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R7: 10 b9 e6 51

Flags: EQ
Next instruction: <mp Re, Rz
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Next instruction: cst 2 — Rg
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Ro:

07 00 06 07 03 00 00 00 00 00 00 05 Ri:
00 00 00 00 00 00 01 00 09 00 00 00  Ra:
00 00 00 04 09 00 00 02 00 00 00 02 Rs:

JGBIG0NGEI62] 04 00 00 00 00 00 00 01  Rs:

nnMmMMN NN NN NN R

nnMmMMMNN NN NN R

Next instruction:
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: 04 a4 3b 09

10 b9 e6 51

Flags: LT LE

store Rop — *Ro
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Next instruction: goto 1
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Ro: 00 00 00 04
07 00 06 07 03N00N00N00N00N00N00N0H R.: 0 77 77 77
00 00 00 00 00 00 01 00 09 00 00 00  Rz: 00 00 00 02
00 00 00 04 09 00 00 02 00 00 00 02  Rs: 77 77 77 77
05 00 00 02 04 00 00 00 00 00 00 01 R4 77 77 77 77
7722277722222 77 R 7222 72 72
7777777227 227222227272 77 Re: 04 a4 3b 09
R7: 10 b9 e6 51
Flags: LT LE

Next instruction: gotoLE 4
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Ro: 00 00 00 04
07 00 06 07 03 00 00 00 00 00 00 04  Ry: 77 77 77 77
00 00 00 00 JGONOBNOENG0Y 09 00 00 00 R2: 00 00 00 02
00 00 00 04 09 00 00 02 00 00 00 02  Rs: 77 77 77 77
05 00 00 02 04 00 00 00 00 00 00 01 ~ R4 77 77 77 77
nnnNNNNNNNNNN R NNNN
7272727227 727222227272 77 Re: 04 a4 3b 09

Rz: 10 b9 6 51

Flags: LT LE
Next instruction: halt Ro
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Ro: 00 00 00 04
07 00 06 07 03 00 00 00 00 00 00 04 Ri: 722 722 72272
00 00 00 00 00 00 01 00 09 00 00 00 R>: 00 00 00 02
00 00 00 04 09 00 00 02 00 00 00 02 Rs: 772 722 722 72
05 00 00 02 04 00 00 00 00 00 00 01 Rq: 772 22 22 722
MmN NN NN R MM
2227 2 2722 77277 Re: 04 a4 3b 09

R7: 10 b9 e6 51

Flags: LT LE
Final value: 4
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Given such a program, how to. ..

Disassemble it?

Where are the instructions?
What are they?

Compute its control-flow graph?
What are the targets of the computed jumps?

Automatically prove safety properties about it?

Can its execution be stuck?
May it access secret parts of the memory?

Trust the answers to above questions?

Is the analysis sound?
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Inspiring related work

“Certified Self-Modifying Code"
(Cai, Shao, and Vaynberg PLDI'2007)

@ Framework for manual verification of self-modifying programs

“WYSINWYX: What You See Is Not What You eXecute”
(Balakrishnan and Reps 2010)

@ Static analysis of x86
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Our approach

Formalize in Coq a static analysis

@ that is flow sensitive
» attach to each reachable program point an over-approximation of the

state at that point
» analyze the content of the memory and of the registers

@ without a previous disassembling or CFG reconstruction
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Architecture

Abstract interpreter

State abstraction

Numeric abstraction

Each layer is parameterized by the underlying one
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Base Layer

Numeric abstract domains
Abstract sets of 32-bit machine integers

Finite sets e.g., {0;1;7}
Strided Intervals that combines interval and congruence information
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Signature of abstract domains

Each abstract domain is equipped with a lattice structure

Class weak_lattice (A: Type) : Type :=
{ leb: A - A — bool (* order *)

; top: A (* maximal element *)

; join: A — A — A (* binary upper bound *)

; widen: A - A — A (* extrapolation operator *)
}.
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Concretization based specification

Each abstract domain comes with a concretization relation

Class gamma_op (A B: Type) : Type :=~v : A — P(B).

Record adom (A B:Type) (_:weak_lattice A) (_:gamma_op A B): Prop :=
{ gamma_monotone: V al a2, leb al a2 = true — v al € vy a2

; gamma_top: V x, X € 7y top

; join_sound: V xy, vy xuU~yy<y (join x y) .

@ No more properties required

Example (Strided intervals)

Instance si_gamma : gamma_op strided_interval int := A x i,
low_bound x < Int.signed i < up_bound x
A low_bound x =

Int.signed i [ stride x ].

Vincent Laporte et alii Verified Disassembling of SMC July 16th 2014 9 /16



Signature of the state abstraction

Record mem_dom (ab_mem: Type) (ab_num: Type) : Type :=
{ (x lattice *)
as_wl: weak_lattice ab_mem
(* queries *)
; var: ab_mem — register — ab_num
; load: ab_mem — addr — ab_num
(* abstract transformers *)
; assign: ab_mem — register — ab_num — ab_mem
(* more omitted ... *)
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Signature of the state abstraction

Record mem_dom (ab_mem: Type) (ab_num: Type) : Type :=
{ (x lattice *)
as_wl: weak_lattice ab_mem
(* queries *)
; var: ab_mem — register — ab_num
; load: ab_mem — addr — ab_num
(* abstract transformers *)
; assign: ab_mem — register — ab_num — ab_mem
(* more omitted ... *)

Parameterized by a numeric abstraction: ab_num
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Signature of the state abstraction

Record mem_dom (ab_mem: Type) (ab_num: Type) : Type :=
{ (x lattice *)
as_wl: weak_lattice ab_mem
(* queries *)
; var: ab_mem — register — ab_num
; load: ab_mem — addr — ab_num
(* abstract transformers *)
; assign: ab_mem — register — ab_num — ab_mem
(* more omitted ... *)

Equipped with a lattice structure: order, top element, join operator
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Signature of the state abstraction

Record mem_dom (ab_mem: Type) (ab_num: Type) : Type :=
{ (x lattice *)
as_wl: weak_lattice ab_mem
(* queries *)
; var: ab_mem — register — ab_num
; load: ab_mem — addr — ab_num
(* abstract transformers *)
; assign: ab_mem — register — ab_num — ab_mem
(* more omitted ... *)

Provides access to the abstraction of each memory unit
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Signature of the state abstraction

Record mem_dom (ab_mem: Type) (ab_num: Type) : Type :=
{ (x lattice *)
as_wl: weak_lattice ab_mem
(* queries *)
; var: ab_mem — register — ab_num
; load: ab_mem — addr — ab_num
(* abstract transformers *)
; assign: ab_mem — register — ab_num — ab_mem
(* more omitted ... *)

Abstract operators model concrete instructions
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Signature of the state abstraction

Record mem_dom (ab_mem: Type) (ab_num: Type) : Type :=
{ (x lattice *)
as_wl: weak_lattice ab_mem
(* queries *)
; var: ab_mem — register — ab_num
; load: ab_mem — addr — ab_num
(* abstract transformers *)
; assign: ab_mem — register — ab_num — ab_mem
(* more omitted ... *)

Example (Specification of the 1oad query)

load_sound: V ab, V m,
m € y(ab) —V a:addr, m(a) € y(load ab a)
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Abstract small-step

Specification

Lemma ab_step_correct : V m m’ ab,
me v(ab) > m v m’> —> m’ € y(ab_step m. (pp) ab)

Algorithm

Given an abstract state m at an address pp (program point)

© Decode all possible instructions from pp
@ For each of them predict

» next program point

» next abstract state

© Propagate the results
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Fix-point computation

Given a program P (partial initial memory), compute an abstract
environment E such that

e init(P) = E[0], and
o Vp p' m',(p',m) € ab_step(p)(E[p]) — m' = E[P]

Iterate from initial state

Work-set of reachable program points that need further analysis

Widening steps to ensure termination
» The widening policy is a parameter of the analysis

A posteriori validation

Lemma validate_correct : V P E,
validate_fixpoint P E = true — [P] < ~(E)
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What can we do with this fix-point?

Given a (sound) fix-point:
Program safety can be proved (no run-time error)

Theorem analysis_sound : V P dom fuel ab_num,
analysis ab_num P dom fuel # None — safe P

A CFG can be computed
@ Reachable program points
@ Possible instructions when execution reaches a program point

@ Possible targets of the jumps
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Extension: Trace Partitioning

Some merges of abstract states incur a large precision loss:
@ Do not merge abstract states that differ according to some criterion

my my my myp

@ Generalizes the flow sensitivity

@ Need to modify only the fix-point computation (and checker)
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Experimental evaluation

Extract to OCaml and run on challenging examples!

\

NN N A X NSNS S XN

opcode modification overwrites code before execution

multilevel RCG code that once executed produces code that once. ..
bootloader loads code from disk

control flow modification overwrites jumps

vector dot product specializes a program for a given argument
runtime code checking validates code integrity

Fibonacci sequence uses an instruction as accumulator
self-replication infinitely copies itself

mutual modification two parts modify each other

polymorphic code mutates itself to escape anti-viruses

code obfuscation features fake instructions if naively disassembled

code encryption decrypts a code, runs it, and crypts it back

! Cai, Shao, and Vaynberg PLDI'2007.
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Conclusion

Summary
@ Verified executable abstract interpreter for a binary language

@ Handles seamlessly self-modifying programs
@ Able to prove the safety of challenging examples

@ Full development available online:
http://www.irisa.fr/celtique/ext/smc/

Perspectives

@ More realistic languages (x86)
@ Generate the analyzer (and its proof) to cope with the huge number
of instructions
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