
1Dockins ITP 2014

Effective, Formalized
Domain Theory in Coq

Robert Dockins

http://rwd.rdockins.name/domains/

2Dockins ITP 2014

Summary of results

PLT
(unpointed)

∂PLT
(pointed)

L

U

×	 	 Product
+	 	 Disjoint Sum
⇒	 	 Function Space
℘	 	 Powerdomains
disc(X)	 Finite discrete domains
UL		 Lifting monad

⊗	 	 Smash Product
⊕	 	 Coalesced Sum
⊸	 	 Strict Function Space
℘
⊥
	 	 Powerdomains

flat(X)	 Countable flat domains
μF	 	 Recursive Domains
LU		 Lifting comonad

⊣

Pointed = having a least element, ⊥, representing nontermination
Unpointed = not necessarily having a least element

3Dockins ITP 2014

What is novel?

•	Theory of algebraic domains formalized in Coq		
		 Previous efforts formalize only CPOs in Coq and
		 lack some standard constructions, like powerdomains

•	Fully constructive presentation of profinite domains
		 The library and examples are developed in the
		 constructive metalogic of Coq using no axioms

•	Two category setup (PLT/∂PLT) differs from textbook
domain theory; provides some advantages

4Dockins ITP 2014

The competition: in Coq

Benton, Kennedy, Varming. “Some Domain Theory
and Denotational Semantics in Coq.” TPHOLS 2009.

Constructive, CPOs with some of the usual constructions, including
recursive CPOs.

They report difficulty defining ⊗, and do not define powerdomains.

Coinductive ε-streams used to define lifted domains.

Their examples implicitly use axiom K via the dependent
destruction tactic; functional extensionality is also assumed.

5Dockins ITP 2014

The competition: in Isabelle/HOL

Brian Huffman. “A Purely Definitional Universal
Domain.” TPHOLS 2009.

Formalized profinite domains in Isabelle/HOL, based on the
construction of a universal domain. Now integrated into HOLCF.

HOL is a classical logic with strong choice principles.

Different proof strategy: Huffman defines a particular universal
domain and uses it to get other domains of interest.

I instead directly define the category PLT and take colimits to build
recursive domains.

6Dockins ITP 2014

Why two categories?

Textbook presentations work with pointed domains and nonstrict
continuous functions.

•	This allows a general fixpoint operator.

•	But, this category has strange properties, e.g. no coproducts.

DOMAIN
pointed

nonstrict homs

7Dockins ITP 2014

Why two categories?

•	Accurate semantics for normalizing calculi in PLT

•	Can handle “unboxed” types and total functions

•	Both categories have coproducts

•	PLT is cartesian closed / ∂PLT is symmetric monoidal closed

•	UL is a monad of recursion / LU is a comonad of laziness

PLT
unpointed

nonstrict homs

∂PLT
pointed

strict homs

L

U

⊣

8Dockins ITP 2014

General recursion

Problem 1: there is no fixpoint operator in PLT that
applies to all domains.

Suppose A,B:PLT and let f:A → (B ⇒ B) be a PLT-hom. We cannot
apply Kleene’s fixpoint theorem because B might not have a least
element.

9Dockins ITP 2014

General recursion

Problem 1: there is no fixpoint operator in PLT that
applies to all domains.

Suppose A,B:PLT and let f:A → (B ⇒ B) be a PLT-hom. We cannot
apply Kleene’s fixpoint theorem beacuse B might not have a least
element.

Problem 2: the fixpoint operator in ∂PLT is trivial.

Suppose A,B:∂PLT and let f:A → (B ⊸ B) be a ∂PLT-hom. The least
fixpoint of f exists; but it is always ⊥ because f represents a strict
function.

10Dockins ITP 2014

General recursion

Fact: a domain A:PLT has a least element iff A ≅ U(B)
for some B:∂PLT.

Solution: fixpoints in PLT, but only for ∂PLT objects.

Let A:PLT, B:∂PLT, f : A → (U(B) ⇒ U(B)).

Then we can construct μf : A → U(B), the least fixpoint of f. In
particular, μf is the least hom such that:

	 μf = apply ∘ < f, μf >

11Dockins ITP 2014

Why constructive domains?

•	Philosophy: a theory of computation ought to have a constructive
foundation.

•	Challenge: every “useful” mathematical theory has some
constructive counterpart which may be discovered if we expend
sufficient effort.

•	Pragmatics: a Coq library relying on no axioms can be used in any
axiomatic extension of Coq, even, say, anticlassical extensions, or
ones that refute axiom K (HoTT). The basic ideas should also be
quite portable to other type theories.

12Dockins ITP 2014

Enumerable sets
Let <A, ≈> be a setoid.

eset A ≡ N → option A
x ∈ S ≡ ∃n y. S n = Some y ∧ x ≈ y

empty : eset A
single : A → eset A

union : eset A (eset A) → eset A
image : (A → B) → eset A → eset B
union2 : eset A → eset A → eset A

intersect2 : eset A → eset A → eset A *

esubset P S : semidec P → ∑T, x ∈ T ⟷ x ∈ S ∧ P x
indefinite_description S : (∃x, x ∈ S) → (∑x, x ∈ S)

*when A has a decidable setoid equality

13Dockins ITP 2014

PLT = Effective Plotkin Orders

PLT objecsts are effective Plotkin orders, which have:
		 an enumerable set of elements
		 a decidable preorder relation
		 certain closure properties based on minimal upper bounds.

PLT morphisms are enumerable approximable relations:
		 must be enumerable as a set of pairs
		 same as approx. relations as for Scott information systems

PLT ≅ effective profinite domains via ideal completions.

See the paper for definitions and details...

14Dockins ITP 2014

An Example

CBV λ-calculus with booleans and fixpoints
soundness and adequacy

http://rwd.rdockins.name/domains/html/st_lam_fix.html

15Dockins ITP 2014

Ongoing and Future Work

16Dockins ITP 2014

Ongoing work: continuous domains

Continuous domains are more general than algebraic domains.

Every continuous DCPO arises as a retract of an algebraic DCPO.

The category of retracts of PLT (∂PLT) is a well-behaved cartesian
(monoidal) closed category called cPLT (c∂PLT).

The objects of cPLT can be defined as <A, r> where r: A→A is an
idempotent PLT hom. This lets us reuse many constructions from
PLT with very little work; likewise for c∂PLT.

Still to do: bilimits and powerdomains (no problems expected).

17Dockins ITP 2014

Ongoing work: exact real computation

A continuous (but not algebraic!) domain for exact real computation
can be defined via a basis consisting of closed intervals with rational
endpoints.

IR = Real Interval Domain

Domains for real numbers lets us define semantics for languages
that deal with constructive real computations as first-class entities.

18Dockins ITP 2014

Future work: invariant relations

Recursively-defined domains are difficult to reason about.

Pitts’ invariant relations allow one to define useful logical relations
and induction/coinduction principles on recursive domains.

Benton et al. showed how these can be useful in formal proofs, e.g.,
for defining logical relations on untyped λ-calculi.

Unfortunately the definitions I want to develop this theory cause
universe inconsistencies I don’t understand...

☹
Perhaps universe polymorphism will save the day.

19Dockins ITP 2014

Future work: polymorphism

The domain-theoretic semantics of polymorphism requires
sophisticated category-theory (indexed category theory and/or
Grothendieck fibrations).

I would like to formalize a suitable category of domains satisfying
parametricity properties, like those in R.E. Møgelberg’s PhD thesis.

The feasibility of formalizing this work is (to me) an open question.

20Dockins ITP 2014

Thank you!

http://rwd.rdockins.name/domains/

21Dockins ITP 2014

Lifting and adjointness

PLT
(unpointed)

∂PLT
(pointed)

L

U

⊣

The forgetful functor U from ∂PLT to PLT is left adjoint to the lifting
functor L from PLT to ∂PLT. This adjunction is monoidal.

We thus get a monad UL in PLT: a monad of general recursion.

Likewise, we get a comonad LU in ∂PLT: a comonad of lazyness.

By passing through this adjunction, we can import constructions in
one category into the other, at the cost of some “extra” bottoms.

22Dockins ITP 2014

Recursive domains

We get recursive domains from any continuous functor in ∂PLT:

•	Lazy Binary Trees: T ≅ L(disc(1) + (U(T) × U(T)))

•	Strict Binary Trees: S ≅ flat(1) ⊕ (S ⊗ S)

•	Untyped eager lambdas: D ≅ (D ⊸ D)

•	Untyped CBV lambdas: E ≅ LU(E ⊸ E)

•	Untyped CBN lambdas: F ≅ L(U(F) ⇒ U(F)) ≅ LU(LU(F) ⊸ F)

All the operators provided (sums, products, functions,
powerdomains, L, U) are continuous, and so can be used to build
recursive domains.

23Dockins ITP 2014

Worked examples

The formal development contains worked examples that prove
soundness and adequacy (WRT standard big-step operational
semantics) for the following systems:

•	Simply-typed, normalizing SKI calculus with booleans

•	Simply-typed, CBN SKI+Y calculus with booleans

•	Simply-typed, normalizing, named λ-calculus with booleans

•	Simply-typed, CBN, named, λ-calculus with booleans and fixpoints

24Dockins ITP 2014

Future work: semantics of core Haskell
One of the original goals for starting down this path.

I’d like a semantics of core Haskell that smoothly accounts for
even some of the tricky corners, especially how strict and nonstrict
computation interact:

•	The seq primitive and strictness annotations
•	Unboxed types and unboxed functions
•	Why is (a,b,c) not isomorphic to (a,(b,c))?
•	Why does the function space have an “extra” bottom?

A core calculus with two base kinds (one for pointed and one
for unpointed types) representing PLT and ∂PLT provides some
answers: I’m still working out the details.

