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Summary of results

PLT
(unpointed)

∂PLT
(pointed)

L

U

×	 	 Product
+	 	 Disjoint Sum
⇒	 	 Function Space
℘	 	 Powerdomains
disc(X)	 Finite discrete domains
UL		  Lifting monad

⊗	 	 Smash Product
⊕	 	 Coalesced Sum
⊸	 	 Strict Function Space
℘
⊥
	 	 Powerdomains

flat(X)	 Countable flat domains
μF	 	 Recursive Domains
LU		  Lifting comonad

⊣

Pointed = having a least element, ⊥, representing nontermination
Unpointed = not necessarily having a least element
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What is novel?

•	Theory of algebraic domains formalized in Coq		   
		  Previous efforts formalize only CPOs in Coq and 
		  lack some standard constructions, like powerdomains

•	Fully constructive presentation of profinite domains 
		  The library and examples are developed in the 
		  constructive metalogic of Coq using no axioms

•	Two category setup (PLT/∂PLT) differs from textbook 
domain theory; provides some advantages
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The competition: in Coq

Benton, Kennedy, Varming. “Some Domain Theory 
and Denotational Semantics in Coq.”  TPHOLS 2009.

Constructive, CPOs with some of the usual constructions, including 
recursive CPOs.

They report difficulty defining ⊗, and do not define powerdomains.

Coinductive ε-streams used to define lifted domains.

Their examples implicitly use axiom K via the dependent 
destruction tactic; functional extensionality is also assumed.
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The competition: in Isabelle/HOL

Brian Huffman. “A Purely Definitional Universal 
Domain.”  TPHOLS 2009.

Formalized profinite domains in Isabelle/HOL, based on the 
construction of a universal domain.  Now integrated into HOLCF.

HOL is a classical logic with strong choice principles.

Different proof strategy:  Huffman defines a particular universal 
domain and uses it to get other domains of interest.

I instead directly define the category PLT and take colimits to build 
recursive domains.
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Why two categories?

Textbook presentations work with pointed domains and nonstrict 
continuous functions.

•	This allows a general fixpoint operator.

•	But, this category has strange properties, e.g. no coproducts.

DOMAIN
pointed

nonstrict homs
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Why two categories?

•	Accurate semantics for normalizing calculi in PLT

•	Can handle “unboxed” types and total functions

•	Both categories have coproducts

•	PLT is cartesian closed / ∂PLT is symmetric monoidal closed

•	UL is a monad of recursion / LU is a comonad of laziness

PLT
unpointed

nonstrict homs

∂PLT
pointed

strict homs

L

U

⊣
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General recursion

Problem 1: there is no fixpoint operator in PLT that 
applies to all domains.

Suppose A,B:PLT and let f:A → (B ⇒ B) be a PLT-hom.  We cannot 
apply Kleene’s fixpoint theorem because B might not have a least 
element.
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General recursion

Problem 1: there is no fixpoint operator in PLT that 
applies to all domains.

Suppose A,B:PLT and let f:A → (B ⇒ B) be a PLT-hom.  We cannot 
apply Kleene’s fixpoint theorem beacuse B might not have a least 
element.

Problem 2: the fixpoint operator in ∂PLT is trivial.

Suppose A,B:∂PLT and let f:A → (B ⊸ B) be a ∂PLT-hom. The least 
fixpoint of f exists; but it is always ⊥ because f represents a strict 
function.
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General recursion

Fact: a domain A:PLT has a least element iff A ≅ U(B) 
for some B:∂PLT.

Solution: fixpoints in PLT, but only for ∂PLT objects. 

Let A:PLT, B:∂PLT, f : A → (U(B) ⇒ U(B)).

Then we can construct μf : A → U(B), the least fixpoint of f.  In 
particular, μf is the least hom such that:

	 μf = apply ∘ < f, μf > 
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Why constructive domains?

•	Philosophy: a theory of computation ought to have a constructive 
foundation.

•	Challenge: every “useful” mathematical theory has some 
constructive counterpart which may be discovered if we expend 
sufficient effort.

•	Pragmatics: a Coq library relying on no axioms can be used in any 
axiomatic extension of Coq, even, say, anticlassical extensions, or 
ones that refute axiom K (HoTT).  The basic ideas should also be 
quite portable to other type theories.
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Enumerable sets
Let <A, ≈> be a setoid.

eset A  ≡  N → option A
x ∈ S ≡ ∃n y. S n = Some y ∧ x ≈ y

empty : eset A
single : A → eset A

union : eset A (eset A) → eset A
image : (A → B) → eset A → eset B
union2 : eset A → eset A → eset A

intersect2 : eset A → eset A → eset A *

esubset P S : semidec P → ∑T, x ∈ T ⟷ x ∈ S ∧ P x
indefinite_description S : (∃x, x ∈ S) → (∑x, x ∈ S)

*when A has a decidable setoid equality
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PLT = Effective Plotkin Orders

PLT objecsts are effective Plotkin orders, which have:
		  an enumerable set of elements
		  a decidable preorder relation
		  certain closure properties based on minimal upper bounds.

PLT morphisms are enumerable approximable relations:
		  must be enumerable as a set of pairs
		  same as approx. relations as for Scott information systems

PLT ≅ effective profinite domains via ideal completions.

See the paper for definitions and details...
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An Example

CBV λ-calculus with booleans and fixpoints
soundness and adequacy

http://rwd.rdockins.name/domains/html/st_lam_fix.html
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Ongoing and Future Work
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Ongoing work: continuous domains

Continuous domains are more general than algebraic domains.

Every continuous DCPO arises as a retract of an algebraic DCPO.

The category of retracts of PLT (∂PLT) is a well-behaved cartesian 
(monoidal) closed category called cPLT (c∂PLT).

The objects of cPLT can be defined as <A, r> where r: A→A is an 
idempotent PLT hom. This lets us reuse many constructions from 
PLT with very little work; likewise for c∂PLT.

Still to do: bilimits and powerdomains (no problems expected).
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Ongoing work: exact real computation

A continuous (but not algebraic!) domain for exact real computation 
can be defined via a basis consisting of closed intervals with rational 
endpoints.

IR = Real Interval Domain

Domains for real numbers lets us define semantics for languages 
that deal with constructive real computations as first-class entities.
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Future work: invariant relations

Recursively-defined domains are difficult to reason about. 

Pitts’ invariant relations allow one to define useful logical relations 
and induction/coinduction principles on recursive domains.

Benton et al. showed how these can be useful in formal proofs, e.g., 
for defining logical relations on untyped λ-calculi.

Unfortunately the definitions I want to develop this theory cause 
universe inconsistencies I don’t understand...

☹
Perhaps universe polymorphism will save the day.
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Future work: polymorphism

The domain-theoretic semantics of polymorphism requires 
sophisticated category-theory (indexed category theory and/or 
Grothendieck fibrations).

I would like to formalize a suitable category of domains satisfying 
parametricity properties, like those in R.E. Møgelberg’s PhD thesis. 

The feasibility of formalizing this work is (to me) an open question.
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Thank you!

http://rwd.rdockins.name/domains/
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Lifting and adjointness

PLT
(unpointed)

∂PLT
(pointed)

L

U

⊣

The forgetful functor U from ∂PLT to PLT is left adjoint to the lifting 
functor L from PLT to ∂PLT.  This adjunction is monoidal.

We thus get a monad UL in PLT: a monad of general recursion. 

Likewise, we get a comonad LU in ∂PLT: a comonad of lazyness.

By passing through this adjunction, we can import constructions in 
one category into the other, at the cost of some “extra” bottoms.
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Recursive domains

We get recursive domains from any continuous functor in ∂PLT:

•	Lazy Binary Trees: T ≅ L(disc(1) + (U(T) × U(T)))

•	Strict Binary Trees: S ≅ flat(1) ⊕ (S ⊗ S)

•	Untyped eager lambdas:  D ≅ (D ⊸ D)

•	Untyped CBV lambdas: E ≅ LU(E ⊸ E)

•	Untyped CBN lambdas: F ≅ L(U(F) ⇒ U(F)) ≅ LU(LU(F) ⊸ F)

All the operators provided (sums, products, functions, 
powerdomains, L, U) are continuous, and so can be used to build 
recursive domains.
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Worked examples

The formal development contains worked examples that prove 
soundness and adequacy (WRT standard big-step operational 
semantics) for the following systems:

•	Simply-typed, normalizing SKI calculus with booleans

•	Simply-typed, CBN SKI+Y calculus with booleans

•	Simply-typed, normalizing, named λ-calculus with booleans

•	Simply-typed, CBN, named, λ-calculus with booleans and fixpoints
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Future work: semantics of core Haskell
One of the original goals for starting down this path.

I’d like a semantics of core Haskell that smoothly accounts for 
even some of the tricky corners, especially how strict and nonstrict 
computation interact:

•	The seq primitive and strictness annotations
•	Unboxed types and unboxed functions
•	Why is (a,b,c) not isomorphic to (a,(b,c))? 
•	Why does the function space have an “extra” bottom?

A core calculus with two base kinds (one for pointed and one 
for unpointed types) representing PLT and ∂PLT provides some 
answers: I’m still working out the details.


