Collaborative Interactive Theorem Proving with Clide

Martin Ring, Christoph Lüth

ITP 2014, 15.07.2014, Vienna

Motivation

Interactive theorem proving can be lonesome...

Motivation

Interactive theorem proving can be lonesome...

... but mathematics is a social activity!

Previous work: a web interface for Isabelle

Next step: extend this to real-time collaborative proof

"Google docs for proofs"

Action!

		-	. 🗗 🗙
(c)	Attp://maring.informatik.uni-bremen.de:9000/martinring/e	xamples $\mathcal{P} \star \mathcal{O}$ (2) dide 2 - coding ×	n ★ ≎
=		Operation.thy ×	\rightarrow
	Files 1 🗅 🗅	by (rule transform.induct, auto)	•
쓭	*	\mathbf{text} {*	~
٢	🖿 Util	We can now show the main correctness property, first for the set @{term tran *}	isforma
ด	🖺 Control.thy 😽		
	Dperation.thy	$\begin{array}{l} \textbf{lemma transformationConvergence: "((a,b), (a',b')) \in transformation \Longrightarrow \\ (\exists ab. ((a,b'), ab) \in composition \land ((b,a'), ab) \in composition)"\end{array}$	
	Collaboration	apply (erule transformation.induct) by (auto)	
	3 other collaborators are participating in	text {*	
	this project:	We now show the correctness of the @{term transform} function. Because the	equal
	📥 cxl 🛛 online	Chat Output	*
	Selection	proof (prove): step 1	ď
	📥 martinring online	goal (9 subgoals):	
	@ selection	1. ∃ab. (([], []), ab) \in composition \land (([], []), ab) \in composition 2. ∧a b a' b' c. ((a, b), a', b') \in transformation \Rightarrow ∃ab. ((a, b'), ab) \in composition \land ((b, a'), ab) \in compo	sition =
	📥 isabelle 🛛 🔒 online	3. $\wedge b a' b' c$. (([], b), a', b') \in transformation $\Rightarrow \exists ab$. (([], b'), ab) \in composition \wedge ((b, a'), ab) \in composition \wedge (b' $\land a'$), ab) \in composition \wedge ((b' $\land a'$), ab) \in composition \wedge ((b' $\land a') \land a' b' \circ a' b' $	tion ⇒ b, a'), ab)
	@ errors	5. $\land a b a' b' c.$ ((Delete # a, b), a', b') \in transformation $\Rightarrow \exists ab.$ ((Delete # a, b'), ab) \in composition \land ((black of a b a' b' c. ((Delete # a, b'), ab) \in composition \land ((black of a b a' b' c. ((Delete # a, b'), ab) \in composition \land ((black of a b a' b' c. ((Delete # a, b'), ab) \in composition \land ((black of a b a' b' c. ((Delete # a, b'), ab) \in composition \land ((black of a b a' b' c. ((Delete # a, b'), ab) \in composition \land ((black of a b a' b' c. ((Delete # a, b'), ab) \in composition \land ((black of a b a' b' c. ((Delete # a, b'), ab) \in composition \land ((black of a b a' b' c. ((Delete # a, b'), ab) \in composition \land ((black of a b a' b' c. ((Delete # a, b'), ab) \in composition \land ((black of a b a' b' c. ((Delete # a, b'), ab) \in composition \land ((black of a b a' b' c. ((Delete # a, b'), ab) \in composition \land ((black of a b a' b' c. ((Delete # a, b'), ab) \in composition \land ((Delete # a, b'), ab) \in	o, a'), ab
	progress	6. ∧a b a' b'. ((a, b), a', b') ∈ transformation $\Rightarrow \exists ab. ((a, b'), ab) \in composition \land ((b, a'), ab) ∈ composition \land ((b,$	$tion \Rightarrow$
	Typing tooltips	8. $\land a b a b'$. ((a, b), a', b') \in transformation $\Rightarrow \exists ab. ((a, b'), ab) \in$ composition \land ((b, a'), ab) \in composition \land ((b, a'), (ab) \in ((b, a'), (ab) \in ((b, a'), (ab) \in ((b, a'), (ab) \in ((b, a'), (ab) \in ((b, a'), (ab) \in ((b, a'), (ab) \in ((b,	tion ⇒
	substitutions	9. $\land a b a' b'$. ((a, b), a', b') \in transformation $\Rightarrow \exists ab$. ((a, b'), ab) \in composition \land ((b, a'), ab) \in ((b, a'), ab) $((b, a'), ab) \in$ ((b, a'), ab) $((b, a'), ab) \in$ ((b	tion \Rightarrow

- **Scientific collaboration:** a small number of co-authors writing a joint proof
- Proof review: one user explicates content of proof to others, e.g. teacher to students or vice versa
- Machine-assisted collaboration: collaborating with a machine

Under the hood

▶ The basic problem: synchronisation

Well researched solution: operational transformation

Operational Transformations

► Basic Problem:

Basic correctness:

$$\forall D. applyOp \ b' \ (applyOp \ a \ D) = applyOp \ a' \ (applyOp \ b \ D). \tag{1}$$

• Given by auxiliary *transform* and two equations:

$$applyOp \ (b \circ a) \ D = applyOp \ b \ (applyOp \ a \ D)$$
(2)

transform
$$a \ b = \langle a', b' \rangle \Longrightarrow b' \circ a = a' \circ b$$
 (3)

Text is modified using three basic actions:

- Retain Copy current character
- Delete Drop current character
- ► Insert c Insert c

An operation is a sequence of actions.

Text is modified using three basic actions:

- Retain Copy current character
- Delete Drop current character
- ► Insert c Insert c

An operation is a sequence of actions.

An example:

Input: I P T Output: Operation: [

Text is modified using three basic actions:

- Retain Copy current character
- Delete Drop current character
- ► Insert c Insert c

An operation is a sequence of actions.

An example:

Input:	РТ
Output:	I
Operation:	[Retain,

Text is modified using three basic actions:

- Retain Copy current character
- Delete Drop current character
- ► Insert c Insert c

An operation is a sequence of actions.

An example:

Input: T Output: I Operation: [*Retain*, *Delete*,

Text is modified using three basic actions:

- Retain Copy current character
- Delete Drop current character
- ► Insert c Insert c

An operation is a sequence of actions.

An example:

Input: Output: I T Operation: [*Retain*, *Delete*, *Retain*,

Text is modified using three basic actions:

- Retain Copy current character
- Delete Drop current character
- ► Insert c Insert c

An operation is a sequence of actions.

An example:

Input: Output: I T P Operation: [*Retain*, *Delete*, *Retain*, *Insert* P]

Text is modified using three basic actions:

- Retain Copy current character
- Delete Drop current character
- ► Insert c Insert c

An operation is a sequence of actions.

An example:

Input: Output: I T P Operation: [*Retain*, *Delete*, *Retain*, *Insert* P]

Text is modified using three basic actions:

- Retain Copy current character
- Delete Drop current character
- ► Insert c Insert c

An operation is a sequence of actions.

An example:

Input:	
Output:	ΙΤΡ
Operation:	[Retain,
	Delete,
	Retain,
	Insert P

- Note: operations are **partial**.
- Need to consider: composition and transformation

Composing operations: case distinction on the action

Note: not simple concatenation!

Example:

p = [Delete, Insert X, Retain]q = [Retain, Insert Y, Delete]compose a b =

Composing operations: case distinction on the action

- Note: not simple concatenation!
- Example:

p = [Insert X, Retain]q = [Retain, Insert Y, Delete]compose a b = [Delete,

Composing operations: case distinction on the action

- Note: not simple concatenation!
- Example:

 $\begin{array}{ll} p & = [Retain] \\ q & = [Insert Y, Delete] \\ compose \ a \ b & = [Delete, Insert X, \end{array}$

Composing operations: case distinction on the action

- Note: not simple concatenation!
- Example:

- Composing operations: case distinction on the action
 - Note: not simple concatenation!
- compose is partial.

Composing operations: case distinction on the action

Note: not simple concatenation!

Example:

compose is partial.

► Extensional equivalence of operations: compose a b ≅ [Delete, Delete, Insert X, Insert Y]

$$\begin{array}{ll} a & = [Retain, Delete] \\ b & = [Delete, Retain, Insert Y] \\ transform a b & = ([Insert X, \\ , [Retain, \\) \end{array}$$

$$\begin{array}{ll} a & = [Delete] \\ b & = [Retain, Insert \ Y] \\ transform \ a \ b & = & ([Insert \ X, Delete, \\ & , [Retain, \\ &) \end{array}$$

$$\begin{array}{l} a & = [] \\ b & = [\mathit{Insert Y}] \\ \textit{transform a } b & = ([\mathit{Insert X}, \mathit{Delete}, \\ , [\mathit{Retain}, \mathit{Delete}, \\) \end{array}$$

► Transforming operations: pointwise completion

► Example:

Formalisation: Correctness

Correctness of compose (??):

theorem composeCorrect: [compose a b = Some ab; applyOp a d = Some d'; applyOp b d' = Some d''] \implies applyOp ab d = Some d''

► Correctness of *transform* (??):

theorem transformCorrect: transform a b = Some (a',b') \implies compose a $b' \neq \text{None } \land$ compose a b' = compose b a'

- ▶ To show previous lemmas, need to construct graphs of the partial functions.
- Application: generate Scala code from Isabelle

Annotations

- Two types of annotation actions
 - Plain n Retain n characters
 - Annotate n c Annotate n characters with annotation c
- \blacktriangleright Annotations \approx identity operations with side-effects
- ▶ No interference with operations can be handled separately

```
lemma transformIdL:
transform (ident (inputLength b)) b = Some (ident (outputLength b), b)
```

- Multiple named annotations per collaborator
- Selections, syntax coloring, substitutions, tooltips, completion, etc.

- Purpose:
 - sequentialise concurrent operations
 - distribute transformed operations

Client A

Server
$$r_0 \xrightarrow{c_1} r_1 \xrightarrow{c_2} r_2 \xrightarrow{c_3} r_3$$

Client B

- Purpose:
 - sequentialise concurrent operations
 - distribute transformed operations

- Purpose:
 - sequentialise concurrent operations
 - distribute transformed operations

- Purpose:
 - sequentialise concurrent operations
 - distribute transformed operations

- Purpose:
 - sequentialise concurrent operations
 - distribute transformed operations

- Purpose:
 - sequentialise concurrent operations
 - distribute transformed operations

- Purpose:
 - sequentialise concurrent operations
 - distribute transformed operations

- Purpose:
 - sequentialise concurrent operations
 - distribute transformed operations

- Purpose:
 - sequentialise concurrent operations
 - distribute transformed operations

Client A

Server
$$r_0 \xrightarrow{c_1} r_1 \xrightarrow{c_2} r_2 \xrightarrow{c_3} r_3$$

Client B

- Purpose:
 - sequentialise concurrent operations
 - distribute transformed operations

- Purpose:
 - sequentialise concurrent operations
 - distribute transformed operations

- Purpose:
 - sequentialise concurrent operations
 - distribute transformed operations

- Purpose:
 - sequentialise concurrent operations
 - distribute transformed operations

- Purpose:
 - sequentialise concurrent operations
 - distribute transformed operations

- Purpose:
 - sequentialise concurrent operations
 - distribute transformed operations

- Purpose:
 - sequentialise concurrent operations
 - distribute transformed operations

Purpose: buffer operations while waiting for acknowledgment

Problem: web client must be implemented in JavaScript

System Architecture: Components

- Clide is generic: Isabelle is just one particular collaborator based on the great PIDE framework.
- > Paradigm of universal collaboration: document-centered collaborative development.
- Allows easy development of new assistants: just define interaction with document, synchronisation and integration provided by Clide.
- Examples: prototypical Haskell and Scala IDE

Concluding Remarks

- Clide: Interactive Collaborative Real-Time Theorem Proving
 - ► Based on formalisation of Operational Transformations in Isabelle
 - Compares well to Isabelle/jEdit or ProofGeneral
 - Flexible system architecture built on Scala, Akka
- Clide is generic
 - Prototypical Haskell and Scala instantiations
 - Novel concept of universal collaboration

