
Are we there yet?
20 Years of industrial theorem proving with Spark

July 15, 2014

ITP 2014

Florian Schanda
florian.schanda@altran.com

Rod Chapman
roderick.chapman@gmail.com

1



Apologies from Rod

Sorry!

Rod has sadly left the company at the end of May - Flo will be
giving the talk on his behalf.

2



Introduction

Purpose and structure of this talk:

Briefly cover our experiences over the last 20 years

Swap between three broad groups:

Project Significant Spark projects
Feedback How user feedback changed the tools

Open Interactions with free software

3



The Early Days
1987

SPADE developed at University of Southampton

Intermediate language “FDL”
Verification condition generator
Checker (interactive proof tool, written in PROLOG)

Followed by SPARK for Ada’83

“Examiner” to produce FDL
Checker
Simplifier

4



The Early Days
1987

SPADE developed at University of Southampton

Intermediate language “FDL”
Verification condition generator
Checker (interactive proof tool, written in PROLOG)

Followed by SPARK for Ada’83

“Examiner” to produce FDL
Checker
Simplifier

4



Project: SHOLIS
1995

Assists naval crew with the safe operation of helicopters at sea

Shows safety limits on wind vectors, ship’s roll and pitch, etc.

5



Project: SHOLIS
1995

No operating system and no COTS libraries of any kind

27 kloc (logical) of SPARK code, 54 kloc of information-flow
contracts, and 29 kloc of proof contracts

9000 VCs

75.5% proven automatically by the Simplifier

2200 remaining VCs proved manually using the Checker

6



Project: C130J
1995

Lockheed-Martin C130J is the latest generation of the
“Hercules” transport aircraft

Mission Computer implemented in Spark, and was subject to
a large verification effort in the UK

7



Project: C130J
1995

Originally started as Ada code, but was converted to Spark

Only flow analysis and testing to meet DO-178B Level A

This was already very successful (used only 20% of testing
budget)

Later, UK MoD demanded proof to meet DEFSTAN 00-55

Original spec (in Parnas-Tables) converted to pre- and
post-conditions

Proof effort was completed successfully (sorry – no stats
available!)

8



Feedback: SHOLIS and C130J
2002

Automatic proof using Simplifier saved a lot of time. Special
tuning for common Spark VCs was added:

Unwrapping and instantiation of ∀ conclusions, in particular
those for array type-safety
Unsigned wraparound arithmetic - very common in low-level
device drivers, ring buffers, cryptography, etc.
Basic interval arithmetic for integer expressions

9



Feedback: SHOLIS and C130J
2002

We noticed that the “proof friendliness” of the code has by
far the largest impact

This correlates with general “good ideas”: simplicity, low
information-flow coupling, good use of abstraction

We started to set goals for projects to hit a particular level of
automatic proof (95% automatically discharged)

10



Project: Tokeneer
2003 – 2008

NSA-funded demonstrator of high-security software
engineering

Developed to meet Common Criteria EAL5

System specification and security properties in Z, and
implementation in Spark

Small system (and budget), about 10 kloc logical, producing
2623 VCs

2513 of those were proven automatically (95.8 %), with only
43 left to the interactive proof and 67 discharged by review

Open source since 2008, including all project documentation,
plans, etc. Go and download!

11



Feedback: User rules
2006

Replaying checker proofs is very fragile

Looking at VCs and deciding “seems OK” is not very formal,
and is also fragile

We added support for user-supplied axioms for the Simplifier

12



Feedback: User rules
2006

Pros:

Easy to use

Rules are much less fragile

Can be formally reviewed without understanding the code

Can be checked by tools (Checker, Victor and Riposte)

Cons:

Opens the door to unsound proofs

13



Feedback: User rules
2006

Pros:

Easy to use

Rules are much less fragile

Can be formally reviewed without understanding the code

Can be checked by tools (Checker, Victor and Riposte)

Cons:

Opens the door to unsound proofs

13



Project: iFACTS
2006 → today

iFACTS augments tools for en-route air-traffic controllers in
the UK

Provides electronic flight-strip management, trajectory
prediction and medium-term conflict detection

14



Project: iFACTS
2006 → today

In full operational service since 2011

Formal specification in Z

Written in Spark – 250 kloc

153,000 VCs of which 98.76% are discharged automatically
(user rules and review for the rest)

15



Feedback: Parallelisation
2007

Cheap, multi-core CPUs are now widely available.

We noticed that all VCs produced by Spark are independent
(not part of the original design, but clearly a good idea
anyway)

Obvious improvement was to invoke more than one instance
of the Simplifier

If you sort the VCs based on file size, you get a near-optimal
linear speedup

Results are dramatic: difference between a 12 hour and 3 hour
proof is significant (overnight → during the day)

16



Open: AdaCore Partnership
2009

All Spark tools released under the GNU GPL (version 3)

This was a huge step for us (closed code base since 1987)

New Spark tools are jointly developed by Altran and AdaCore

17



Open: Victor
2009

Paul Jackson (University of Edinburgh)

Simplifier (a rewrite engine) has trouble with some “obvious”
proofs:

a ∨ b =⇒ b ∨ a

Translates FDL VCs to SMTLIB (and runs an SMT solver, for
example Alt-Ergo, CVC4, etc.)

Now part of the official Spark release

18



Open: Riposte
2011

Martin Brain (University of Oxford)

Failed proof attempts might be real bugs, or incompleteness in
prover – determining which costs time (e)

Transforms FDL VCs into answer-set instances (and runs an
answer-set solver, for example clasp) and provides
counter-examples

Now part of the official Spark release

19



Project: SPARKSkein
2010

Common misconception “Ada is slower than C because of all
this safety stuff...”

Implementation of Skein (a contender for SHA3, sadly not the
winner) in Spark

Clean implementation (for example instead of macros, we just
use normal procedures)

After some improvements in the gcc backend, the C and
Spark implementations are equally fast

20



Project: SPARKSkein
2010

Absence of RTE proved: originally 23 of 367 VCs proved via
Checker, now 100% is proved automatically using Victor or
Riposte

Proof was difficult: non-linear arithmetic and modular types

We found an arithmetic-overflow bug in the C reference
implementation (since the Spark implementation closely
mirrored it)

Released as free software (GPLv3)

21



Feedback: Cachesimp
2012

Time used to do proof is not just a number, it has significant
impact on how the tools are used. For example:

2 weeks You structure your project around this. Proof failures
are extremely costly and are major setbacks.

1 day You structure your workday around this. Proof
failures may result in delayed delivery.

10 minutes You just have another cup of tea. Proof failures are
detected so early, they never become an issue.

22



Feedback: Cachesimp
2012

Proof on iFACTS used to take 3 hours on a modern
GNU/Linux computer, regardless of size of code change

Cachesimp is a simple tool (≈ 250 lines of code) that hashes a
VC and queries a central server if the answer is already known

Memcached is effectively a hash table with a simple text
protocol; originally implemented and used by LiveJournal to
cache queries

Incremental (previous answers cached) + distributed (many
clients can connect simultaneously)

Average 29-fold speedup, most code changes can now be fully
analyzed in less than 30 minutes

23



Open: Isabelle
2011

Stefan Berghofer (secunet)

Isabelle/HOL plugin to read Spark VCs

Spark always allowed proof functions, and this is an elegant
and formal way to give them meaning

Used to implement and formally verify a BigNum library and a
cryptography library

Part of the official Isabelle release

Also free software (both the plugin, and the above libraries)

24



Project: Muen
2013

Reto Buerki and Adrian-Ken Rueegsegger (both HSR –
University of Applied Sciences Rapperswil)

Separation kernel for Intel x86/64 platform

Written in Spark (2463 logical), and assembly (256 lines)

Proof of absence of RTE, all 666 VCs are discharged
automatically

Again, free software (GPLv3)

25



The Future: Spark2014

Spark2014 is a complete re-design:

Based on the GNAT front-end (the gcc Ada front-end)

WhyML as the intermediate language (instead of FDL)

SMT solvers (CVC4, Alt-Ergo, etc.) as the automatic proof
tools (instead of Simplifier)

Support for Isabelle, Coq, etc. (instead of Checker)

Still free software (GPLv3)

26



The Future: Spark2014

Not just the tooling is different:

Larger subset of Ada

Contracts are part of the language, not “special comments”

Executable contracts allow combination of test and proof: this
will help with DO-178C

Sound IEEE-754 floating point support (instead of reals)

27



Conclusion

iFACTS

Sp
ar
k’
83

1987

SH
O
LI
S
&
C1
30
J

1996

Sp
ar
k’
95

1997

U
se
r
Ru
le
s

2006

SP
A
RK

Si
m
p

2007

To
ke
ne
er

2008

G
PL

2009

SP
AR
K
Sk
ei
n

2010

V
ic
to
r,
Ri
po
st
e

Is
ab
el
le

2011

M
ue
n

2013

Sp
ar
k2
01
4

2014

Spark has been used for a long time in the industry

ITP is used for groundbreaking work, but automatic provers
are always in demand

Free software - http://spark-2014.org

Thank you for listening - any questions?

28

http://spark-2014.org


Conclusion

iFACTS

Sp
ar
k’
83

1987

SH
O
LI
S
&
C1
30
J

1996

Sp
ar
k’
95

1997

U
se
r
Ru
le
s

2006

SP
A
RK

Si
m
p

2007

To
ke
ne
er

2008

G
PL

2009

SP
AR
K
Sk
ei
n

2010

V
ic
to
r,
Ri
po
st
e

Is
ab
el
le

2011

M
ue
n

2013

Sp
ar
k2
01
4

2014

Spark has been used for a long time in the industry

ITP is used for groundbreaking work, but automatic provers
are always in demand

Free software - http://spark-2014.org

Thank you for listening - any questions?

28

http://spark-2014.org


29


	Introduction
	Early Days
	Project: SHOLIS
	Project: C130J
	Feedback: Simplifier and VCG
	Project: Tokeneer
	Feedback: User rules
	Project: iFACTS
	Feedback: Parallelisation
	Open: Free Software and AdaCore
	Open: SMT and Counter-examples
	Project: SPARKSkein
	Feedback: Caching
	Open: Interactive Provers
	Project: Muen
	Future

