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Coquand (1994), based on Reynolds (1984):
HOL with impredicative polymorphism is
inconsistent

Proof idea

• Start with a functor α F that has no fixpoint,
i.e., ∀α. /∃ g ∶ α F→ α. bij betw g

• Use impredicative products to construct an
initial algebra I0 for F

• By Lambek’s lemma, I0 F ≅ I0
QED
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HOL with impredicative
polymorphism is inconsistent

Fix α F a type constructor with

Fmap ∶ (α → β)→ α F→ β F

Fatms ∶ α F→ α set

Define F (A ∶ α set) = {x ∶ α F ∣ Fatms x ⊆ A}
E.g. α F = α set Fmap = image Fatms = id

α F = α list Fmap = map Fatms = set

Additionally, we assume
∀α. ∀A ∶ α set. /∃ g ∶ α F→ α. bij betw g (F A) A
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We define F-algebras and F-morphisms:

alg (A ∶∶ α set, s ∶ α F→ α) ≡ image s (F A) ⊆ A

mor (A, s) (B, t) h ≡
image h A ⊆ B ∧

(∀x ∈ F A. t (Fmap h x) = h (s x))
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Lambek’s Lemma: For any initial algebra (A, s), the function
s is a bijection between F A and A.
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4. From 2 and 3: h is the inverse of s
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Proof. Immediate by fixpoint induction, noting that
A0 = lfp (λB. image s (F B)).
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1. Build a weakly initial algebra
as the product (P0, s0) of all algebras

P0 ≡∏ α.∏(A, s) ∈ Algsα. A
where Algsα = {(A, s) ∈ α set × (α F→ α) ∣ alg (A, s)}

s0 x ≡ λ(A, s). s (Fmap (λp. p (A, s)) x)

2. Take (I0, s0) to be the minimal subalgebra of (P0, s0).

3. By Lambek, s0 is a bijection between I0 and F I0,
contradicting our assumption about F.
QED
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Lemma: Assume Fbd regular cardinal, and
∀α. ∀x ∶ α F. ∣Fatms x∣ < Fbd. Let (A0, s) = minSub(A, s).
Then ∣A0∣ ≤ Fbd.

Proof. Recall that
A0 = ⋂{B ⊆ A ∣ alg (B, s)} = lfp (λB. image s (F B)).
Need alternative definition “from below”: A0 = ⋃i cardinal Bi

B0 = ∅ Bn+1 = image s (F Bn)

Bω = ⋃n<ω Bn Bω+1 = image s (F Bω) . . .
When reach fixpoint and stop? In Fbd steps: A0 = ⋃i<Fbd Bi.

By transfinite induction, ∀i < Fbd. ∣Bi∣ ≤ Fbd.
Hence, by cardinal arithmetic, ∣A0∣ ≤ Fbd.
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Outcome
Failed to prove inconsistency of predicative HOL ,

But did construct the initial algebra abstractly for α F
with impredicativity, suffices natural functor (Fatms, Fmap)
without impredicativity, also need boundedness (Fbd)

⇓

Bounded Natural Functor (BNF)

⇓

Modular, Open-Ended (Co)datatypes in Isabelle/HOL

datatype α list = Nil ∣ Cons α (α list)
α list = lfp (λβ. unit + α × β)
codatatype α tree = Node α (α tree list)

α tree = gfp (λβ. α × β list)
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