Collaborative Interactive Theorem Proving with Clide

Martin Ring, Christoph Liith

ITP 2014, 15.07.2014, Vienna

iy 1 [18]

Motivation

No subgoals
left!

Interactive theorem proving can be
lonesome. . .

L e |

2 [18]

Motivation

No subgoals
left!

Interactive theorem proving can be
lonesome. . .

iy

but mathematics is

a social activity!

2 [18]

Introducing Clide

» Previous work: a web interface for Isabelle

» Next step: extend this to real-time collaborative proof

» “Google docs for proofs”

3 [18]

Action!

informatik.uni- i pl P ~ &| @ dide 2 - coding

) Operation.thy >

Files &0 D by (rule transform.induct, auto)
A
W text {*
= Ut We can now show the main correctness property, first for the set @{term transforme
*
& Control.thy *
*

lemma transformationConvergence: ”((a,b), (a’,b’)) € transformation —-
(Jab. ((a,b’), ab) € composition A
apply (erule transformation.indluct)

B Operation.thy b,a’), ab) € composition)”

Collaboration a by (auto)
3 other collaborators are participating in text {*
this project: We now show the correctness of the @{term transform} function. Because the equal,
<
& od Chat Output L]
® selection proof (prove): step 1 ey

& martinring goal (9 subgoals):

@ selection 1. 3ab. (([], [1), ab) € composition A (([], [1), ab) € composition
2.naba'b'c ((a b), a, b’) € transformation = 3Jab. ((a, b’), ab) € composition A ((b, a’), ab) € composition =
3.Aba b’ c.(([l, b), a, b’) € transformation = Jab. (([], b’), ab) € composition A ((b, a"), ab) € composition =
& isabelle 4.naba' b’ c ((Retain # a, b), @, b') e transformation = 3ab. ((Retain # a, b'), ab) € composition A ((b, a'), ab]
@ errors 5.Aaba' b’ c. ((Delete # a, b), a', b") € transformation = 3Jab. ((Delete # a, b'), ab) € composition A ((b, a'), ab
OIS 6.naba' b ((a b), a', b) € transformation = 3ab. ((a, b'), ab) € composition A ((b, a*), ab) € composition =
7.naba' b ((a b), a', b) € transformation = 3ab. ((a, b’), ab) € composition A ((b, a*), ab) € composition =
@ typing tooltips 8.naba' b ((a b), a', b)) transformation = 3ab. ((a, b), ab) e composition A ((b, a"), ab) € composition =
@ substitutions 9.naba' b ((a b), ', b) € transformation = 3ab. ((a, b'), ab) € composition A ((b, "), ab) € composition =

»*xayY 4 [18]

Use Cases

» Scientific collaboration: a small number of co-authors writing a joint proof

» Proof review: one user explicates content of proof to others, e.g. teacher to students or
vice versa

» Machine-assisted collaboration: collaborating with a machine

5 [18]

Under the hood

» The basic problem: synchronisation

Client B

O%A |]a
\% _—FH

Server

Client C

» Well researched solution: operational transformation

6 [18]

Operational Transformations

» Basic Problem:

» Basic correctness:

VD. applyOp b’ (applyOp a D) = applyOp &' (applyOp b D).

» Given by auxiliary transform and two equations:

applyOp (bo a) D = applyOp b (applyOp a D)
transform a b= (a',b') = b oa=4aob

B

(3)

7 [18]

Operational Transformation: Basic Principle

Text is modified using three basic actions:
» Retain — Copy current character

» Delete — Drop current character

» Insert ¢ — Insert ¢

An operation is a sequence of actions.

8 [18]

Operational Transformation: Basic Principle

Text is modified using three basic actions: An example:

» Retain — Copy current character

» Delete — Drop current character Input: IPT
Output:

» Insert ¢ — Insert ¢ Operation: [

An operation is a sequence of actions.

8 [18]

Operational Transformation: Basic Principle

Text is modified using three basic actions: An example:

» Retain — Copy current character

» Delete — Drop current character Input: PT
Output: I

> Insert ¢ —Insert c Operation: [Retain,

An operation is a sequence of actions.

8 [18]

Operational Transformation: Basic Principle

Text is modified using three basic actions: An example:
» Retain — Copy current character
Input: T
» Delete — Drop current character
Output: I
> Insert ¢ —Insert c Operation: [Retain,
An operation is a sequence of actions. Delete,

8 [18]

Operational Transformation:

Text is modified using three basic actions:

» Retain — Copy current character
» Delete — Drop current character
» Insert ¢ — Insert ¢

An operation is a sequence of actions.

Basic Principle

An example:

Input:
Output:
Operation:

IT
[Retain,
Delete,
Retain,

8 [18]

Operational Transformation:

Text is modified using three basic actions:

» Retain — Copy current character
» Delete — Drop current character
» Insert ¢ — Insert ¢

An operation is a sequence of actions.

Basic Principle

An example:

Input:
Output:
Operation:

ITP
[Retain,
Delete,
Retain,
Insert P]

8 [18]

Operational Transformation:

Text is modified using three basic actions:

» Retain — Copy current character
» Delete — Drop current character
» Insert ¢ — Insert ¢

An operation is a sequence of actions.

Basic Principle

An example:

Input:
Output:
Operation:

ITP
[Retain,
Delete,
Retain,
Insert P]

8 [18]

Operational Transformation: Basic Principle

Text is modified using three basic actions: An example:

» Retain — Copy current character

» Delete — Drop current character Input:
Output:

> Insert ¢ — Insert ¢ Operation:

An operation is a sequence of actions.

» Note: operations are partial.

» Need to consider: composition and transformation

ITP
[Retain,
Delete,
Retain,
Insert P|

8 [18]

Composing Operations

» Composing operations: case distinction on the action

» Note: not simple concatenation!

» Example:
p = [Delete, Insert X, Retain]
q = [Retain, Insert Y, Delete]
compose a b =

» compose is partial.

9 [18]

Composing Operations

» Composing operations: case distinction on the action

» Note: not simple concatenation!

» Example:
p = [Insert X, Retain|
q = [Retain, Insert Y, Delete]
compose a b = [Delete,

» compose is partial.

9 [18]

Composing Operations

» Composing operations: case distinction on the action

» Note: not simple concatenation!

» Example:
p = [Retain|
q = [Insert Y, Delete]
compose a b = [Delete, Insert X,

» compose is partial.

9 [18]

Composing Operations

» Composing operations: case distinction on the action

» Note: not simple concatenation!

» Example:
p = [Retain|
q = [Delete]
compose a b = [Delete, Insert X, Insert Y,

» compose is partial.

9 [18]

Composing Operations

» Composing operations: case distinction on the action

» Note: not simple concatenation!

» Example:
p =1
g =1l
compose a b = [Delete, Insert X, Insert Y, Delete]

» compose is partial.

9 [18]

Composing Operations

v

Composing operations: case distinction on the action

» Note: not simple concatenation!

v

Example:
p = [Delete, Insert X, Retain]
q = [Retain, Insert Y, Delete]
compose a b = [Delete, Insert X, Insert Y, Delete]

» compose is partial.

v

Extensional equivalence of operations:
compose a b = [Delete, Delete, Insert X, Insert Y]

9 [18]

Transforming Operations

» Transforming operations: pointwise completion

» Example:
a = [Insert X, Retain, Delete]
b = [Delete, Retain, Insert Y]
transforma b = (]
o
)

B 10 [18]

Transforming Operations

» Transforming operations: pointwise completion

» Example:
a
b

transform a b

[Retain, Delete]

[Delete, Retain, Insert Y]
([Insert X,
, [Retain,

)

10 [18]

Transforming Operations

» Transforming operations: pointwise completion

[
/ NN %
[] h []
v
X -
[]
» Example:
a = [Delete]
b = [Retain, Insert Y|
transform a b = ([Insert X, Delete,
, [Retain,

)

B 10 [18]

Transforming Operations

» Transforming operations: pointwise completion

» Example:
a =[]
b = [Insert Y]
transform a b = ([Insert X, Delete,
, [Retain, Delete,

)

B 10 [18]

Transforming Operations

» Transforming operations: pointwise completion

» Example:
a =[]
b =]]
transform a b = ([Insert X, Delete, Retain]
, [Retain, Delete, Insert Y|

)

B 10 [18]

Transforming Operations

» Transforming operations: pointwise completion

» Example:

B

a
b
transform a b

[Insert X, Retain, Delete]

[Delete, Retain, Insert Y]
([Insert X, Delete, Retain]
, [Retain, Delete, Insert Y|

)

10 [18]

Formalisation: Correctness

» Correctness of compose (77):
theorem composeCorrect:
[compose a b = Some ab; applyOp a d = Some d’; applyOp b d’ = Some d""]
= applyOp ab d = Some d"’

» Correctness of transform (77):

theorem transformCorrect. transform a b = Some (a’,b’)
= compose a b’ # None N\ compose a b’ = compose b a’

» To show previous lemmas, need to construct graphs of the partial functions.

» Application: generate Scala code from Isabelle

11 [18]

Annotations

» Two types of annotation actions

» Plain n — Retain n characters

» Annotate n ¢ — Annotate n characters with annotation ¢

» Annotations ~ identity operations with side-effects

» No interference with operations — can be handled separately

lemma transformldL:
transform (ident (inputLength b)) b = Some (ident (outputlLength b), b)

» Multiple named annotations per collaborator

» Selections, syntax coloring, substitutions, tooltips, completion, etc.

B 12 [18]

The Control Algorithm - Server

» Purpose:

» sequentialise concurrent operations

» distribute transformed operations

Client A

C1 Co C3
Server ry - m r3

Client B

13 [18]

The Control Algorithm - Server

» Purpose:

» sequentialise concurrent operations

» distribute transformed operations

Client A °
a
C1 Co C3
Server ry - m r3
b
Client B °

13 [18]

The Control Algorithm - Server

» Purpose:

» sequentialise concurrent operations

» distribute transformed operations

Client A o ——
¢ \
a a
C1 Co C3
Server ry - m r3
b

) Y
Client B °

13 [18]

The Control Algorithm - Server

» Purpose:

» sequentialise concurrent operations

» distribute transformed operations

Client A ° - e - o
/ /
&]
a a a"
C1 Co C3
Server ry - m r3
b
) Y
Client B °

13 [18]

The Control Algorithm - Server

» Purpose:

» sequentialise concurrent operations

» distribute transformed operations

Client A ° — o —
¢ LG
a a
C1 Co C3
Server g - r
b
) Y
Client B °

13 [18]

The Control Algorithm - Server

» Purpose:

» sequentialise concurrent operations

» distribute transformed operations

Client A ° — o —
S A 3
a a
a1 (®) C3
Server g - r
b b
) Y Y
Client B *o >

B 13 [18]

The Control Algorithm - Server

» Purpose:

» sequentialise concurrent operations

» distribute transformed operations

Client A ° — o -
S A 3
a a
a1 (®) C3
Server g - r
b b/ b//
. Y
Client B °
C// C/
3 4

13 [18]

The Control Algorithm - Server

» Purpose:

» sequentialise concurrent operations

» distribute transformed operations

Client A ° — o —
S LG
a a
C1 Co C3
Server g - r
b b/ b//
) Y Y
Client B ° - - e

!l /

13 [18]

The Control Algorithm - Server

» Purpose:

» sequentialise concurrent operations

» distribute transformed operations

Client A

C1 Co

a

Server g - r

Client B

> r3

14 [18]

The Control Algorithm - Server

» Purpose:

» sequentialise concurrent operations

» distribute transformed operations

Client A °
a
C1 Co C3
Server ry n o) - r3
b
Client B °

14 [18]

The Control Algorithm - Server

» Purpose:

» sequentialise concurrent operations

» distribute transformed operations

Client A °
a
o] (&) (o]
Server g n r r
b b
Client B o — o
)

14 [18]

The Control Algorithm - Server

» Purpose:

» sequentialise concurrent operations

» distribute transformed operations

Client A °
a
c o c3 ca="b
Server g n r R —> 1
b b//
Client B o — o
)

14 [18]

The Control Algorithm - Server
» Purpose:

» sequentialise concurrent operations

» distribute transformed operations

¢ /
©
a a
a @
Server g

b /
Client B

Client A

J

>
N
<
{

=

14 [18]

The Control Algorithm - Server

» Purpose:

» sequentialise concurrent operations

» distribute transformed operations

Client A °

C1 Co C3 = b/
Server g n

b /
Client B

14 [18]

The Control Algorithm - Server

» Purpose:

» sequentialise concurrent operations

» distribute transformed operations

Client A ° — e Y —
e LG Cy
a a/ a// /1
c o c3 ca="b
Server g n r R —> 1
b \b’

. Y

Client B o — o
G

14 [18]

The Control Algorithm - Server

» Purpose:

» sequentialise concurrent operations

» distribute transformed operations

Client A ° — e Y —
=) p %] Cy
a a/ a// a///
c o c3 a=b lc=a
Server g n r 3 ———> fy ———> Iy
b \b’

. Y

Client B o — o

14 [18]

The Control Algorithm - Client

» Purpose: buffer operations while waiting for acknowledgment

I —— Revision r

=AY 15 [18]

The Control Algorithm - Client

» Purpose: buffer operations while waiting for acknowledgment

I — Revision r

° Revision r + 1

=AY 15 [18]

The Control Algorithm - Client

» Purpose: buffer operations while waiting for acknowledgment

° ° Revision r
C| /|
[} [J

a
B —
Cc
B —

. Revision r + 1
a

=AY 15 [18]

The Control Algorithm - Client

» Purpose: buffer operations while waiting for acknowledgment

I —— Revision r

=AY 15 [18]

The Control Algorithm - Client

» Purpose: buffer operations while waiting for acknowledgment

° Y - ® Revision r

=AY 15 [18]

The Control Algorithm - Client

» Purpose: buffer operations while waiting for acknowledgment

° ° ° Revision r

° Revision r + 1

=AY 15 [18]

The Control Algorithm - Client

» Purpose: buffer operations while waiting for acknowledgment

a b
° Y > e Revision r
c| c’|
o ———— o Revision r + 1
a

=AY 15 [18]

The Control Algorithm - Client

» Purpose: buffer operations while waiting for acknowledgment

[]
| C/l
[]

Revision r

Revision r + 1

a b

B

15 [18]

The Control Algorithm - Client

» Purpose: buffer operations while waiting for acknowledgment

[]
| C/l
[]

» Problem: web client must be implemented in JavaScript

Revision r

Revision r + 1

=AY 15 [18]

System Architecture: Components

S clidecore | «—— 3
R Akka Remoting
o
Q
e 2
© = ’q/r,(,
=) 7 Re
. <3 %,
clide-haskell o

clide-isabelle

16 [18]

Universal Collaboration

v

Clide is generic: Isabelle is just one particular collaborator based on the great PIDE
framework.

v

Paradigm of universal collaboration: document-centered collaborative development.

v

Allows easy development of new assistants: just define interaction with document,
synchronisation and integration provided by Clide.

v

Examples: prototypical Haskell and Scala IDE

17 [18]

Concluding Remarks

» Clide: Interactive Collaborative Real-Time Theorem Proving

» Based on formalisation of Operational Transformations in Isabelle
» Compares well to Isabelle/jEdit or ProofGeneral

» Flexible system architecture built on Scala, Akka

» Clide is generic
» Prototypical Haskell and Scala instantiations

» Novel concept of universal collaboration

18 [18]

