
1

Introduction Implicational Rewriting Target Rewriting Conclusion

Implicational Rewriting Tactics

Vincent Aravantinos, Sofiene Tahar

vincent.aravantinos@fortiss.org tahar@ece.concordia.ca

http://www.fortiss.org/en http://hvg.ece.concordia.ca

Munich, Germany Montréal, Canada

July 17th, 2014

2

Introduction Implicational Rewriting Target Rewriting Conclusion

Outline

1 Introduction

2 Implicational Rewriting

3 Target Rewriting

4 Conclusion

3

Introduction Implicational Rewriting Target Rewriting Conclusion

This work in one slide

Overall objective: new tactics to increase automation

More precisely: we identify some situations where we usually
need to introduce a subgoal manually

And we define tactics to automatize this subgoal introduction

Main benefit: time saved

4

Introduction Implicational Rewriting Target Rewriting Conclusion

A concrete example

Objective:

Prove Cauchy-Schwarz inequality

For any complex inner-space

In HOL Light

Initial goal (Cauchy-Schwarz)

∀s 〈.|.〉 x y .
isInnerSpace (s, 〈.|.〉) ∧ x ∈ s ∧ y ∈ s
⇒ norm(〈x |y〉)2

≤ realOfComplex(〈x |x〉).realOfComplex(〈y |y〉)

5

Introduction Implicational Rewriting Target Rewriting Conclusion

A concrete example

Proof without our tactics (1/3):
e(REPEAT STRIP_TAC

THEN Pa.SUBGOAL_THEN

"norm (inprod x y) pow 2 <=

real_of_complex (inprod x x * (inprod (inprod x y / inprod x x % x)

(inprod x y / inprod x x % x) + inprod (y - inprod x y

/ inprod x x % x) (y - inprod x y / inprod x x % x)))"

ASSUME_TAC

THENL [

Pa.SUBGOAL_THEN

"norm (inprod x y) pow 2 <=

real_of_complex (Cx (norm (inprod x y) pow 2) * (inprod x x * inprod x x)

* Cx (inv (norm (inprod x x) pow 2)) + inprod x x

* inprod (y - (inprod x y * inv (inprod x x)) % x) (y - (inprod x y * inv (inprod x x)) % x))"

ASSUME_TAC

THENL [

Pa.SUBGOAL_THEN

"norm (inprod x y) pow 2 = norm (inprod x y) pow 2

* norm (inprod x x) pow 2 * inv (norm (inprod x x) pow 2)"

ASSUME_TAC

THENL [

Pa.ASM_CASES_TAC "(norm (inprod x x) pow 2 = &0)"

THENL [

POP_ASSUM MP_TAC THEN ASM_SIMP_TAC[REAL_MUL_LZERO;REAL_MUL_RZERO]

THEN SIMP_TAC[REAL_POW_EQ_0]

THEN ASM_MESON_TAC[COMPLEX_NORM_ZERO;INSPACE_ZERO_EQ;INSPACE_LZERO];

ASM_SIMP_TAC[REAL_MUL_RINV;REAL_MUL_RID];

];

Pa.SUBGOAL_THEN

"real (Cx (norm (inprod x y) pow 2)) /\ real (inprod x x)

/\ real (Cx (inv (norm (inprod x x) pow 2)))

6

Introduction Implicational Rewriting Target Rewriting Conclusion

A concrete example

Proof without our tactics (2/3):
/\ real (Cx (norm (inv (inprod x x) pow 2)))

/\ real (inprod (y - (inprod x y * inv

(inprod x x)) % x) (y - (inprod x y * inv (inprod x x)) % x))

/\ real (Cx (norm (inprod x y) pow 2) * (inprod x x * inprod x x) *

Cx (inv (norm (inprod x x) pow 2)))

/\ real (inprod x x * inprod (y - (inprod x y * inv (inprod x x)) % x)

(y - (inprod x y * inv (inprod x x)) % x))

/\ real_of_complex (inprod x x) = norm (inprod x x)

/\ real_of_complex (inprod (y - (inprod x y * inv (inprod x x)) % x)

(y - (inprod x y * inv (inprod x x)) % x))

= norm (inprod (y - (inprod x y * inv (inprod x x)) % x)

(y - (inprod x y * inv (inprod x x)) % x))"

STRIP_ASSUME_TAC

THENL [

ASM_MESON_TAC[REAL_CX;INSPACE_SELF_REAL;CFUN_SUBSPACE_SUB;

CFUN_SUBSPACE_SMUL;INSPACE_IS_SUBSPACE;REAL_MUL;INSPACE_SELF_NORM];

ASM_SIMP_TAC[REAL_OF_COMPLEX_ADD;REAL_OF_COMPLEX_MUL;REAL_MUL;REAL_OF_COMPLEX_CX;GSYM REAL_POW_2]

THEN MATCH_MP_TAC (REAL_ARITH ‘x = y /\ &0 <= z ==> x <= y + z‘)

THEN ASSUM_LIST (REWRITE_TAC o map GSYM)

THEN MATCH_MP_TAC REAL_LE_MUL THEN ASM_REWRITE_TAC[NORM_POS_LE]

];

];

ASM_REWRITE_TAC[complex_div;COMPLEX_ADD_LDISTRIB]

THEN Pa.SUBGOAL_THEN "(inprod x y * inv (inprod x x)) % x IN s" ASSUME_TAC

THENL [

ASM_MESON_TAC[INSPACE_IS_SUBSPACE;CFUN_SUBSPACE_SMUL];

Pa.SUBGOAL_THEN "inprod ((inprod x y * inv (inprod x x)) % x) ((inprod x y * inv (inprod x x)) % x)

= cnj (inprod x y * inv (inprod x x)) * (inprod x y * inv (inprod x x)) * inprod x x"

(fun x -> REWRITE_TAC[x])

THENL [

ASM_MESON_TAC[INSPACE_LSMUL;INSPACE_RSMUL];

7

Introduction Implicational Rewriting Target Rewriting Conclusion

A concrete example

Proof without our tactics (3/3):

ASM_REWRITE_TAC[CNJ_MUL;CNJ_INV;

Pa.COMPLEX_FIELD "x * (cnj y * inv z) * (y * inv x) * x = (y * cnj y) * (x * x) * (inv (x * z))";

COMPLEX_MUL_CNJ;GSYM CX_POW;GSYM CX_INV]

];

];

];

POP_ASSUM MP_TAC

THEN Pa.SUBGOAL_THEN

"(inprod x y / inprod x x % x) IN s

/\ (y - inprod x y / inprod x x % x) IN s

/\ are_orthogonal (s,inprod) (inprod x y / inprod x x % x) (y - inprod x y / inprod x x % x)"

STRIP_ASSUME_TAC

THENL [

ASM_MESON_TAC[INSPACE_IS_SUBSPACE;CFUN_SUBSPACE_SMUL;CFUN_SUBSPACE_SUB;

REWRITE_RULE[LET_DEFS]ARE_ORTHOGONAL_DECOMPOSITION;ARE_ORTHOGONAL_LSCALAR];

ASM_MESON_TAC[];

]

];

→ Proof is 3 slides long
→ Most goals are not meaningful

8

Introduction Implicational Rewriting Target Rewriting Conclusion

A concrete example

Proof with our tactics:
(IMP_REWRITE_TAC[GSYM REAL_OF_COMPLEX_MUL;INSPACE_SELF_REAL]

THEN TARGET_REWRITE_TAC[REWRITE_RULE[LET_DEFS] ARE_ORTHOGONAL_DECOMPOSITION]

ARE_ORTHOGONAL_INSPACE_SELF_ADD

THEN SEQ_IMP_REWRITE_TAC[REWRITE_RULE[LET_DEFS] ARE_ORTHOGONAL_DECOMPOSITION;

ARE_ORTHOGONAL_LSCALAR;CFUN_SUBSPACE_SUB;INSPACE_RSMUL;CFUN_SUBSPACE_SMUL;

INSPACE_IS_SUBSPACE;INSPACE_LSMUL;COMPLEX_ADD_LDISTRIB]

THEN REWRITE_TAC[complex_div;CNJ_MUL;CNJ_INV;COMPLEX_MUL_CNJ;GSYM CX_POW;

Pa.COMPLEX_FIELD "x*(y*inv x)*(z*inv t)*x = (y*z)*((x*x)*inv(x*t))";

GSYM CX_INV]

THEN IMP_REWRITE_TAC[REAL_OF_COMPLEX_ADD;REAL_CX;REAL_OF_COMPLEX_MUL;

REAL_OF_COMPLEX_CX;REAL_MUL;INSPACE_SELF_REAL;CFUN_SUBSPACE_SUB;

CFUN_SUBSPACE_SMUL;INSPACE_IS_SUBSPACE;GSYM INSPACE_SELF_NORM;

GSYM REAL_POW_2;REAL_ARITH ‘x = y /\ &0 <= z ==> x <= y + z‘;REAL_LE_MUL;

NORM_POS_LE]

THEN CASE_REWRITE_TAC REAL_MUL_RINV

THEN IMP_REWRITE_TAC[REAL_MUL_RID;REAL_MUL_LZERO;REAL_MUL_RZERO;

REAL_POW_EQ_0;COMPLEX_NORM_ZERO;INSPACE_ZERO_EQ;INSPACE_LZERO]);;

→ Much shorter
→ Get rids of subgoals previously manually provided

Note:

We do not want to get rid of meaningful subgoals.
Just the ones introduced by the user because the thm prover
does not provide him/her with any other mean to go on with
the proof

9

Introduction Implicational Rewriting Target Rewriting Conclusion

Outline

1 Introduction

2 Implicational Rewriting

3 Target Rewriting

4 Conclusion

10

Introduction Implicational Rewriting Target Rewriting Conclusion

Overview

Description by refinement from usual rewriting to implicational
rewriting:

1 Usual rewriting

2 Conditional rewriting

3 Dependent rewriting

4 Implicational rewriting

11

Introduction Implicational Rewriting Target Rewriting Conclusion

Usual rewriting

Given:

A goal g

A theorem of the form ` l = r such that g contains lσ for
some substitution σ

(let’s focus on simple cases: one match only, r variables appear in l variables. . .)

Generate:

A goal g ′ s.t. lσ is turned into rσ

Problem:

Many theorems actually have the form ` P ⇒ l = r

⇒ Conditional rewriting

11

Introduction Implicational Rewriting Target Rewriting Conclusion

Usual rewriting

Given:

A goal g

A theorem of the form ` l = r such that g contains lσ for
some substitution σ

(let’s focus on simple cases: one match only, r variables appear in l variables. . .)

Generate:

A goal g ′ s.t. lσ is turned into rσ

Problem:

Many theorems actually have the form ` P ⇒ l = r

⇒ Conditional rewriting

12

Introduction Implicational Rewriting Target Rewriting Conclusion

Conditional rewriting

Given:

A goal g
A theorem of the form P ⇒ l = r such that g contains lσ for
some substitution σ

Generate:

A goal g ′ s.t. lσ is turned into rσ
If the simplifier manages to prove Pσ

Problem: Often the simplifier cannot prove Pσ

Either because Pσ too complex
Or because simplifier missing theorems
Or because Pσ is simply false

→ then problem = no feedback (tactic fails or does not progress)
→ time-consuming to find out the required theorems or that the
condition cannot be proved

⇒ Dependent rewriting

12

Introduction Implicational Rewriting Target Rewriting Conclusion

Conditional rewriting

Given:

A goal g
A theorem of the form P ⇒ l = r such that g contains lσ for
some substitution σ

Generate:

A goal g ′ s.t. lσ is turned into rσ
If the simplifier manages to prove Pσ

Problem: Often the simplifier cannot prove Pσ

Either because Pσ too complex
Or because simplifier missing theorems
Or because Pσ is simply false

→ then problem = no feedback (tactic fails or does not progress)
→ time-consuming to find out the required theorems or that the
condition cannot be proved

⇒ Dependent rewriting

13

Introduction Implicational Rewriting Target Rewriting Conclusion

Dependent rewriting
(naming used after Homeier in HOL4 - used in many places, never really named)

Given: (same input as conditional rewriting)

A goal g
A theorem of the form P ⇒ l = r such that g contains lσ for
some substitution σ

Generate:

A goal Pσ ∧ g ′ s.t. lσ is turned into rσ in g ′

Variant: generate g ′ and Pσ as two separate goals

Still some problems. Example:

Goal: ∀x .(big term implying x 6= 0)⇒ x
x ∗ y = y

Apply dependent rewriting with ` x 6= 0⇒ x
x = 1

New goal: x 6= 0 ∧ ∀x .(big term impl . x 6= 0)⇒ 1 ∗ y = y
→ the big term cannot be used to get rid of x 6= 0

⇒ Implicational rewriting

13

Introduction Implicational Rewriting Target Rewriting Conclusion

Dependent rewriting
(naming used after Homeier in HOL4 - used in many places, never really named)

Given: (same input as conditional rewriting)

A goal g
A theorem of the form P ⇒ l = r such that g contains lσ for
some substitution σ

Generate:

A goal Pσ ∧ g ′ s.t. lσ is turned into rσ in g ′

Variant: generate g ′ and Pσ as two separate goals

Still some problems. Example:

Goal: ∀x .(big term implying x 6= 0)⇒ x
x ∗ y = y

Apply dependent rewriting with ` x 6= 0⇒ x
x = 1

New goal: x 6= 0 ∧ ∀x .(big term impl . x 6= 0)⇒ 1 ∗ y = y
→ the big term cannot be used to get rid of x 6= 0

⇒ Implicational rewriting

14

Introduction Implicational Rewriting Target Rewriting Conclusion

Implicational rewriting

Given: (same input as conditional rewriting)

A goal g

A theorem of the form P ⇒ l = r such that g contains lσ for
some substitution σ

Generate:

A goal g ′ s.t. lσ is turned into rσ

And containing Pσ as close as possible to the atom
containing lσ

Just a detail, but surprisingly makes this thing much more useful

Note: A little bit of care on how to add Pσ:

Pσ added as a conjunct in positive positions

As a premise in negative positions

15

Introduction Implicational Rewriting Target Rewriting Conclusion

Implicational rewriting: Real-life example (1/4)

Excerpt from the Cauchy-Schwarz example:

Goal

∀s 〈.|.〉 x y .isInnerSpace (s, 〈.|.〉) ∧ x ∈ s ∧ y ∈ s
⇒ norm (〈x |y〉)2 ≤ realOfComplex

(norm (〈x |y〉)2.(〈x |x〉.〈x |x〉). 1
norm(〈x |x〉)2+

〈x |x〉.
〈

y − (〈x |y〉. 1
〈x |x〉)%x

∣∣∣y − (〈x |y〉. 1
〈x |x〉)%x

〉
)

We want to use the theorem:

Theorem

` ∀u v . real u ∧ real v
⇒ realOfComplex (u+v) = realOfComplex u + realOfComplex v

→ Conditional rewriting requires identifying the instantiations of
u, v and the corresponding theorems to get rid of the condition
→ time-consuming
⇒ natural to want the machine do it for us

16

Introduction Implicational Rewriting Target Rewriting Conclusion

Implicational rewriting: Real-life example (2/4)

Dependent rewriting is not enough. Yields:

Goal obtained by dependent rewriting

real (norm (〈x |y〉)2.(〈x |x〉.〈x |x〉). 1
norm(〈x |x〉)2)

∧ real (〈x |x〉.
〈

(y − (〈x |y〉. 1
〈x |x〉)%x)

∣∣∣(y − (〈x |y〉. 1
〈x |x〉)%x)

〉
)

∧∀s 〈.|.〉 x y .isInnerSpace (s, 〈.|.〉) ∧ x ∈ s ∧ y ∈ s
⇒ norm (〈x |y〉)2 ≤ realOfComplex

(norm (〈x |y〉)2.(〈x |x〉.〈x |x〉). 1
norm(〈x |x〉)2)

+realOfComplex (〈x |x〉.〈
(y − (〈x |y〉. 1

〈x |x〉)%x)
∣∣∣(y − (〈x |y〉. 1

〈x |x〉)%x)
〉

)

→ instantiations automatically found
→ but new goal not provable
(x , y , s, 〈.|.〉, are out of scope)

17

Introduction Implicational Rewriting Target Rewriting Conclusion

Implicational rewriting: Real-life example (3/4)

There is a solution allowing to still use dep. rewriting:

Start over

Discharge isInnerSpace (s, 〈.|.〉) ∧ x ∈ s ∧ y ∈ s

Now only, apply dependent rewriting

Use the premise (now in the assumptions) to prove Pσ

→ but not satisfying:

1 First and foremost, these steps can be automatized
(and are not mathematically meaningful)
→ So if it can be automatized why not doing it?

2 Discharging often leads several goals
→ Breaks compositionality

3 Different behavior than usual/conditional rewriting

17

Introduction Implicational Rewriting Target Rewriting Conclusion

Implicational rewriting: Real-life example (3/4)

There is a solution allowing to still use dep. rewriting:

Start over

Discharge isInnerSpace (s, 〈.|.〉) ∧ x ∈ s ∧ y ∈ s

Now only, apply dependent rewriting

Use the premise (now in the assumptions) to prove Pσ

→ but not satisfying:

1 First and foremost, these steps can be automatized
(and are not mathematically meaningful)
→ So if it can be automatized why not doing it?

2 Discharging often leads several goals
→ Breaks compositionality

3 Different behavior than usual/conditional rewriting

18

Introduction Implicational Rewriting Target Rewriting Conclusion

Implicational rewriting: Real-life example (4/4)

On the other hand, implicational rewriting yields:

Goal obtained by implicational rewriting

∀s 〈.|.〉 x y .isInnerSpace (s, 〈.|.〉) ∧ x ∈ s ∧ y ∈ s
⇒ real (norm (〈x |y〉)2.(〈x |x〉.〈x |x〉). 1

norm(〈x |x〉)2)

∧ real (〈x |x〉.
〈

(y − (〈x |y〉. 1
〈x |x〉)%x)

∣∣∣y − (〈x |y〉. 1
〈x |x〉)%x

〉
)

∧ norm (〈x |y〉)2 ≤ realOfComplex
(norm (〈x |y〉)2.(〈x |x〉.〈x |x〉). 1

norm(〈x |x〉)2)

+realOfComplex (〈x |x〉.〈
(y − (〈x |y〉. 1

〈x |x〉)%x)
∣∣∣(y − (〈x |y〉. 1

〈x |x〉)%x)
〉

)

→ instantiations automatically found
→ and new goal still provable

Summing up: automatized, compositionality improved, similar
behavior as rewriting

19

Introduction Implicational Rewriting Target Rewriting Conclusion

Outline

1 Introduction

2 Implicational Rewriting

3 Target Rewriting

4 Conclusion

20

Introduction Implicational Rewriting Target Rewriting Conclusion

Motivation

Problem with implicational rewriting:

Sometimes works too well (quoting Marco Maggesi)
→ diverges or rewrites too many things

Usual solution in HOL{4-Light}: “ONCE” rewrite
(applies the rewrite once; in parallel positions)

Usual further problems: still rewrites too many

Usual solutions: better ways to select what is rewritten
(manually giving positions, patterns, . . .)

But still done manually: time-consuming

→ Target rewriting

21

Introduction Implicational Rewriting Target Rewriting Conclusion

Why does that actually happen?

Why do we actually want to apply a rewrite in a particular
position/a given number of times?

My answer/feeling:

Because we think one step further

We know that the next step of the proof applies to a
particular pattern only

So we want to massage the goal so as to obtain this pattern

22

Introduction Implicational Rewriting Target Rewriting Conclusion

Target rewriting

What if we have a tactic which takes two theorems:

1 one to be used for massaging

2 the other to be used for the ”next step”

And the tactic does the job of using the massaging theorem on the
goal so that the next step can apply

→ Target rewriting

23

Introduction Implicational Rewriting Target Rewriting Conclusion

Concrete example: problems without target rewrintg

Back again to Cauchy-Schwarz:

Initial goal

∀s 〈.|.〉 x y . isInnerSpace (s, 〈.|.〉) ∧ x ∈ s ∧ y ∈ s
⇒ norm(〈x |y〉)2 ≤ realOfComplex (〈x |x〉.〈y |y〉)

And we want to use the following decomposition theorem:

Theorem (Decomposition)

∀s 〈.|.〉 u v . isInnerSpace (s, 〈.|.〉) ∧ u ∈ s ∧ v ∈ s

⇒ u = 〈v |u〉
〈v |v〉v + u − 〈v |u〉

〈v |v〉v ∧ v ⊥ (u − 〈v |u〉
〈v |v〉v)

In order to obtain:

Expected goal

∀s 〈.|.〉 u v . isInnerSpace (s, 〈.|.〉) ∧ u ∈ s ∧ v ∈ s
⇒ norm(〈x |y〉)2 ≤ realOfComplex (

〈x |x〉.
〈

〈x|y〉
〈x|x〉x + y − 〈x|y〉

〈x|x〉x
∣∣∣ 〈x|y〉〈x|x〉x + y − 〈x|y〉

〈x|x〉x
〉

24

Introduction Implicational Rewriting Target Rewriting Conclusion

Concrete example: using target rewriting (1/2)

Instead of trying with rewriting, let’s step back:

Initial goal

∀s 〈.|.〉 u v . isInnerSpace (s, 〈.|.〉) ∧ u ∈ s ∧ v ∈ s
⇒ norm(〈x |y〉)2 ≤ realOfComplex (

〈x |x〉.
〈
〈x |y〉
〈x |x〉x + y − 〈x |y〉

〈x |x〉x
∣∣∣ 〈x |y〉〈x |x〉x + y − 〈x |y〉

〈x |x〉x
〉

Question: why do we want to obtain this goal?

Answer: because we actually want to use the following theorem
afterwards:

Theorem (≈ Commutativity of sum and inner product under
orthogonality)

∀s inprod u v . isInnerSpace (s, 〈.|.〉) ∧ u ∈ s ∧ v ∈ s ∧ u ⊥ v
⇒ 〈u + v |u + v〉 = 〈u|u〉+ 〈v |v〉

25

Introduction Implicational Rewriting Target Rewriting Conclusion

Concrete example: using target rewriting (2/2)

So that’s what target rewriting does:

Initial goal

∀s 〈.|.〉 x y . isInnerSpace (s, 〈.|.〉) ∧ x ∈ s ∧ y ∈ s
⇒ norm(〈x |y〉)2 ≤ realOfComplex (〈x |x〉.〈y |y〉)

TARGET_REWRITE_TAC [DECOMPOSITION_THM] ORTHOGONAL_PROD_SUM;;

Obtained goal

∀s 〈.|.〉 u v . isInnerSpace (s, 〈.|.〉) ∧ u ∈ s ∧ v ∈ s
⇒ norm(〈x |y〉)2 ≤ realOfComplex (

〈x |x〉.
〈
〈x |y〉
〈x |x〉x + y − 〈x |y〉

〈x |x〉x
∣∣∣ 〈x |y〉〈x |x〉x + y − 〈x |y〉

〈x |x〉x
〉

→ yields the expected goal

26

Introduction Implicational Rewriting Target Rewriting Conclusion

Outline

1 Introduction

2 Implicational Rewriting

3 Target Rewriting

4 Conclusion

27

Introduction Implicational Rewriting Target Rewriting Conclusion

Summary

Less need for manual input

Better feedback

Time saved

Implementation:

Now integrated in HOL Light

Implementation in HOL4 also available (but still buggy for
now)

28

Introduction Implicational Rewriting Target Rewriting Conclusion

Related Work

Implicational rewriting:

dependent rewriting (HOL4, Homeier) and many similar works
in HOL Light, Isabelle, Coq

fact of reasoning deeply: deep inference

if formulas seen as clauses: superposition calculus

Target rewriting:

similar to smart matching in Matita, but different
usage/philosophy (and much less efficient)

conceptually can be seen as an instance of deduction modulo

AC-rewriting is a particular case

29

Introduction Implicational Rewriting Target Rewriting Conclusion

Thanks!

30

Introduction Implicational Rewriting Target Rewriting Conclusion

Discussion

Do people really want this kind of automation?

I hear many times that people prefer to state explicitly some
subgoals, in particular for readability

I am more in favour of the machine finding out what I want

And then retrieve the information by replaying the scripts, or
using a tool like Proviola1

I think it is better for proof engineering to make the scripts
less fragile

But I also hear exactly the same argument precisely to go
towards more explicit information in the scripts. . .

In any case, one can still use the tactic when meaningful and not
use it otherwise. . .

1Tanking, Geuvers, McKinna, Wiedijk

	Introduction
	Implicational Rewriting
	Target Rewriting
	Conclusion

