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Motivation

Interactive theorem proving can be
lonesome. . .

. . . but mathematics is a social activity!

2 [18]



Motivation

Interactive theorem proving can be
lonesome. . .

. . . but mathematics is a social activity!

2 [18]



Introducing Clide

I Previous work: a web interface for Isabelle

I Next step: extend this to real-time collaborative proof

I “Google docs for proofs”
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Action!
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Use Cases

I Scientific collaboration: a small number of co-authors writing a joint proof

I Proof review: one user explicates content of proof to others, e.g. teacher to students or
vice versa

I Machine-assisted collaboration: collaborating with a machine
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Under the hood

I The basic problem: synchronisation

Client B

Client C

Server

Client A

I Well researched solution: operational transformation
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Operational Transformations

I Basic Problem:
•

D

a -

D ′

b ′
-

• a′
-

b -

I Basic correctness:

∀D. applyOp b′ (applyOp a D) = applyOp a′ (applyOp b D). (1)

I Given by auxiliary transform and two equations:

applyOp (b ◦ a) D = applyOp b (applyOp a D) (2)

transform a b = 〈a′, b′〉 =⇒ b′ ◦ a = a′ ◦ b (3)
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Operational Transformation: Basic Principle

Text is modified using three basic actions:
I Retain – Copy current character
I Delete – Drop current character
I Insert c – Insert c
An operation is a sequence of actions.

An example:

Input:
Output:
Operation: [
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Operational Transformation: Basic Principle

Text is modified using three basic actions:
I Retain – Copy current character
I Delete – Drop current character
I Insert c – Insert c
An operation is a sequence of actions.

An example:

Input:
Output: I T P
Operation: [Retain,

Delete,
Retain,
Insert P]

I Note: operations are partial.

I Need to consider: composition and transformation
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Composing Operations

I Composing operations: case distinction on the action

I Note: not simple concatenation!

I Example:
p = [Delete, Insert X,Retain]
q = [Retain, Insert Y,Delete]

compose a b =

I compose is partial.

I Extensional equivalence of operations:
compose a b ∼= [Delete,Delete, Insert X, Insert Y]
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Transforming Operations

I Transforming operations: pointwise completion

•

•

a -

•

b ′
-

• a′
-

b -

I Example:
a = [Insert X,Retain,Delete]
b = [Delete,Retain, Insert Y]

transform a b = ([
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Formalisation: Correctness

I Correctness of compose (??):

theorem composeCorrect:
[[ compose a b = Some ab; applyOp a d = Some d ′; applyOp b d ′ = Some d ′′ ]]
=⇒ applyOp ab d = Some d ′′

I Correctness of transform (??):

theorem transformCorrect: transform a b = Some (a ′,b ′)
=⇒ compose a b ′ 6= None ∧ compose a b ′ = compose b a ′

I To show previous lemmas, need to construct graphs of the partial functions.

I Application: generate Scala code from Isabelle
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Annotations

I Two types of annotation actions

I Plain n – Retain n characters

I Annotate n c – Annotate n characters with annotation c

I Annotations ≈ identity operations with side-effects

I No interference with operations – can be handled separately

lemma transformIdL:
transform (ident (inputLength b)) b = Some (ident (outputLength b), b)

I Multiple named annotations per collaborator

I Selections, syntax coloring, substitutions, tooltips, completion, etc.
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The Control Algorithm - Server

I Purpose:

I sequentialise concurrent operations

I distribute transformed operations

Client A

Server r0
c1 - r1

c2 - r2
c3 - r3

Client B
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System Architecture: Components

clide-core

clide-web
clide-isabelle

clide-haskell

Akka Remoting

Akka Remoting

A
kk

a 
R

em
ot

in
g

W
ebSock

et

W
eb

S
oc

ke
t W

ebS
ocket

WebSocket

...Akka Remoting
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Universal Collaboration

I Clide is generic: Isabelle is just one particular collaborator based on the great PIDE
framework.

I Paradigm of universal collaboration: document-centered collaborative development.

I Allows easy development of new assistants: just define interaction with document,
synchronisation and integration provided by Clide.

I Examples: prototypical Haskell and Scala IDE
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Concluding Remarks

I Clide: Interactive Collaborative Real-Time Theorem Proving

I Based on formalisation of Operational Transformations in Isabelle

I Compares well to Isabelle/jEdit or ProofGeneral

I Flexible system architecture built on Scala, Akka

I Clide is generic

I Prototypical Haskell and Scala instantiations

I Novel concept of universal collaboration
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