts’	invariant relations	allow	one	to	define	useful	logical	relations	
and induction/coinduction principles on recursive domains.

Benton et al. showed how these can be useful in formal proofs, e.g., 
for	defining	logical	relations	on	untyped	λ-calculi.

Unfortunately	the	definitions	I	want	to	develop	this	theory	cause	
universe	inconsistencies	I	don’t	understand...

☹
Perhaps universe polymorphism will save the day.



19Dockins ITP 2014

Future work: polymorphism

The	domain-theoretic	semantics	of	polymorphism	requires	
sophisticated	category-theory	(indexed	category	theory	and/or	
Grothendieck	fibrations).

I	would	like	to	formalize	a	suitable	category	of	domains	satisfying	
parametricity	properties,	like	those	in	R.E.	Møgelberg’s	PhD	thesis.	

The feasibility of formalizing this work is (to me) an open question.
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Thank you!

http://rwd.rdockins.name/domains/
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Lifting and adjointness

PLT
(unpointed)

∂PLT
(pointed)

L

U

⊣

The forgetful functor U from ∂PLT to PLT is left adjoint to the lifting 
functor L from PLT to ∂PLT.  This adjunction is monoidal.

We	thus	get	a	monad	UL	in	PLT:	a	monad	of	general	recursion.	

Likewise, we get a comonad LU in ∂PLT: a comonad of lazyness.

By passing through this adjunction, we can import constructions in 
one category into the other, at the cost of some “extra” bottoms.
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Recursive domains

We	get	recursive	domains	from	any	continuous	functor	in	∂PLT:

• Lazy Binary Trees: T ≅ L(disc(1) + (U(T) × U(T)))

• Strict Binary Trees: S ≅	flat(1)	⊕	(S	⊗	S)

• Untyped eager lambdas:  D ≅ (D ⊸	D)

• Untyped CBV lambdas: E ≅ LU(E ⊸	E)

• Untyped CBN lambdas: F ≅ L(U(F) ⇒ U(F)) ≅ LU(LU(F) ⊸ F)

All the operators provided (sums, products, functions, 
powerdomains, L, U) are continuous, and so can be used to build 
recursive domains.
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Worked examples

The formal development contains worked examples that prove 
soundness	and	adequacy	(WRT	standard	big-step	operational	
semantics) for the following systems:

• Simply-typed,	normalizing	SKI	calculus	with	booleans

• Simply-typed,	CBN	SKI+Y	calculus	with	booleans

• Simply-typed,	normalizing,	named	λ-calculus	with	booleans

• Simply-typed,	CBN,	named,	λ-calculus	with	booleans	and	fixpoints
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Future work: semantics of core Haskell
One of the original goals for starting down this path.

I’d	like	a	semantics	of	core	Haskell	that	smoothly	accounts	for	
even some of the tricky corners, especially how strict and nonstrict 
computation interact:

• The seq primitive and strictness annotations
• Unboxed types and unboxed functions
• Why	is	(a,b,c)	not	isomorphic	to	(a,(b,c))?	
• Why	does	the	function	space	have	an	“extra”	bottom?

A core calculus with two base kinds (one for pointed and one 
for unpointed types) representing PLT and ∂PLT provides some 
answers:	I’m	still	working	out	the	details.


