
Collaborative Interactive Theorem Proving with Clide

Martin Ring, Christoph Lüth

ITP 2014, 15.07.2014, Vienna

1 [18]

Motivation

Interactive theorem proving can be
lonesome. . .

. . . but mathematics is a social activity!

2 [18]

Motivation

Interactive theorem proving can be
lonesome. . .

. . . but mathematics is a social activity!

2 [18]

Introducing Clide

I Previous work: a web interface for Isabelle

I Next step: extend this to real-time collaborative proof

I “Google docs for proofs”

3 [18]

Action!

4 [18]

Use Cases

I Scientific collaboration: a small number of co-authors writing a joint proof

I Proof review: one user explicates content of proof to others, e.g. teacher to students or
vice versa

I Machine-assisted collaboration: collaborating with a machine

5 [18]

Under the hood

I The basic problem: synchronisation

Client B

Client C

Server

Client A

I Well researched solution: operational transformation

6 [18]

Operational Transformations

I Basic Problem:
•

D

a -

D ′

b ′
-

• a′
-

b -

I Basic correctness:

∀D. applyOp b′ (applyOp a D) = applyOp a′ (applyOp b D). (1)

I Given by auxiliary transform and two equations:

applyOp (b ◦ a) D = applyOp b (applyOp a D) (2)

transform a b = 〈a′, b′〉 =⇒ b′ ◦ a = a′ ◦ b (3)

7 [18]

Operational Transformation: Basic Principle

Text is modified using three basic actions:
I Retain – Copy current character
I Delete – Drop current character
I Insert c – Insert c
An operation is a sequence of actions.

An example:

Input:
Output:
Operation: [

8 [18]

Operational Transformation: Basic Principle

Text is modified using three basic actions:
I Retain – Copy current character
I Delete – Drop current character
I Insert c – Insert c
An operation is a sequence of actions.

An example:

Input: I P T
Output:
Operation: [

8 [18]

Operational Transformation: Basic Principle

Text is modified using three basic actions:
I Retain – Copy current character
I Delete – Drop current character
I Insert c – Insert c
An operation is a sequence of actions.

An example:

Input: P T
Output: I
Operation: [Retain,

8 [18]

Operational Transformation: Basic Principle

Text is modified using three basic actions:
I Retain – Copy current character
I Delete – Drop current character
I Insert c – Insert c
An operation is a sequence of actions.

An example:

Input: T
Output: I
Operation: [Retain,

Delete,

8 [18]

Operational Transformation: Basic Principle

Text is modified using three basic actions:
I Retain – Copy current character
I Delete – Drop current character
I Insert c – Insert c
An operation is a sequence of actions.

An example:

Input:
Output: I T
Operation: [Retain,

Delete,
Retain,

8 [18]

Operational Transformation: Basic Principle

Text is modified using three basic actions:
I Retain – Copy current character
I Delete – Drop current character
I Insert c – Insert c
An operation is a sequence of actions.

An example:

Input:
Output: I T P
Operation: [Retain,

Delete,
Retain,
Insert P]

8 [18]

Operational Transformation: Basic Principle

Text is modified using three basic actions:
I Retain – Copy current character
I Delete – Drop current character
I Insert c – Insert c
An operation is a sequence of actions.

An example:

Input:
Output: I T P
Operation: [Retain,

Delete,
Retain,
Insert P]

8 [18]

Operational Transformation: Basic Principle

Text is modified using three basic actions:
I Retain – Copy current character
I Delete – Drop current character
I Insert c – Insert c
An operation is a sequence of actions.

An example:

Input:
Output: I T P
Operation: [Retain,

Delete,
Retain,
Insert P]

I Note: operations are partial.

I Need to consider: composition and transformation

8 [18]

Composing Operations

I Composing operations: case distinction on the action

I Note: not simple concatenation!

I Example:
p = [Delete, Insert X,Retain]
q = [Retain, Insert Y,Delete]

compose a b =

I compose is partial.

I Extensional equivalence of operations:
compose a b ∼= [Delete,Delete, Insert X, Insert Y]

9 [18]

Composing Operations

I Composing operations: case distinction on the action

I Note: not simple concatenation!

I Example:
p = [Insert X,Retain]
q = [Retain, Insert Y,Delete]

compose a b = [Delete,

I compose is partial.

I Extensional equivalence of operations:
compose a b ∼= [Delete,Delete, Insert X, Insert Y]

9 [18]

Composing Operations

I Composing operations: case distinction on the action

I Note: not simple concatenation!

I Example:
p = [Retain]
q = [Insert Y,Delete]

compose a b = [Delete, Insert X,

I compose is partial.

I Extensional equivalence of operations:
compose a b ∼= [Delete,Delete, Insert X, Insert Y]

9 [18]

Composing Operations

I Composing operations: case distinction on the action

I Note: not simple concatenation!

I Example:
p = [Retain]
q = [Delete]

compose a b = [Delete, Insert X, Insert Y,

I compose is partial.

I Extensional equivalence of operations:
compose a b ∼= [Delete,Delete, Insert X, Insert Y]

9 [18]

Composing Operations

I Composing operations: case distinction on the action

I Note: not simple concatenation!

I Example:
p = []
q = []

compose a b = [Delete, Insert X, Insert Y,Delete]

I compose is partial.

I Extensional equivalence of operations:
compose a b ∼= [Delete,Delete, Insert X, Insert Y]

9 [18]

Composing Operations

I Composing operations: case distinction on the action

I Note: not simple concatenation!

I Example:
p = [Delete, Insert X,Retain]
q = [Retain, Insert Y,Delete]

compose a b = [Delete, Insert X, Insert Y,Delete]

I compose is partial.

I Extensional equivalence of operations:
compose a b ∼= [Delete,Delete, Insert X, Insert Y]

9 [18]

Transforming Operations

I Transforming operations: pointwise completion

•

•

a -

•

b ′
-

• a′
-

b -

I Example:
a = [Insert X,Retain,Delete]
b = [Delete,Retain, Insert Y]

transform a b = ([
, [
)

10 [18]

Transforming Operations

I Transforming operations: pointwise completion

•

•

a -

•

b ′
-

• a′
-

b -

I Example:
a = [Retain,Delete]
b = [Delete,Retain, Insert Y]

transform a b = ([Insert X,
, [Retain,
)

10 [18]

Transforming Operations

I Transforming operations: pointwise completion

•

•

a -

•

b ′
-

• a′
-

b -

I Example:
a = [Delete]
b = [Retain, Insert Y]

transform a b = ([Insert X,Delete,
, [Retain,
)

10 [18]

Transforming Operations

I Transforming operations: pointwise completion

•

•

a -

•

b ′
-

• a′
-

b -

I Example:
a = []
b = [Insert Y]

transform a b = ([Insert X,Delete,
, [Retain,Delete,
)

10 [18]

Transforming Operations

I Transforming operations: pointwise completion

•

•

a -

•

b ′
-

• a′
-

b -

I Example:
a = []
b = []

transform a b = ([Insert X,Delete,Retain]
, [Retain,Delete, Insert Y]
)

10 [18]

Transforming Operations

I Transforming operations: pointwise completion

•

•

a -

•

b ′
-

• a′
-

b -

I Example:
a = [Insert X,Retain,Delete]
b = [Delete,Retain, Insert Y]

transform a b = ([Insert X,Delete,Retain]
, [Retain,Delete, Insert Y]
)

10 [18]

Formalisation: Correctness

I Correctness of compose (??):

theorem composeCorrect:
[[compose a b = Some ab; applyOp a d = Some d ′; applyOp b d ′ = Some d ′′]]
=⇒ applyOp ab d = Some d ′′

I Correctness of transform (??):

theorem transformCorrect: transform a b = Some (a ′,b ′)
=⇒ compose a b ′ 6= None ∧ compose a b ′ = compose b a ′

I To show previous lemmas, need to construct graphs of the partial functions.

I Application: generate Scala code from Isabelle

11 [18]

Annotations

I Two types of annotation actions

I Plain n – Retain n characters

I Annotate n c – Annotate n characters with annotation c

I Annotations ≈ identity operations with side-effects

I No interference with operations – can be handled separately

lemma transformIdL:
transform (ident (inputLength b)) b = Some (ident (outputLength b), b)

I Multiple named annotations per collaborator

I Selections, syntax coloring, substitutions, tooltips, completion, etc.

12 [18]

The Control Algorithm - Server

I Purpose:

I sequentialise concurrent operations

I distribute transformed operations

Client A

Server r0
c1 - r1

c2 - r2
c3 - r3

Client B

13 [18]

The Control Algorithm - Server

I Purpose:

I sequentialise concurrent operations

I distribute transformed operations

Client A •

Server r0
c1 - r1

a
6

c2 - r2
c3 - r3

Client B •

b

?

13 [18]

The Control Algorithm - Server

I Purpose:

I sequentialise concurrent operations

I distribute transformed operations

Client A •
c ′2

- •

Server r0
c1 - r1

a
6

c2 - r2

a′
6

c3 - r3

Client B •

b

?

13 [18]

The Control Algorithm - Server

I Purpose:

I sequentialise concurrent operations

I distribute transformed operations

Client A •
c ′2

- •
c ′3

- •

Server r0
c1 - r1

a
6

c2 - r2

a′
6

c3 - r3

a′′
6

Client B •

b

?

13 [18]

The Control Algorithm - Server

I Purpose:

I sequentialise concurrent operations

I distribute transformed operations

Client A •
c ′2

- •
c ′3

- •

Server r0
c1 - r1

a
6

c2 - r2

a′
6

c3 - r3

a′′
6

c4 = a′′
- r4

==========

Client B •

b

?

13 [18]

The Control Algorithm - Server

I Purpose:

I sequentialise concurrent operations

I distribute transformed operations

Client A •
c ′2

- •
c ′3

- •

Server r0
c1 - r1

a
6

c2 - r2

a′
6

c3 - r3

a′′
6

c4 = a′′
- r4

==========

Client B •

b

?

c ′′3
- •

b′

?

13 [18]

The Control Algorithm - Server

I Purpose:

I sequentialise concurrent operations

I distribute transformed operations

Client A •
c ′2

- •
c ′3

- •

Server r0
c1 - r1

a
6

c2 - r2

a′
6

c3 - r3

a′′
6

c4 = a′′
- r4

==========

Client B •

b

?

c ′′3
- •

b′

?

c ′4
- •

b′′

?

13 [18]

The Control Algorithm - Server

I Purpose:

I sequentialise concurrent operations

I distribute transformed operations

Client A •
c ′2

- •
c ′3

- •

Server r0
c1 - r1

a
6

c2 - r2

a′
6

c3 - r3

a′′
6

c4 = a′′
- r4

c5 = b′′
-

==========

r5

Client B •

b

?

c ′′3
- •

b′

?

c ′4
- •

b′′

?==
==
==
==
==

13 [18]

The Control Algorithm - Server

I Purpose:

I sequentialise concurrent operations

I distribute transformed operations

Client A

Server r0
c1 - r1

c2 - r2
c3 - r3

Client B

14 [18]

The Control Algorithm - Server

I Purpose:

I sequentialise concurrent operations

I distribute transformed operations

Client A •

Server r0
c1 - r1

a
6

c2 - r2
c3 - r3

Client B •

b

?

14 [18]

The Control Algorithm - Server

I Purpose:

I sequentialise concurrent operations

I distribute transformed operations

Client A •

Server r0
c1 - r1

a
6

c2 - r2
c3 - r3

Client B •

b

?

c ′′3
- •

b′

?

14 [18]

The Control Algorithm - Server

I Purpose:

I sequentialise concurrent operations

I distribute transformed operations

Client A •

Server r0
c1 - r1

a
6

c2 - r2
c3 - r3

c4 = b′
- r4

Client B •

b

?

c ′′3
- •

b′

?==
==
==
==
==

14 [18]

The Control Algorithm - Server

I Purpose:

I sequentialise concurrent operations

I distribute transformed operations

Client A •
c ′2

- •

Server r0
c1 - r1

a
6

c2 - r2

a′
6

c3 - r3
c4 = b′

- r4

Client B •

b

?

c ′′3
- •

b′

?==
==
==
==
==

14 [18]

The Control Algorithm - Server

I Purpose:

I sequentialise concurrent operations

I distribute transformed operations

Client A •
c ′2

- •
c ′3

- •

Server r0
c1 - r1

a
6

c2 - r2

a′
6

c3 - r3

a′′
6

c4 = b′
- r4

Client B •

b

?

c ′′3
- •

b′

?==
==
==
==
==

14 [18]

The Control Algorithm - Server

I Purpose:

I sequentialise concurrent operations

I distribute transformed operations

Client A •
c ′2

- •
c ′3

- •
c ′4

- •

Server r0
c1 - r1

a
6

c2 - r2

a′
6

c3 - r3

a′′
6

c4 = b′
- r4

a′′′
6

Client B •

b

?

c ′′3
- •

b′

?==
==
==
==
==

14 [18]

The Control Algorithm - Server

I Purpose:

I sequentialise concurrent operations

I distribute transformed operations

Client A •
c ′2

- •
c ′3

- •
c ′4

- •

Server r0
c1 - r1

a
6

c2 - r2

a′
6

c3 - r3

a′′
6

c4 = b′
- r4

a′′′
6

c5 = a′′′
- r5

==========

Client B •

b

?

c ′′3
- •

b′

?==
==
==
==
==

14 [18]

The Control Algorithm - Client

I Purpose: buffer operations while waiting for acknowledgment

•
a

- • Revision r

I Problem: web client must be implemented in JavaScript

15 [18]

The Control Algorithm - Client

I Purpose: buffer operations while waiting for acknowledgment

•
a

- • Revision r

•

c

?
Revision r + 1

I Problem: web client must be implemented in JavaScript

15 [18]

The Control Algorithm - Client

I Purpose: buffer operations while waiting for acknowledgment

•
a

- • Revision r

•

c

?

a′
- •

c ′

?
Revision r + 1

I Problem: web client must be implemented in JavaScript

15 [18]

The Control Algorithm - Client

I Purpose: buffer operations while waiting for acknowledgment

•
a

- • Revision r

I Problem: web client must be implemented in JavaScript

15 [18]

The Control Algorithm - Client

I Purpose: buffer operations while waiting for acknowledgment

•
a

- •
b

- • Revision r

I Problem: web client must be implemented in JavaScript

15 [18]

The Control Algorithm - Client

I Purpose: buffer operations while waiting for acknowledgment

•
a

- •
b

- • Revision r

•

c

?
Revision r + 1

I Problem: web client must be implemented in JavaScript

15 [18]

The Control Algorithm - Client

I Purpose: buffer operations while waiting for acknowledgment

•
a

- •
b

- • Revision r

•

c

?

a′
- •

c ′

?
Revision r + 1

I Problem: web client must be implemented in JavaScript

15 [18]

The Control Algorithm - Client

I Purpose: buffer operations while waiting for acknowledgment

•
a

- •
b

- • Revision r

•

c

?

a′
- •

c ′

?

b′
- •

c ′′

?
Revision r + 1

I Problem: web client must be implemented in JavaScript

15 [18]

The Control Algorithm - Client

I Purpose: buffer operations while waiting for acknowledgment

•
a

- •
b

- • Revision r

•

c

?

a′
- •

c ′

?

b′
- •

c ′′

?
Revision r + 1

I Problem: web client must be implemented in JavaScript

15 [18]

System Architecture: Components

clide-core

clide-web
clide-isabelle

clide-haskell

Akka Remoting

Akka Remoting

A
kk

a
R

em
ot

in
g

W
ebSock

et

W
eb

S
oc

ke
t W

ebS
ocket

WebSocket

...Akka Remoting

16 [18]

Universal Collaboration

I Clide is generic: Isabelle is just one particular collaborator based on the great PIDE
framework.

I Paradigm of universal collaboration: document-centered collaborative development.

I Allows easy development of new assistants: just define interaction with document,
synchronisation and integration provided by Clide.

I Examples: prototypical Haskell and Scala IDE

17 [18]

Concluding Remarks

I Clide: Interactive Collaborative Real-Time Theorem Proving

I Based on formalisation of Operational Transformations in Isabelle

I Compares well to Isabelle/jEdit or ProofGeneral

I Flexible system architecture built on Scala, Akka

I Clide is generic

I Prototypical Haskell and Scala instantiations

I Novel concept of universal collaboration

18 [18]

