Collaborative Interactive Theorem Proving with Clide

Martin Ring, Christoph Liith

ITP 2014, 15.07.2014, Vienna

iy 1 [18]



Motivation

No subgoals
left!

Interactive theorem proving can be
lonesome. . .
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a social activity!
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Introducing Clide

» Previous work: a web interface for Isabelle

» Next step: extend this to real-time collaborative proof

» “Google docs for proofs”
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Use Cases

» Scientific collaboration: a small number of co-authors writing a joint proof

» Proof review: one user explicates content of proof to others, e.g. teacher to students or
vice versa

» Machine-assisted collaboration: collaborating with a machine
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Under the hood

» The basic problem: synchronisation

Client B

O%A |]a
\% _—FH

Server

Client C

» Well researched solution: operational transformation
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Operational Transformations

» Basic Problem:

» Basic correctness:

VD. applyOp b’ (applyOp a D) = applyOp &' (applyOp b D).

» Given by auxiliary transform and two equations:

applyOp (bo a) D = applyOp b (applyOp a D)
transform a b= (a',b') = b oa=4aob

B

(3)
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Operational Transformation: Basic Principle

Text is modified using three basic actions:
» Retain — Copy current character

» Delete — Drop current character

» Insert ¢ — Insert ¢

An operation is a sequence of actions.
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Operational Transformation: Basic Principle

Text is modified using three basic actions: An example:

» Retain — Copy current character

» Delete — Drop current character Input: IPT
Output:

» Insert ¢ — Insert ¢ Operation: [

An operation is a sequence of actions.
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Operational Transformation: Basic Principle
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» Retain — Copy current character
Input: T
» Delete — Drop current character
Output: I
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Operational Transformation:

Text is modified using three basic actions:

» Retain — Copy current character
» Delete — Drop current character
» Insert ¢ — Insert ¢

An operation is a sequence of actions.

Basic Principle

An example:

Input:
Output:
Operation:

IT
[Retain,
Delete,
Retain,
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Operational Transformation: Basic Principle

Text is modified using three basic actions: An example:

» Retain — Copy current character

» Delete — Drop current character Input:
Output:

> Insert ¢ — Insert ¢ Operation:

An operation is a sequence of actions.

» Note: operations are partial.

» Need to consider: composition and transformation

ITP
[Retain,
Delete,
Retain,
Insert P|
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Composing Operations

» Composing operations: case distinction on the action

» Note: not simple concatenation!

» Example:
p = [Delete, Insert X, Retain]
q = [Retain, Insert Y, Delete]
compose a b =

» compose is partial.
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Composing Operations

» Composing operations: case distinction on the action

» Note: not simple concatenation!

» Example:
p = [Insert X, Retain|
q = [Retain, Insert Y, Delete]
compose a b = [Delete,

» compose is partial.
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Composing Operations

» Composing operations: case distinction on the action

» Note: not simple concatenation!

» Example:
p = [Retain|
q = [Insert Y, Delete]
compose a b = [Delete, Insert X,

» compose is partial.
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Composing Operations

» Composing operations: case distinction on the action

» Note: not simple concatenation!

» Example:
p = [Retain|
q = [Delete]
compose a b = [Delete, Insert X, Insert Y,
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Composing Operations

» Composing operations: case distinction on the action

» Note: not simple concatenation!

» Example:
p =1
g =1l
compose a b = [Delete, Insert X, Insert Y, Delete]

» compose is partial.
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Composing Operations

v

Composing operations: case distinction on the action

» Note: not simple concatenation!

v

Example:
p = [Delete, Insert X, Retain]
q = [Retain, Insert Y, Delete]
compose a b = [Delete, Insert X, Insert Y, Delete]

» compose is partial.

v

Extensional equivalence of operations:
compose a b = [Delete, Delete, Insert X, Insert Y]
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Transforming Operations

» Transforming operations: pointwise completion

» Example:
a = [Insert X, Retain, Delete]
b = [Delete, Retain, Insert Y]
transforma b = (]
o
)
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Transforming Operations

» Transforming operations: pointwise completion

» Example:
a
b

transform a b

[Retain, Delete]

[Delete, Retain, Insert Y]
([Insert X,
, [Retain,

)

10 [18]



Transforming Operations

» Transforming operations: pointwise completion

[
/ NN %
[ ] h [ ]
v
X -
[ ]
» Example:
a = [Delete]
b = [Retain, Insert Y|
transform a b = ([Insert X, Delete,
, [Retain,

)
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Transforming Operations

» Transforming operations: pointwise completion

» Example:
a =[]
b = [Insert Y]
transform a b = ([Insert X, Delete,
, [Retain, Delete,

)
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Transforming Operations

» Transforming operations: pointwise completion

» Example:
a =[]
b =]]
transform a b = ([Insert X, Delete, Retain]
, [Retain, Delete, Insert Y|

)
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Transforming Operations

» Transforming operations: pointwise completion

» Example:

B

a
b
transform a b

[Insert X, Retain, Delete]

[Delete, Retain, Insert Y]
([Insert X, Delete, Retain]
, [Retain, Delete, Insert Y|

)

10 [18]



Formalisation: Correctness

» Correctness of compose (77):
theorem composeCorrect:
[ compose a b = Some ab; applyOp a d = Some d’; applyOp b d’ = Some d"" ]
= applyOp ab d = Some d"’

» Correctness of transform (77):

theorem transformCorrect. transform a b = Some (a’,b’)
= compose a b’ # None N\ compose a b’ = compose b a’

» To show previous lemmas, need to construct graphs of the partial functions.

» Application: generate Scala code from Isabelle
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Annotations

» Two types of annotation actions

» Plain n — Retain n characters

» Annotate n ¢ — Annotate n characters with annotation ¢

» Annotations ~ identity operations with side-effects

» No interference with operations — can be handled separately

lemma transformldL:
transform (ident (inputLength b)) b = Some (ident (outputlLength b), b)

» Multiple named annotations per collaborator

» Selections, syntax coloring, substitutions, tooltips, completion, etc.
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The Control Algorithm - Server

» Purpose:

» sequentialise concurrent operations

» distribute transformed operations

Client A

C1 Co C3
Server ry - m r3

Client B
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The Control Algorithm - Server
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The Control Algorithm - Server
» Purpose:

» sequentialise concurrent operations

» distribute transformed operations
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The Control Algorithm - Server

» Purpose:

» sequentialise concurrent operations

» distribute transformed operations
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The Control Algorithm - Client

» Purpose: buffer operations while waiting for acknowledgment

I —— Revision r
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The Control Algorithm - Client
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The Control Algorithm - Client

» Purpose: buffer operations while waiting for acknowledgment

[ ]
| C/l
[ ]

Revision r

Revision r + 1

a b

B
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The Control Algorithm - Client

» Purpose: buffer operations while waiting for acknowledgment

[ ]
| C/l
[ ]

» Problem: web client must be implemented in JavaScript

Revision r

Revision r + 1
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System Architecture: Components

S clidecore | «—— 3
R Akka Remoting
o
Q
e 2
© = ’q/r,(,
=) 7 Re
. <3 %,
clide-haskell o

clide-isabelle

16 [18]



Universal Collaboration

v

Clide is generic: Isabelle is just one particular collaborator based on the great PIDE
framework.

v

Paradigm of universal collaboration: document-centered collaborative development.

v

Allows easy development of new assistants: just define interaction with document,
synchronisation and integration provided by Clide.

v

Examples: prototypical Haskell and Scala IDE
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Concluding Remarks

» Clide: Interactive Collaborative Real-Time Theorem Proving

» Based on formalisation of Operational Transformations in Isabelle
» Compares well to Isabelle/jEdit or ProofGeneral

» Flexible system architecture built on Scala, Akka

» Clide is generic
» Prototypical Haskell and Scala instantiations

» Novel concept of universal collaboration
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