
1Dockins ITP 2014

Effective, Formalized
Domain Theory in Coq

Robert Dockins

http://rwd.rdockins.name/domains/

2Dockins ITP 2014

Summary of results

PLT
(unpointed)

∂PLT
(pointed)

L

U

×	 	 Product
+	 	 Disjoint Sum
⇒	 	 Function Space
℘	 	 Powerdomains
disc(X)	 Finite discrete domains
UL Lifting monad

⊗	 	 Smash Product
⊕	 	 Coalesced Sum
⊸	 	 Strict Function Space
℘
⊥
	 	 Powerdomains

flat(X)	 Countable	flat	domains
μF	 	 Recursive Domains
LU Lifting comonad

⊣

Pointed = having a least element, ⊥, representing nontermination
Unpointed = not necessarily having a least element

3Dockins ITP 2014

What is novel?

• Theory of algebraic domains formalized in Coq
 Previous efforts formalize only CPOs in Coq and
 lack some standard constructions, like powerdomains

• Fully constructive	presentation	of	profinite	domains
 The library and examples are developed in the
 constructive metalogic of Coq using no axioms

• Two category setup (PLT/∂PLT) differs from textbook
domain theory; provides some advantages

4Dockins ITP 2014

The competition: in Coq

Benton, Kennedy, Varming. “Some Domain Theory
and Denotational Semantics in Coq.” TPHOLS 2009.

Constructive, CPOs with some of the usual constructions, including
recursive CPOs.

They	report	difficulty	defining	⊗,	and	do	not	define	powerdomains.

Coinductive	ε-streams	used	to	define	lifted	domains.

Their examples implicitly use axiom K via the dependent
destruction tactic; functional extensionality is also assumed.

5Dockins ITP 2014

The competition: in Isabelle/HOL

Brian	Huffman.	“A	Purely	Definitional	Universal	
Domain.” TPHOLS 2009.

Formalized	profinite	domains	in	Isabelle/HOL,	based	on	the	
construction of a universal domain. Now integrated into HOLCF.

HOL is a classical logic with strong choice principles.

Different	proof	strategy:		Huffman	defines	a	particular	universal	
domain and uses it to get other domains of interest.

I	instead	directly	define	the	category	PLT	and	take	colimits	to	build	
recursive domains.

6Dockins ITP 2014

Why two categories?

Textbook presentations work with pointed domains and nonstrict
continuous functions.

• This	allows	a	general	fixpoint	operator.

• But, this category has strange properties, e.g. no coproducts.

DOMAIN
pointed

nonstrict homs

7Dockins ITP 2014

Why two categories?

• Accurate semantics for normalizing calculi in PLT

• Can handle “unboxed” types and total functions

• Both categories have coproducts

• PLT is cartesian closed / ∂PLT is symmetric monoidal closed

• UL is a monad of recursion / LU is a comonad of laziness

PLT
unpointed

nonstrict homs

∂PLT
pointed

strict homs

L

U

⊣

8Dockins ITP 2014

General recursion

Problem 1:	there	is	no	fixpoint	operator	in	PLT	that	
applies to all domains.

Suppose A,B:PLT and let f:A → (B ⇒	B)	be	a	PLT-hom.		We	cannot	
apply	Kleene’s	fixpoint	theorem	because	B	might	not	have	a	least	
element.

9Dockins ITP 2014

General recursion

Problem 1:	there	is	no	fixpoint	operator	in	PLT	that	
applies to all domains.

Suppose A,B:PLT and let f:A → (B ⇒	B)	be	a	PLT-hom.		We	cannot	
apply	Kleene’s	fixpoint	theorem	beacuse	B	might	not	have	a	least	
element.

Problem 2:	the	fixpoint	operator	in	∂PLT is trivial.

Suppose A,B:∂PLT and let f:A → (B ⊸ B) be a ∂PLT-hom.	The	least	
fixpoint	of	f	exists;	but	it	is	always	⊥ because f represents a strict
function.

10Dockins ITP 2014

General recursion

Fact: a domain A:PLT has a least element iff A ≅ U(B)
for some B:∂PLT.

Solution: fixpoints	in	PLT,	but	only	for	∂PLT objects.

Let A:PLT, B:∂PLT, f : A →	(U(B) ⇒ U(B)).

Then	we	can	construct	μf	:	A	→	U(B),	the	least	fixpoint	of	f.		In	
particular,	μf	is	the	least	hom	such	that:

	 μf	=	apply	∘	<	f,	μf	>	

11Dockins ITP 2014

Why constructive domains?

• Philosophy: a theory of computation ought to have a constructive
foundation.

• Challenge: every “useful” mathematical theory has some
constructive counterpart which may be discovered if we expend
sufficient	effort.

• Pragmatics: a Coq library relying on no axioms can be used in any
axiomatic extension of Coq, even, say, anticlassical extensions, or
ones that refute axiom K (HoTT). The basic ideas should also be
quite portable to other type theories.

12Dockins ITP 2014

Enumerable sets
Let	<A, ≈>	be	a	setoid.

eset A ≡ N → option A
x ∈	S	≡	∃n	y.	S	n	=	Some	y	∧	x	≈	y

empty : eset A
single : A → eset A

union : eset A (eset A) → eset A
image : (A → B) → eset A → eset B
union2 : eset A → eset A → eset A

intersect2 : eset A → eset A → eset A *

esubset P S : semidec P → ∑T,	x	∈	T	⟷	x	∈	S	∧ P	x
indefinite_description	S	:	(∃x,	x	∈	S) → (∑x,	x	∈	S)

*when	A	has	a	decidable	setoid	equality

13Dockins ITP 2014

PLT = Effective Plotkin Orders

PLT objecsts are effective Plotkin orders, which have:
 an enumerable set of elements
 a decidable preorder relation
 certain closure properties based on minimal upper bounds.

PLT morphisms are enumerable approximable relations:
 must be enumerable as a set of pairs
 same as approx. relations as for Scott information systems

PLT ≅	effective	profinite	domains	via	ideal	completions.

See	the	paper	for	definitions	and	details...

14Dockins ITP 2014

An Example

CBV	λ-calculus	with	booleans	and	fixpoints
soundness and adequacy

http://rwd.rdockins.name/domains/html/st_lam_fix.html

15Dockins ITP 2014

Ongoing	and	Future	Work

16Dockins ITP 2014

Ongoing work: continuous domains

Continuous domains are more general than algebraic domains.

Every continuous DCPO arises as a retract of an algebraic DCPO.

The category of retracts of PLT (∂PLT)	is	a	well-behaved	cartesian	
(monoidal) closed category called cPLT (c∂PLT).

The	objects	of	cPLT	can	be	defined	as	<A,	r>	where	r:	A→A is an
idempotent PLT hom. This lets us reuse many constructions from
PLT with very little work; likewise for c∂PLT.

Still to do: bilimits and powerdomains (no problems expected).

17Dockins ITP 2014

Ongoing work: exact real computation

A continuous (but not algebraic!) domain for exact real computation
can	be	defined	via	a	basis	consisting	of	closed	intervals	with	rational	
endpoints.

IR	=	Real	Interval	Domain

Domains	for	real	numbers	lets	us	define	semantics	for	languages	
that	deal	with	constructive	real	computations	as	first-class	entities.

18Dockins ITP 2014

Future work: invariant relations

Recursively-defined	domains	are	difficult	to	reason	about.	

Pitts’	invariant relations	allow	one	to	define	useful	logical	relations	
and induction/coinduction principles on recursive domains.

Benton et al. showed how these can be useful in formal proofs, e.g.,
for	defining	logical	relations	on	untyped	λ-calculi.

Unfortunately	the	definitions	I	want	to	develop	this	theory	cause	
universe	inconsistencies	I	don’t	understand...

☹
Perhaps universe polymorphism will save the day.

19Dockins ITP 2014

Future work: polymorphism

The	domain-theoretic	semantics	of	polymorphism	requires	
sophisticated	category-theory	(indexed	category	theory	and/or	
Grothendieck	fibrations).

I	would	like	to	formalize	a	suitable	category	of	domains	satisfying	
parametricity	properties,	like	those	in	R.E.	Møgelberg’s	PhD	thesis.	

The feasibility of formalizing this work is (to me) an open question.

20Dockins ITP 2014

Thank you!

http://rwd.rdockins.name/domains/

21Dockins ITP 2014

Lifting and adjointness

PLT
(unpointed)

∂PLT
(pointed)

L

U

⊣

The forgetful functor U from ∂PLT to PLT is left adjoint to the lifting
functor L from PLT to ∂PLT. This adjunction is monoidal.

We	thus	get	a	monad	UL	in	PLT:	a	monad	of	general	recursion.	

Likewise, we get a comonad LU in ∂PLT: a comonad of lazyness.

By passing through this adjunction, we can import constructions in
one category into the other, at the cost of some “extra” bottoms.

22Dockins ITP 2014

Recursive domains

We	get	recursive	domains	from	any	continuous	functor	in	∂PLT:

• Lazy Binary Trees: T ≅ L(disc(1) + (U(T) × U(T)))

• Strict Binary Trees: S ≅	flat(1)	⊕	(S	⊗	S)

• Untyped eager lambdas: D ≅ (D ⊸	D)

• Untyped CBV lambdas: E ≅ LU(E ⊸	E)

• Untyped CBN lambdas: F ≅ L(U(F) ⇒ U(F)) ≅ LU(LU(F) ⊸ F)

All the operators provided (sums, products, functions,
powerdomains, L, U) are continuous, and so can be used to build
recursive domains.

23Dockins ITP 2014

Worked examples

The formal development contains worked examples that prove
soundness	and	adequacy	(WRT	standard	big-step	operational	
semantics) for the following systems:

• Simply-typed,	normalizing	SKI	calculus	with	booleans

• Simply-typed,	CBN	SKI+Y	calculus	with	booleans

• Simply-typed,	normalizing,	named	λ-calculus	with	booleans

• Simply-typed,	CBN,	named,	λ-calculus	with	booleans	and	fixpoints

24Dockins ITP 2014

Future work: semantics of core Haskell
One of the original goals for starting down this path.

I’d	like	a	semantics	of	core	Haskell	that	smoothly	accounts	for	
even some of the tricky corners, especially how strict and nonstrict
computation interact:

• The seq primitive and strictness annotations
• Unboxed types and unboxed functions
• Why	is	(a,b,c)	not	isomorphic	to	(a,(b,c))?	
• Why	does	the	function	space	have	an	“extra”	bottom?

A core calculus with two base kinds (one for pointed and one
for unpointed types) representing PLT and ∂PLT provides some
answers:	I’m	still	working	out	the	details.

