Verified Abstract Interpretation Techniques for
Disassembling Low-level Self-modifying Code

Sandrine Blazy! Vincent Laporte! David Pichardie?

LUniversité Rennes 1 — IRISA — Inria

2ENS Rennes — IRISA — Inria

July 16th 2014

Static analysis. . .

& of biar

Source not available
Compiler not trusted

Vincent Laporte et alii Verified Disassembling of SMC

Ro: 7272 722 77
J6700006707] 03 00 00 00 00 00 00 05 Ry: 77 77 77 77
00 00 00 00 00 00 01 00 09 00 00 00 Rp: ?? 77 77 77
00 00 00 04 09 00 00 02 00 00 00 02 Rs: 77 77 77 77
05 00 00 02 04 00 00 00 00 00 00 01 ~ R4 77 77 77 77
NNNNNNNNNNNNT R NNNN
7777727277 7777722272727 77 Re: 04 a4 3b 09

R7: 10 b9 e6 51

Flags: EQ
Next instruction: <mp Re, Rz

Vincent Laporte et alii Verified Disassembling of SMC July 16th 2014 2 /16

07 00 06 07 ENOIORIONOIGON00S

00 00 00 00 00 00 01 00 09 00 00 00
00 00 00 04 09 00 00 02 00 00 00 02
05 00 00 02 04 00 00 00 00 00 00 01
L O O O O O O Y S Y SN Y O N ¢
L O Y O O Y O O N A Y O Y SN YO A N ¢

Next instruction: gotoLE b5

Ro: 77
Ry 77
Ro: 77
Rs: 77
R4Z 7
Rs: 77

77
7
77
7
7
77

7
7
77
7
77
77

7
77
77
7
7
77

Re: 04 a4 3b 09
R7: 10 b9 e6 51
Flags: LT LE

BV PSSR \crificd Disassembling of SMC

July 16t 2014

2/16

07 00 06 07 03 00 00 00 00 00 00 05

00 00 00 00 00 00 01 00 OSNGENGGNG0N
166700766764 09 00 00 02 00 00 00 02

05 00 00 02 04 00 00 00 00 00 00 01
L O N O O o O N B Y A Y SN A O A A ¢
L O O O O o O N B Y A Y SN O A A ¢

Next instruction: cst 4 — Rg

Ro: 7
R1: ??
R2: ??
R3Z 77
R4Z 77
Rs: 77

77
77
77
77
77
77

7
77
7
77
77
77

7
77
7
77
77
77

Re: 04 a4 3b 09
R7: 10 b9 e6 51
Flags: LT LE

BV PSSR \crificd Disassembling of SMC

July 16t 2014

2/16

07 00 06 07 03 00 00 00 00 00 00 05 Ri:
00 00 00 00 00 00 01 00 09 00 00 00 Ra:

00 00 00 04 [ETOOIOOZMOION00E

05 00 00 02 04 00 00 00 00 00 00 01 Ra:
nnMmMMN NN NN NN R
nnMmMMN NN NN NN R

Next instruction: cst 2 — Rg

Verified Disassembling of SMC

77
77
77
77
77

77
77
77
77
77

: 00 00 00 04

777
7N
777
777
777

04 a4 3b 09
10 b9 e6 51
Flags: LT LE

July 16t 2014

2/16

Ro:

07 00 06 07 03 00 00 00 00 00 00 05 Ri:
00 00 00 00 00 00 01 00 09 00 00 00 Ra:
00 00 00 04 09 00 00 02 00 00 00 02 Rs:

JGBIG0NGEI62] 04 00 00 00 00 00 00 01 Rs:

nnMmMMN NN NN NN R

nnMmMMMNN NN NN R

Next instruction:

Vincent Laporte et alii

R7Z

00 00 00 04
7077
00 00 00 02
777
777
777

: 04 a4 3b 09

10 b9 e6 51

Flags: LT LE

store Rop — *Ro

Verified Disassembling of SMC

July 16t 2014

2/16

00 00 00 00 00 00 01 00 09 00 00 00 Ro:
00 00 00 04 09 00 00 02 00 00 00 02 R3:

05 00 00 02 [OAOGOOOIOBUOON .

nnMMNMN NN NN N7 R
nnMMNMN NN NN NN R

Next instruction: goto 1

: 00 00 00 04
O Y YA

00 00 00 02
7NN
7NN
7NN
04 a4 3b 09
10 b9 e6 51

Flags: LT LE

Verified Disassembling of SMC

July 16t 2014

2/16

Ro: 00 00 00 04
07 00 06 07 03N00N00N00N00N00N00N0H R.: 0 77 77 77
00 00 00 00 00 00 01 00 09 00 00 00 Rz: 00 00 00 02
00 00 00 04 09 00 00 02 00 00 00 02 Rs: 77 77 77 77
05 00 00 02 04 00 00 00 00 00 00 01 R4 77 77 77 77
7722277722222 77 R 7222 72 72
7777777227 227222227272 77 Re: 04 a4 3b 09
R7: 10 b9 e6 51
Flags: LT LE

Next instruction: gotoLE 4

BV PSSR \crificd Disassembling of SMC

July 16t 2014

2/16

Ro: 00 00 00 04
07 00 06 07 03 00 00 00 00 00 00 04 Ry: 77 77 77 77
00 00 00 00 JGONOBNOENG0Y 09 00 00 00 R2: 00 00 00 02
00 00 00 04 09 00 00 02 00 00 00 02 Rs: 77 77 77 77
05 00 00 02 04 00 00 00 00 00 00 01 ~ R4 77 77 77 77
nnnNNNNNNNNNN R NNNN
7272727227 727222227272 77 Re: 04 a4 3b 09

Rz: 10 b9 6 51

Flags: LT LE
Next instruction: halt Ro

Vincent Laporte et alii Verified Disassembling of SMC July 16th 2014 2 /16

Ro: 00 00 00 04
07 00 06 07 03 00 00 00 00 00 00 04 Ri: 722 722 72272
00 00 00 00 00 00 01 00 09 00 00 00 R>: 00 00 00 02
00 00 00 04 09 00 00 02 00 00 00 02 Rs: 772 722 722 72
05 00 00 02 04 00 00 00 00 00 00 01 Rq: 772 22 22 722
MmN NN NN R MM
2227 2 2722 77277 Re: 04 a4 3b 09

R7: 10 b9 e6 51

Flags: LT LE
Final value: 4

Vincent Laporte et alii Verified Disassembling of SMC

July 16t 2014

2/16

Given such a program, how to. ..

Disassemble it?

Where are the instructions?
What are they?

Compute its control-flow graph?
What are the targets of the computed jumps?

Automatically prove safety properties about it?

Can its execution be stuck?
May it access secret parts of the memory?

Trust the answers to above questions?

Is the analysis sound?

Vincent Laporte et alii Verified Disassembling of SMC July 16th 2014

3/16

Inspiring related work

“Certified Self-Modifying Code"
(Cai, Shao, and Vaynberg PLDI'2007)

@ Framework for manual verification of self-modifying programs

“WYSINWYX: What You See Is Not What You eXecute”
(Balakrishnan and Reps 2010)

@ Static analysis of x86

Verified Disassembling of SMC July 16th 2014 4 /16

Our approach

Formalize in Coq a static analysis

@ that is flow sensitive
» attach to each reachable program point an over-approximation of the

state at that point
» analyze the content of the memory and of the registers

@ without a previous disassembling or CFG reconstruction

Verified Disassembling of SMC July 16th 2014 5/ 16

Vincent Laporte et alii

Architecture

Abstract interpreter

State abstraction

Numeric abstraction

Each layer is parameterized by the underlying one

Vincent Laporte et alii Verified Disassembling of SMC July 16th 2014

6/16

Base Layer

Numeric abstract domains
Abstract sets of 32-bit machine integers

Finite sets e.g., {0;1;7}
Strided Intervals that combines interval and congruence information

Vincent Laporte et alii Verified Disassembling of SMC July 16th 2014 7 /16

Signature of abstract domains

Each abstract domain is equipped with a lattice structure

Class weak_lattice (A: Type) : Type :=
{ leb: A - A — bool (* order *)

; top: A (* maximal element *)

; join: A — A — A (* binary upper bound *)

; widen: A - A — A (* extrapolation operator *)
}.

Vincent Laporte et alii Verified Disassembling of SMC July 16th 2014

8/ 16

Concretization based specification

Each abstract domain comes with a concretization relation

Class gamma_op (A B: Type) : Type :=~v : A — P(B).

Record adom (A B:Type) (_:weak_lattice A) (_:gamma_op A B): Prop :=
{ gamma_monotone: V al a2, leb al a2 = true — v al € vy a2

; gamma_top: V x, X € 7y top

; join_sound: V xy, vy xuU~yy<y (join x y) .

@ No more properties required

Example (Strided intervals)

Instance si_gamma : gamma_op strided_interval int := A x i,
low_bound x < Int.signed i < up_bound x
A low_bound x =

Int.signed i [stride x].

Vincent Laporte et alii Verified Disassembling of SMC July 16th 2014 9 /16

Signature of the state abstraction

Record mem_dom (ab_mem: Type) (ab_num: Type) : Type :=
{ (x lattice *)
as_wl: weak_lattice ab_mem
(* queries *)
; var: ab_mem — register — ab_num
; load: ab_mem — addr — ab_num
(* abstract transformers *)
; assign: ab_mem — register — ab_num — ab_mem
(* more omitted ... *)

Vincent Lag et a Verified Disassembling of SMC July 16t 2014

10/ 16

Signature of the state abstraction

Record mem_dom (ab_mem: Type) (ab_num: Type) : Type :=
{ (x lattice *)
as_wl: weak_lattice ab_mem
(* queries *)
; var: ab_mem — register — ab_num
; load: ab_mem — addr — ab_num
(* abstract transformers *)
; assign: ab_mem — register — ab_num — ab_mem
(* more omitted ... *)

Parameterized by a numeric abstraction: ab_num

Vincent Laporte et a Verified Disassembling of SMC July 16t 2014

10/ 16

Signature of the state abstraction

Record mem_dom (ab_mem: Type) (ab_num: Type) : Type :=
{ (x lattice *)
as_wl: weak_lattice ab_mem
(* queries *)
; var: ab_mem — register — ab_num
; load: ab_mem — addr — ab_num
(* abstract transformers *)
; assign: ab_mem — register — ab_num — ab_mem
(* more omitted ... *)

Equipped with a lattice structure: order, top element, join operator

Vincent Lag et a Verified Disassembling of SMC July 16t 2014

10/ 16

Signature of the state abstraction

Record mem_dom (ab_mem: Type) (ab_num: Type) : Type :=
{ (x lattice *)
as_wl: weak_lattice ab_mem
(* queries *)
; var: ab_mem — register — ab_num
; load: ab_mem — addr — ab_num
(* abstract transformers *)
; assign: ab_mem — register — ab_num — ab_mem
(* more omitted ... *)

Provides access to the abstraction of each memory unit

Vincent Lag et a Verified Disassembling of SMC July 16t 2014

10/ 16

Signature of the state abstraction

Record mem_dom (ab_mem: Type) (ab_num: Type) : Type :=
{ (x lattice *)
as_wl: weak_lattice ab_mem
(* queries *)
; var: ab_mem — register — ab_num
; load: ab_mem — addr — ab_num
(* abstract transformers *)
; assign: ab_mem — register — ab_num — ab_mem
(* more omitted ... *)

Abstract operators model concrete instructions

Vincent Lag et a Verified Disassembling of SMC July 16t 2014

10/ 16

Signature of the state abstraction

Record mem_dom (ab_mem: Type) (ab_num: Type) : Type :=
{ (x lattice *)
as_wl: weak_lattice ab_mem
(* queries *)
; var: ab_mem — register — ab_num
; load: ab_mem — addr — ab_num
(* abstract transformers *)
; assign: ab_mem — register — ab_num — ab_mem
(* more omitted ... *)

Example (Specification of the 1oad query)

load_sound: V ab, V m,
m € y(ab) —V a:addr, m(a) € y(load ab a)

Vincent Laporte et a Verified Disassembling of SMC July 16t 2014

10/ 16

Abstract small-step

Specification

Lemma ab_step_correct : V m m’ ab,
me v(ab) > m v m’> —> m’ € y(ab_step m. (pp) ab)

Algorithm

Given an abstract state m at an address pp (program point)

© Decode all possible instructions from pp
@ For each of them predict

» next program point

» next abstract state

© Propagate the results

Vincent Laporte et alii Verified Disassembling of SMC July 16t 2014

11/ 16

Fix-point computation

Given a program P (partial initial memory), compute an abstract
environment E such that

e init(P) = E[0], and
o Vp p' m',(p',m) € ab_step(p)(E[p]) — m' = E[P]

Iterate from initial state

Work-set of reachable program points that need further analysis

Widening steps to ensure termination
» The widening policy is a parameter of the analysis

A posteriori validation

Lemma validate_correct : V P E,
validate_fixpoint P E = true — [P] < ~(E)

Vincent Laporte et alii Verified Disassembling of SMC July 16t 2014

12 /16

What can we do with this fix-point?

Given a (sound) fix-point:
Program safety can be proved (no run-time error)

Theorem analysis_sound : V P dom fuel ab_num,
analysis ab_num P dom fuel # None — safe P

A CFG can be computed
@ Reachable program points
@ Possible instructions when execution reaches a program point

@ Possible targets of the jumps

Vincent Laporte et alii Verified Disassembling of SMC July 16t 2014

13/ 16

Extension: Trace Partitioning

Some merges of abstract states incur a large precision loss:
@ Do not merge abstract states that differ according to some criterion

my my my myp

@ Generalizes the flow sensitivity

@ Need to modify only the fix-point computation (and checker)

Vincent Laporte et alii Verified Disassembling of SMC July 16t 2014 14 / 16

Experimental evaluation

Extract to OCaml and run on challenging examples!

\

NN N A X NSNS S XN

opcode modification overwrites code before execution

multilevel RCG code that once executed produces code that once. ..
bootloader loads code from disk

control flow modification overwrites jumps

vector dot product specializes a program for a given argument
runtime code checking validates code integrity

Fibonacci sequence uses an instruction as accumulator
self-replication infinitely copies itself

mutual modification two parts modify each other

polymorphic code mutates itself to escape anti-viruses

code obfuscation features fake instructions if naively disassembled

code encryption decrypts a code, runs it, and crypts it back

! Cai, Shao, and Vaynberg PLDI'2007.

Vincent Lap a Verified Disassembling of SMC July 16t 2014 15 / 16

Conclusion

Summary
@ Verified executable abstract interpreter for a binary language

@ Handles seamlessly self-modifying programs
@ Able to prove the safety of challenging examples

@ Full development available online:
http://www.irisa.fr/celtique/ext/smc/

Perspectives

@ More realistic languages (x86)
@ Generate the analyzer (and its proof) to cope with the huge number
of instructions

Vincent Laporte et alii Verified Disassembling of SMC July 16t 2014 16 / 16

http://www.irisa.fr/celtique/ext/smc/

