
Showing invariance compositionally for a process
algebra for network protocols

Timothy Bourke1,2 Robert J. van Glabbeek3 Peter Höfner3

1. INRIA Paris-Rocquencourt

2. École normale supérieure (DI)

3. NICTA

ÉCOLE NORMALE
S U P É R I E U R E

16 July 2014, ITP, Vienna, Austria.

Specification and Verification of Reactive Systems
I Wireless network protocols

(e.g., AODV routing protocol, RFC3561).
I Each network node is a reactive system.
I We prove properties of (arbitrary) networks of nodes.

I Modelling language: the process algebra AWN.
I Proof technique: inductive invariants (after Manna and Pnueli),

plus ‘open’, lifting, and transfer rules.

Application of Isabelle/HOL

I Language definition and many proofs are standard.
I One or two tricks to mechanize.
I Informed by O. Müller’s thesis work (in particular).

Bourke: 2/25

Pencil-and-paper model and proof

Version June 29, 2013

A Process Algebra for Wireless Mesh Networks
used for

Modelling, Verifying and Analysing AODV

Ansgar Fehnker
NICTA∗

Sydney, Australia
Computer Science and Engineering

University of New South Wales
Sydney, Australia

Rob van Glabbeek
NICTA∗

Sydney, Australia
Computer Science and Engineering

University of New South Wales
Sydney, Australia

Peter Höfner
NICTA∗

Sydney, Australia
Computer Science and Engineering

University of New South Wales
Sydney, Australia

Annabelle McIver
Department of Computing

Macquarie University
Sydney, Australia

NICTA∗
Sydney, Australia

Marius Portmann
NICTA∗

Brisbane, Australia
Information Technology and

Electrical Engineering
University of Queensland

Brisbane, Australia

Wee Lum Tan
NICTA∗

Brisbane, Australia
Information Technology and

Electrical Engineering
University of Queensland

Brisbane, Australia

Route finding and maintenance are critical for the performance of networked systems, particularly
when mobility can lead to highly dynamic and unpredictable environments; such operating contexts
are typical in wireless mesh networks. Hence correctness and good performance are strong require-
ments of routing algorithms.

In this paper we propose AWN (Algebra for Wireless Networks), a process algebra tailored to the
modelling of Mobile Ad Hoc Network (MANET) and Wireless Mesh Network (WMN) protocols. It
combines novel treatments of local broadcast, conditional unicast and data structures.

In this framework, we present a rigorous analysis of the Ad hoc On-Demand Distance Vector
(AODV) routing protocol, a popular routing protocol designed for MANETs, and one of the four
protocols currently standardised by the IETF MANET working group.

We give a complete and unambiguous specification of this protocol—in fact when formalising
the AODV specification given in English prose, we had to made non-evident assumptions to resolve
ambiguities occurring in the specification. Our formalisation models the exact details of the core
functionality of AODV, such as route maintenance and error handling, and only omits timing aspects.

The process algebra allows us to formalise and (dis)prove crucial properties of mesh network
routing protocols such as loop freedom and packet delivery. We are the first who provide a detailed
proof of loop freedom. In contrast to evaluations using simulation or other formal methods such as
model checking, our proof is generic and holds for any possible network scenario in terms of network
topology, node mobility, traffic pattern, etc. Since the specification allows several readings (due to
ambiguities and contradictions), we analyse several interpretations. In fact we show for more than
5000 interpretations whether they are loop free or not. By this we demonstrate how the reasoning
and proofs can relatively easily be adapted to protocol variants.

Based on the unambiguous specification, we locate some problems and limitations of AODV
that could easily yield performance problems. Two examples are the non-optimal routes established
by AODV and the fact that some routes are not found at all. These problems are then analysed and
improvements are suggested. Since the improvements are formalised in the same process algebra,
the proofs are again relatively easy.

∗NICTA is funded by the Australian Government as represented by the Department of Broadband, Communications
and the Digital Economy and the Australian Research Council through the ICT Centre of Excellence program.

I Team of experts in formal methods
and wireless protocols.

I Layered process algebra AWN.

Invariants
I Fastidious proofs over nodes.
I Looser extension to networks.

Bourke: 3/25

Pencil-and-paper model and proof

A. Fehnker, R.J. van Glabbeek, P. Höfner, A. McIver, M. Portmann & W.L. Tan 42

Proposition 7.8 If an AODV control message is sent by node ip ∈ IP, the node sending this message
identifies itself correctly:

N R:*cast(m)−−−−−−→ip N� ⇒ ip = ipc ,

where the message m is either rreq(∗ ,∗ ,∗ ,∗ ,∗ ,∗ ,∗ , ipc), rrep(∗ ,∗ ,∗ ,∗ , ipc), or rerr(∗ , ipc).

The proof is straightforward: whenever such a message is sent in one of the processes of Section 6, ξ (ip)
is set as the last argument. ��

Corollary 7.9 At no point will the variable sip maintained by node ip have the value ip.

ξ ip
N (sip) �= ip

Proof. The value of sip stems, through Lines 8, 12 or 16 of Pro. 1, from an incoming AODV control
message of the form ξ ip

N (rreq(∗ ,∗ ,∗ ,∗ ,∗ ,∗ ,∗ ,sip)), ξ ip
N (rrep(∗ ,∗ ,∗ ,∗ ,sip)), or ξ ip

N (rerr(∗ ,sip))
(Pro. 1, Line 1); the value of sip is never changed. By Proposition 7.1, this message must have been
sent before by a node ip� �= ip. By Proposition 7.8, ξ ip

N (sip) = ip�. ��

Proposition 7.10 All routing table entries have a hop count greater or equal than 1.

(∗,∗,∗,∗,hops,∗,∗) ∈ ξ ip
N (rt) ⇒ hops ≥ 1 (4)

Proof. All initial states trivially satisfy the invariant since all routing tables are empty. The functions
invalidate and addpreRT do not affect the invariant, since they do not change the hop count of a
routing table entry. Therefore, we only have to look at the application calls of update. In each case, if
the update does not change the routing table entry beyond its precursors (the last clause of update), the
invariant is trivially preserved; hence we examine the cases that an update actually occurs.

Pro. 1, Lines 10, 14, 18: All these updates have a hop count equals to 1; hence the invariant is preserved.

Pro. 4, Line 4; Pro. 5, Line 2: Here, ξ (hops)+ 1 is used for the update. Since ξ (hops) ∈ IN, the in-
variant is maintained. ��

Proposition 7.11

(a) If a route request with hop count 0 is sent by a node ipc ∈ IP , the sender must be the originator.

N R:*cast(rreq(0,∗,∗,∗,∗,oipc,∗,ipc))−−−−−−−−−−−−−−−−−−→ip N� ⇒ oipc = ipc(= ip) (5)

(b) If a route reply with hop count 0 is sent by a node ipc ∈ IP, the sender must be the destination.

N R:*cast(rrep(0,dipc,∗,∗,ipc))−−−−−−−−−−−−−−−→ip N� ⇒ dipc = ipc(= ip) (6)

Proof.

(a) We have to check that the consequent holds whenever a route request is sent. In all the processes
there are only two locations where this happens.

Pro. 1, Line 39: A request with content ξ (0 ,∗ ,∗ ,∗ ,∗ ,ip ,∗ ,ip) is sent. Since the sixth and the
eighth component are the same (ξ (ip)), the claim holds.

Pro. 4, Line 36: The message has the form rreq(ξ (hops)+1,∗,∗,∗,∗,∗,∗,∗). Since ξ (hops)∈ IN,
ξ (hops)+1 �= 0 and hence the antecedent does not hold.

(b) We have to check that the consequent holds whenever a route reply is sent. In all the processes there
are only three locations where this happens.

I Team of experts in formal methods
and wireless protocols.

I Layered process algebra AWN.

Invariants
I Fastidious proofs over nodes.
I Looser extension to networks.

Bourke: 3/25

Outline

Modelling (AWN)

Proof
Basic proof
Open proof
Lifting and transfer

Conclusion

Bourke: 4/25

Modelling Network Protocols
description state

protocol recursive specifications: Γ pairs: (ξ, p)
deep embedding for terms
shallow embedding for data

networks terms: 〈D; {A}〉, _‖_. trees of tuples

Bourke: 5/25

Modelling Network Protocols
description state

protocol recursive specifications: Γ pairs: (ξ, p)
deep embedding for terms
shallow embedding for data

networks terms: 〈D; {A}〉, _‖_. trees of tuples

Γaodv PNewPkt = labelled PNewPkt (
〈λξ. if dip ξ = ip ξ then {ξ} else ∅〉
deliver(data) . [[clear-locals]] call(PAodv)
⊕
〈λξ. if dip ξ 6= ip ξ then {ξ} else ∅〉
[[λξ. ξ(|store := add (data ξ) (dip ξ) (store ξ)|)]]
[[clear-locals]] call(PAodv))

PAodv

PNewPkt

PPkt

PRreq

PRrep

PRerr

Bourke: 5/25

Modelling Network Protocols
description state

protocol recursive specifications: Γ pairs: (ξ, p)
deep embedding for terms
shallow embedding for data

networks terms: 〈D; {A}〉, _‖_. trees of tuples

record state =
ip :: "ip"
sn :: "sqn"
rt :: "rt"
rreqs :: "(ip × rreqid) set"
store :: "store"

msg :: "msg"
data :: "data"
dests :: "ip ⇀ sqn"
pre :: "ip set"
rreqid :: "rreqid"
dip :: "ip"
oip :: "ip"
hops :: "nat"
. . .

PAodv

PNewPkt

PPkt

PRreq

PRrep

PRerr

Bourke: 5/25

Modelling Network Protocols
description state

protocol recursive specifications: Γ pairs: (ξ, p)
deep embedding for terms
shallow embedding for data

networks terms: 〈D; {A}〉, _‖_. trees of tuples

A

B

D

C

‖

‖

〈A; {B, D}〉 ‖

〈B; {A, C}〉 〈C; {B}〉

〈D; {A}〉

Bourke: 5/25

Mechanization of AWN
closed ()

‖

〈 i : : R 〉· · ·

〈〈

paodv i qmsg

cnet

pnet

node

parp

seqp

I AWN: layered process algebra
I SOS rules for each ‘operator’
I Layers transform lower layers

I Model all as automata
(initial states and transitions)

(|init :: ’s set, trans :: (’s × ’a × ’s) set |) :: (’s, ’a) automaton

Bourke: 6/25

Mechanization of AWN
closed ()

‖

〈 i : : R 〉· · ·

〈〈

paodv i qmsg

cnet

pnet

node

parp

seqp

I AWN: layered process algebra
I SOS rules for each ‘operator’
I Layers transform lower layers

I Model all as automata
(initial states and transitions)

paodv i = (|init = {(aodv-init i, Γaodv PAodv)}, trans = seqp-sos Γaodv|)

ξ’ = fa ξ
((ξ, {l}[[fa]] p), τ, (ξ’, p)) ∈ seqp-sos Γ

((ξ, Γ pn), a, (ξ’, p’)) ∈ seqp-sos Γ
((ξ, call(pn)), a, (ξ’, p’)) ∈ seqp-sos Γ

((ξ, {l}groupcast(ips, ms) . p), groupcast (ips ξ) (ms ξ), (ξ, p)) ∈ seqp-sos Γ

Bourke: 6/25

Mechanization of AWN
closed ()

‖

〈 i : : R 〉· · ·

〈〈

paodv i qmsg

cnet

pnet

node

parp

seqp

I AWN: layered process algebra
I SOS rules for each ‘operator’
I Layers transform lower layers

I Model all as automata
(initial states and transitions)

s 〈〈 t ≡ (|init = init s × init t, trans = parp-sos (trans s) (trans t)|)

(s, a, s’) ∈ S
∧

m. a 6= receive m
((s, t), a, (s’, t)) ∈ parp-sos S T

(t, a, t’) ∈ T
∧

m. a 6= send m
((s, t), a, (s, t’)) ∈ parp-sos S T

(s, receive m, s’) ∈ S (t, send m, t’) ∈ T
((s, t), τ, (s’, t’)) ∈ parp-sos S T

Bourke: 6/25

Mechanization of AWN
closed ()

‖

〈 i : : R 〉· · ·

〈〈

paodv i qmsg

cnet

pnet

node

parp

seqp

I AWN: layered process algebra
I SOS rules for each ‘operator’
I Layers transform lower layers

I Model all as automata
(initial states and transitions)

〈i : S : R〉 ≡ (|init = {s i
R | s ∈ init S}, trans = node-sos (trans S)|)

(s, groupcast D m, s’) ∈ S
(s i

R, (R ∩ D):*cast(m), s’ i
R) ∈ node-sos S

(P i
R, connect(i, i’), P i

R ∪ {i’}) ∈ node-sos S

Bourke: 6/25

Mechanization of AWN
closed ()

‖

〈 i : : R 〉· · ·

〈〈

paodv i qmsg

cnet

pnet

node

parp

seqp

I AWN: layered process algebra
I SOS rules for each ‘operator’
I Layers transform lower layers

I Model all as automata
(initial states and transitions)

pnet np 〈i; R〉 = 〈i : np i : R〉
pnet np (p1 ‖ p2) = (|init = {s1 q s2 | s1 ∈ init (pnet np p1) ∧ s2 ∈ init (pnet np p2)},

trans = pnet-sos (trans (pnet np p1)) (trans (pnet np p2))|)

(s, τ, s’) ∈ S
(s q t, τ, s’ q t) ∈ pnet-sos S T

(s, R:*cast(m), s’) ∈ S (t, H¬K:arrive(m), t’) ∈ T H ⊆ R K ∩ R = ∅
(s q t, R:*cast(m), s’ q t’) ∈ pnet-sos S T

Bourke: 6/25

Mechanization of AWN
closed ()

‖

〈 i : : R 〉· · ·

〈〈

paodv i qmsg

cnet

pnet

node

parp

seqp

I AWN: layered process algebra
I SOS rules for each ‘operator’
I Layers transform lower layers

I Model all as automata
(initial states and transitions)

closed A = A(|trans := cnet-sos (trans A)|)

(no receives without corresponding sends)

Bourke: 6/25

Mechanization of AWN
closed ()

‖

〈 i : : R 〉· · ·

〈〈

paodv i qmsg

cnet

pnet

node

parp

seqp

I AWN: layered process algebra
I SOS rules for each ‘operator’
I Layers transform lower layers

I Model all as automata
(initial states and transitions)

P
A
o
d
v

P
N
e
w
P
k
t

P
P
k
t

P
R
re
q

P
R
re
p

P
R
e
rr

Bourke: 6/25

Outline

Modelling (AWN)

Proof
Basic proof
Open proof
Lifting and transfer

Conclusion

Bourke: 7/25

Stating invariant properties

Reachability

s ∈ init A
s ∈ reachable A I

s ∈ reachable A I (s, a, s’) ∈ trans A I a
s’ ∈ reachable A I

I Focus on invariants of states and steps.
I Not necessary to reason over traces.
I Different approach to the original proof.

Invariants
A ||= (I →) P = ∀ s∈ reachable A I. P s

Step Invariants
A ||≡ (I →) P = ∀ a. I a→ (∀ s∈ reachable A I.∀ s’. (s, a, s’) ∈ trans A→P (s, a, s’))

Bourke: 8/25

(Invariant) Proof Strategy

cnet-sos

pnet-sos

node-sos

parp-sos

seqp-sos

closed (pnet (λi. paodv i 〈〈 qmsg) n) ||= P

paodv i ||= P

lift

paodv i 〈〈 qmsg ||= P

lift

〈i : paodv i 〈〈 qmsg : Ri〉 ||= P

lift

pnet (λi. paodv i 〈〈 qmsg) n ||= P

lift

Bourke: 9/25

(Invariant) Proof Strategy

cnet-sos

pnet-sos

node-sos

parp-sos

seqp-sos

closed (pnet (λi. paodv i 〈〈 qmsg) n) ||= P

paodv i ||= P

lift

paodv i 〈〈 qmsg ||= P

lift

〈i : paodv i 〈〈 qmsg : Ri〉 ||= P

lift

pnet (λi. paodv i 〈〈 qmsg) n ||= P

lift

Bourke: 9/25

(Invariant) Proof Strategy

cnet-sos

pnet-sos

node-sos

parp-sos

seqp-sos

closed (pnet (λi. paodv i 〈〈 qmsg) n) ||= P

paodv i ||= P

lift

paodv i 〈〈 qmsg ||= P

lift

〈i : paodv i 〈〈 qmsg : Ri〉 ||= P

lift

pnet (λi. paodv i 〈〈 qmsg) n ||= P

lift

Bourke: 9/25

(Invariant) Proof Strategy

cnet-sos

pnet-sos

node-sos

parp-sos

seqp-sos

closed (pnet (λi. paodv i 〈〈 qmsg) n) ||= P

paodv i ||= P

lift

paodv i 〈〈 qmsg ||= P

lift

〈i : paodv i 〈〈 qmsg : Ri〉 ||= P

lift

pnet (λi. paodv i 〈〈 qmsg) n ||= P

lift

Bourke: 9/25

(Invariant) Proof Strategy

cnet-sos

pnet-sos

node-sos

parp-sos

seqp-sos

closed (pnet (λi. paodv i 〈〈 qmsg) n) ||= P

paodv i ||= P

lift

paodv i 〈〈 qmsg ||= P

lift

〈i : paodv i 〈〈 qmsg : Ri〉 ||= P

lift

pnet (λi. paodv i 〈〈 qmsg) n ||= P

lift

Bourke: 9/25

(Invariant) Proof Strategy

cnet-sos

pnet-sos

node-sos

parp-sos

seqp-sos

closed (pnet (λi. paodv i 〈〈 qmsg) n) ||= P

paodv i ||= P

lift

paodv i 〈〈 qmsg ||= P

lift

〈i : paodv i 〈〈 qmsg : Ri〉 ||= P

lift

pnet (λi. paodv i 〈〈 qmsg) n ||= P

lift

Bourke: 9/25

(Invariant) Proof Strategy

cnet-sos

pnet-sos

node-sos

parp-sos

seqp-sos

closed (pnet (λi. paodv i 〈〈 qmsg) n) ||= P

paodv i ||= P

lift

paodv i 〈〈 qmsg ||= P

lift

〈i : paodv i 〈〈 qmsg : Ri〉 ||= P

lift

pnet (λi. paodv i 〈〈 qmsg) n ||= P

lift

Bourke: 9/25

Verifying safety properties of reactive systems

I Published in 1995. Companion to The
Temporal Logic of Reactive and
Concurrent Systems: Specification

I Existing theory enough for (most of)
the invariants over individual processes
(Floyd’s inductive invariants)

I vs TLA+, I/O Automata, Paulson’s
inductive method. . .

I Temporal logic formulas as ‘proof
patterns’ of which we only need one. . .

Bourke: 10/25

The basic ‘pattern’ for showing invariance

show property of initial states

then for every transition:
I assume the property of the pre state (ϕ)
I show the property of the post state (ϕ ′)

{ }
∧

w

{ }
PAodv

PNewPkt

PPkt

PRreq

PRrep

PRerr

Bourke: 11/25

The basic ‘pattern’ for showing invariance

show property of initial states

then for every transition:
I assume the property of the pre state (ϕ)
I show the property of the post state (ϕ ′)

{ }
∧

w

{ }
PAodv

PNewPkt

PPkt

PRreq

PRrep

PRerr

Bourke: 11/25

Bourke: 12/25

Bourke: 13/25

Bourke: 14/25

Bourke: 15/25

Bourke: 16/25

Bourke: 17/25

The problem with global invariants

56 Modelling, Verifying and Analysing AODV

To prove loop freedom we will show that on any route established by AODV the quality of routing tables
increases when going from one node to the next hop. Here, the preorder is not sufficient, since we need
a strict increase in quality. Therefore, on routing tables rt and rt′ that both have an entry to dip, i.e.,
dip ∈ kD(rt)∩kD(rt′), we define a relation @dip by

rt @dip rt′ :⇔ rtvdip rt′ ∧ rt 6≈dip rt′ .

Corollary 7.28 The relation @dip is irreflexive and transitive.
Theorem 7.29 The quality of the routing table entries for a destination dip is strictly increasing along a
route towards dip, until it reaches either dip or a node with an invalided routing table entry to dip.

dip ∈ vDip
N ∩vD

nhip
N ∧ nhip 6= dip ⇒ ξ ip

N (rt)@dip ξ nhip
N (rt) , (21)

where N is a reachable network expression and nhip := nhop
ip
N (dip) is the IP address of the next hop.

Proof. As before, we first check the initial states of our transition system and then check all locations in
Processes 1–7 where a routing table might be changed. For an initial network expression, the invariant
holds since all routing tables are empty. Adding precursors to ξ ip

N (rt) or ξ nhip
N (rt) does not affect the

invariant, since the invariant does not depend on precursors, so it suffices to examine all modifications
to ξ ip

N (rt) or ξ nhip
N (rt) using update or invalidate. Moreover, without loss of generality we restrict

attention to those applications of update or invalidate that actually modify the entry for dip, beyond
its precursors; if update only adds some precursors in the routing table, the invariant—which is assumed
to hold before—is maintained.

Applications of invalidate to either ξ ip
N (rt) or ξ nhip

N (rt) lead to a network state in which the
antecedent of (21) is not satisfied. Now consider an application of update to ξ nhip

N (rt). We restrict
attention to the case that the antecedent of (21) is satisfied right after the update, so that right before the
update we have dip ∈ vDip

N ∧nhip 6= dip. In the special case that sqnnhip
N (dip) = 0 right before the update,

we have nsqn
nhip
N (dip) = 0 and thus nsqnip

N (dip) = 0 by Invariant (20). Since flag
ip
N (dip) = val, this

implies sqnip
N (dip) = 0. By Proposition 7.12(d) we have nhip = dip, contradicting our assumptions. It

follows that right before the update sqnnhip
N (dip)> 0, and hence nsqnnhip

N (dip)< sqn
nhip
N (dip).

An application of update to ξ nhip
N (rt) that changes flagnhip

N (dip) from inv to val cannot decrease
the sequence number of the entry to dip and hence strictly increases its net sequence number. Be-
fore the update we had nsqn

ip
N (dip) ≤ nsqn

nhip
N (dip) by Invariant (20), so afterwards we must have

nsqn
ip
N (dip)< nsqn

nhip
N (dip), and hence ξ ip

N (rt)@dip ξ nhip
N (rt). An update to ξ nhip

N (rt) that maintains
flag

nhip
N (dip) = val can only increase the quality of the entry to dip (cf. Theorem 7.26), and hence

maintains Invariant (21).
It remains to examine the updates to ξ ip

N (rt).
Pro. 1, Lines 10, 14, 18: The entry ξ (sip , 0 , unk , val , 1 , sip , /0) is used for the update; its destina-

tion is dip := ξ (sip). Since dip = nhop
ip
N (dip) = nhip, the antecedent of the invariant to be proven

is not satisfied.

Pro. 4, Line 4: We assume that the entry ξ (oip,osn,kno,val,hops+1,sip,∗) is inserted into ξ (rt).
So dip := ξ (oip), nhip := ξ (sip), nsqnip

N (dip) := ξ (osn) and dhops
ip
N (dip) := ξ (hops) + 1.

This information is distilled from a received route request message (cf. Lines 1 and 8 of Pro. 1).
By Proposition 7.1 this message was sent before, say in state N†; by Proposition 7.8 the sender of
this message is ξ (sip).
By Invariant (13), with ipc := ξ (sip)= nhip, oipc := ξ (oip)= dip, osnc := ξ (osn) and hopsc :=
ξ (hops), and using that ipc = nhip 6= dip = oipc, we get that

sqn
nhip
N† (dip) = sqn

ipc
N†(oipc) > osnc = ξ (osn) , or

sqn
nhip
N† (dip) = ξ (osn) ∧ dhops

nhip
N† (dip)≤ ξ (hops) ∧ flag

nhip
N† (dip) = val .

I We must state a property of routing tables across pairs of nodes,
i.e., elements of a global state

I . . . that does not exist at the level of individual sequential processes.

Bourke: 18/25

The problem with global invariants

56 Modelling, Verifying and Analysing AODV

To prove loop freedom we will show that on any route established by AODV the quality of routing tables
increases when going from one node to the next hop. Here, the preorder is not sufficient, since we need
a strict increase in quality. Therefore, on routing tables rt and rt′ that both have an entry to dip, i.e.,
dip ∈ kD(rt)∩kD(rt′), we define a relation @dip by

rt @dip rt′ :⇔ rtvdip rt′ ∧ rt 6≈dip rt′ .

Corollary 7.28 The relation @dip is irreflexive and transitive.
Theorem 7.29 The quality of the routing table entries for a destination dip is strictly increasing along a
route towards dip, until it reaches either dip or a node with an invalided routing table entry to dip.

dip ∈ vDip
N ∩vD

nhip
N ∧ nhip 6= dip ⇒ ξ ip

N (rt)@dip ξ nhip
N (rt) , (21)

where N is a reachable network expression and nhip := nhop
ip
N (dip) is the IP address of the next hop.

Proof. As before, we first check the initial states of our transition system and then check all locations in
Processes 1–7 where a routing table might be changed. For an initial network expression, the invariant
holds since all routing tables are empty. Adding precursors to ξ ip

N (rt) or ξ nhip
N (rt) does not affect the

invariant, since the invariant does not depend on precursors, so it suffices to examine all modifications
to ξ ip

N (rt) or ξ nhip
N (rt) using update or invalidate. Moreover, without loss of generality we restrict

attention to those applications of update or invalidate that actually modify the entry for dip, beyond
its precursors; if update only adds some precursors in the routing table, the invariant—which is assumed
to hold before—is maintained.

Applications of invalidate to either ξ ip
N (rt) or ξ nhip

N (rt) lead to a network state in which the
antecedent of (21) is not satisfied. Now consider an application of update to ξ nhip

N (rt). We restrict
attention to the case that the antecedent of (21) is satisfied right after the update, so that right before the
update we have dip ∈ vDip

N ∧nhip 6= dip. In the special case that sqnnhip
N (dip) = 0 right before the update,

we have nsqn
nhip
N (dip) = 0 and thus nsqnip

N (dip) = 0 by Invariant (20). Since flag
ip
N (dip) = val, this

implies sqnip
N (dip) = 0. By Proposition 7.12(d) we have nhip = dip, contradicting our assumptions. It

follows that right before the update sqnnhip
N (dip)> 0, and hence nsqnnhip

N (dip)< sqn
nhip
N (dip).

An application of update to ξ nhip
N (rt) that changes flagnhip

N (dip) from inv to val cannot decrease
the sequence number of the entry to dip and hence strictly increases its net sequence number. Be-
fore the update we had nsqn

ip
N (dip) ≤ nsqn

nhip
N (dip) by Invariant (20), so afterwards we must have

nsqn
ip
N (dip)< nsqn

nhip
N (dip), and hence ξ ip

N (rt)@dip ξ nhip
N (rt). An update to ξ nhip

N (rt) that maintains
flag

nhip
N (dip) = val can only increase the quality of the entry to dip (cf. Theorem 7.26), and hence

maintains Invariant (21).
It remains to examine the updates to ξ ip

N (rt).
Pro. 1, Lines 10, 14, 18: The entry ξ (sip , 0 , unk , val , 1 , sip , /0) is used for the update; its destina-

tion is dip := ξ (sip). Since dip = nhop
ip
N (dip) = nhip, the antecedent of the invariant to be proven

is not satisfied.

Pro. 4, Line 4: We assume that the entry ξ (oip,osn,kno,val,hops+1,sip,∗) is inserted into ξ (rt).
So dip := ξ (oip), nhip := ξ (sip), nsqnip

N (dip) := ξ (osn) and dhops
ip
N (dip) := ξ (hops) + 1.

This information is distilled from a received route request message (cf. Lines 1 and 8 of Pro. 1).
By Proposition 7.1 this message was sent before, say in state N†; by Proposition 7.8 the sender of
this message is ξ (sip).
By Invariant (13), with ipc := ξ (sip)= nhip, oipc := ξ (oip)= dip, osnc := ξ (osn) and hopsc :=
ξ (hops), and using that ipc = nhip 6= dip = oipc, we get that

sqn
nhip
N† (dip) = sqn

ipc
N†(oipc) > osnc = ξ (osn) , or

sqn
nhip
N† (dip) = ξ (osn) ∧ dhops

nhip
N† (dip)≤ ξ (hops) ∧ flag

nhip
N† (dip) = val .

I We must state a property of routing tables across pairs of nodes,
i.e., elements of a global state

I . . . that does not exist at the level of individual sequential processes.

Bourke: 18/25

An ‘open model’ of AWN
oclosed ()

‖

〈 i : : R 〉o· · ·

〈〈i

opaodv i qmsg

ocnet

opnet

onode

oparp

oseqp

ξ :: state

σ :: ip ⇒ state

Bourke: 19/25

An ‘open model’ of AWN
oclosed ()

‖

〈 i : : R 〉o· · ·

〈〈i

opaodv i qmsg

ocnet

opnet

onode

oparp

oseqp

ξ :: state

σ :: ip ⇒ state

opaodv i = (|init = {(aodv-init, Γaodv PAodv)}, trans = oseqp-sos Γaodv i|).

ξ’ = fa ξ
((ξ, {l}[[fa]] p), τ, (ξ’, p)) ∈ seqp-sos Γ

versus

σ’ i = fa (σ i)
((σ, {l}[[fa]] p), τ, (σ’, p)) ∈ oseqp-sos Γ i

Bourke: 19/25

An ‘open model’ of AWN
oclosed ()

‖

〈 i : : R 〉o· · ·

〈〈i

opaodv i qmsg

ocnet

opnet

onode

oparp

oseqp

ξ :: state

σ :: ip ⇒ state

((σ, P), groupcast D m, σ’, P’) ∈ S
((σ, P i

R), (R ∩ D):*cast(m), (σ’, P’ i
R)) ∈ onode-sos S

((σ, P), τ, (σ’, P’)) ∈ S ∀ j 6= i. σ’ j = σ j
((σ, P i

R), τ, (σ’, P’ i
R)) ∈ onode-sos S

Bourke: 19/25

An ‘open model’ of AWN
oclosed ()

‖

〈 i : : R 〉o· · ·

〈〈i

opaodv i qmsg

ocnet

opnet

onode

oparp

oseqp

ξ :: state

σ :: ip ⇒ state

opnet np 〈i; R〉 = 〈i : np i : R〉o
opnet np (p1 ‖ p2) = (|init = {(σ, s1 q s2) | (σ, s1) ∈ init (opnet np p1)

∧ (σ, s2) ∈ init (opnet np p2)
∧ net-ips s1 ∩ net-ips s2 = ∅},

trans = opnet-sos (trans (opnet np p1)) (trans (opnet np p2))|)

((σ, s), H¬K:arrive(m), (σ’, s’)) ∈ S ((σ, t), H’¬K’:arrive(m), (σ’, t’)) ∈ T
((σ, s q t), (H ∪ H’)¬(K ∪ K’):arrive(m), (σ’, s’ q t’)) ∈ opnet-sos S T

Bourke: 19/25

Open invariants
Open reachability

(σ, p) ∈ init A
(σ, p) ∈ oreachable A S U

(σ, p) ∈ oreachable A S U U σ σ’
(σ’, p) ∈ oreachable A S U

(σ, p) ∈ oreachable A S U ((σ, p), a, (σ’, p’)) ∈ trans A S σ σ’ a
(σ’, p’) ∈ oreachable A S U

Open Invariants
A |= (S, U →) P = ∀ s∈ oreachable A S U. P s

Open Step Invariants
A |≡ (S, U →) P =

∀ s∈ oreachable A S U. ∀ a s’. (s, a, s’) ∈ trans A ∧ S (fst s) (fst s’) a → P (s, a, s’)

Lift standard invariants
A ||=A (I →) P

initiali i (init OA) (init A) trans OA = oseqp-sos Γ i trans A = seqp-sos Γ
OA |=A (act I, other ANY {i} →) seqll i P

Bourke: 20/25

Open invariants
Open reachability

(σ, p) ∈ init A
(σ, p) ∈ oreachable A S U

(σ, p) ∈ oreachable A S U U σ σ’
(σ’, p) ∈ oreachable A S U

(σ, p) ∈ oreachable A S U ((σ, p), a, (σ’, p’)) ∈ trans A S σ σ’ a
(σ’, p’) ∈ oreachable A S U

interleaving steps must satisfy U

‘local’ steps must satisfy S

σ, p σ ′, p ′ σ ′′, p ′
a

S σ σ ′ a U σ σ ′

Open Invariants
A |= (S, U →) P = ∀ s∈ oreachable A S U. P s

Open Step Invariants
A |≡ (S, U →) P =

∀ s∈ oreachable A S U. ∀ a s’. (s, a, s’) ∈ trans A ∧ S (fst s) (fst s’) a → P (s, a, s’)

Lift standard invariants
A ||=A (I →) P

initiali i (init OA) (init A) trans OA = oseqp-sos Γ i trans A = seqp-sos Γ
OA |=A (act I, other ANY {i} →) seqll i P

Bourke: 20/25

Open invariants
Open reachability

(σ, p) ∈ init A
(σ, p) ∈ oreachable A S U

(σ, p) ∈ oreachable A S U U σ σ’
(σ’, p) ∈ oreachable A S U

(σ, p) ∈ oreachable A S U ((σ, p), a, (σ’, p’)) ∈ trans A S σ σ’ a
(σ’, p’) ∈ oreachable A S U

interleaving steps must satisfy U

‘local’ steps must satisfy S

σ, p σ ′, p ′ σ ′′, p ′
a

S σ σ ′ a U σ σ ′

other P A σ σ’ ≡ ∀ i. if i ∈ A then σ’ i = σ i else P (σ i) (σ’ i)

otherwith P A I σ σ’ a ≡ (∀ i. i /∈ A → P (σ i) (σ’ i)) ∧ I σ a

Open Invariants
A |= (S, U →) P = ∀ s∈ oreachable A S U. P s

Open Step Invariants
A |≡ (S, U →) P =

∀ s∈ oreachable A S U. ∀ a s’. (s, a, s’) ∈ trans A ∧ S (fst s) (fst s’) a → P (s, a, s’)

Lift standard invariants
A ||=A (I →) P

initiali i (init OA) (init A) trans OA = oseqp-sos Γ i trans A = seqp-sos Γ
OA |=A (act I, other ANY {i} →) seqll i P

Bourke: 20/25

Open invariants
Open reachability

(σ, p) ∈ init A
(σ, p) ∈ oreachable A S U

(σ, p) ∈ oreachable A S U U σ σ’
(σ’, p) ∈ oreachable A S U

(σ, p) ∈ oreachable A S U ((σ, p), a, (σ’, p’)) ∈ trans A S σ σ’ a
(σ’, p’) ∈ oreachable A S U

interleaving steps must satisfy U

‘local’ steps must satisfy S
Open Invariants
A |= (S, U →) P = ∀ s∈ oreachable A S U. P s

Open Step Invariants
A |≡ (S, U →) P =

∀ s∈ oreachable A S U. ∀ a s’. (s, a, s’) ∈ trans A ∧ S (fst s) (fst s’) a → P (s, a, s’)

Lift standard invariants
A ||=A (I →) P

initiali i (init OA) (init A) trans OA = oseqp-sos Γ i trans A = seqp-sos Γ
OA |=A (act I, other ANY {i} →) seqll i P

Bourke: 20/25

Open invariants
Open reachability

(σ, p) ∈ init A
(σ, p) ∈ oreachable A S U

(σ, p) ∈ oreachable A S U U σ σ’
(σ’, p) ∈ oreachable A S U

(σ, p) ∈ oreachable A S U ((σ, p), a, (σ’, p’)) ∈ trans A S σ σ’ a
(σ’, p’) ∈ oreachable A S U

interleaving steps must satisfy U

‘local’ steps must satisfy S
Open Invariants
A |= (S, U →) P = ∀ s∈ oreachable A S U. P s

Open Step Invariants
A |≡ (S, U →) P =

∀ s∈ oreachable A S U. ∀ a s’. (s, a, s’) ∈ trans A ∧ S (fst s) (fst s’) a → P (s, a, s’)

Lift standard invariants
A ||=A (I →) P

initiali i (init OA) (init A) trans OA = oseqp-sos Γ i trans A = seqp-sos Γ
OA |=A (act I, other ANY {i} →) seqll i P

Bourke: 20/25

Open invariants: proof rule (oseqp)

To prove the invariant A |= (S, U→) onl Γ P where wellformed Γ
simple-labels Γ
control-within Γ (init A)
trans A = seqp-sos Γ

1. Show for the initial states.

2. Show across each control term.

3. Show for environment steps:

assume: (σ, p) ∈ oreachable A S U in any oreachable state
l ∈ labels Γ p
P (σ, l) assume the property is true

U σ σ’ then, for all valid environment steps. . .

show: P (σ’, l) . . . show that the property is preserved

Bourke: 21/25

Open invariants: proof rule (oseqp)

To prove the invariant A |= (S, U→) onl Γ P where wellformed Γ
simple-labels Γ
control-within Γ (init A)
trans A = seqp-sos Γ

1. Show for the initial states.

2. Show across each control term.

3. Show for environment steps:

assume: (σ, p) ∈ oreachable A S U in any oreachable state
l ∈ labels Γ p
P (σ, l) assume the property is true

U σ σ’ then, for all valid environment steps. . .

show: P (σ’, l) . . . show that the property is preserved

Bourke: 21/25

Outline

Modelling (AWN)

Proof
Basic proof
Open proof
Lifting and transfer

Conclusion

Bourke: 22/25

Lifting and transfer

cnet-sos ocnet-sos

pnet-sos opnet-sos

node-sos onode-sos

parp-sos oparp-sos

seqp-sos oseqp-sos

closed (pnet (λi. paodv i 〈〈i qmsg) n) ||= P

opaodv i ||= P ′1

lift
opaodv i 〈〈i qmsg ||= P ′2

lift
〈i : opaodv i 〈〈i qmsg : Ri〉o ||= P ′3

lift
opnet (λi. opaodv i 〈〈i qmsg) n ||= P ′4

liftoclosed (opnet (λi. opaodv i 〈〈i qmsg) n) ||= P ′5

transfer

Bourke: 23/25

Lifting and transfer

cnet-sos ocnet-sos

pnet-sos opnet-sos

node-sos onode-sos

parp-sos oparp-sos

seqp-sos oseqp-sos

closed (pnet (λi. paodv i 〈〈i qmsg) n) ||= P

opaodv i ||= P ′1

lift
opaodv i 〈〈i qmsg ||= P ′2

lift
〈i : opaodv i 〈〈i qmsg : Ri〉o ||= P ′3

lift
opnet (λi. opaodv i 〈〈i qmsg) n ||= P ′4

liftoclosed (opnet (λi. opaodv i 〈〈i qmsg) n) ||= P ′5

transfer

Bourke: 23/25

Lifting and transfer

cnet-sos ocnet-sos

pnet-sos opnet-sos

node-sos onode-sos

parp-sos oparp-sos

seqp-sos oseqp-sos

closed (pnet (λi. paodv i 〈〈i qmsg) n) ||= P

opaodv i ||= P ′1

lift
opaodv i 〈〈i qmsg ||= P ′2

lift
〈i : opaodv i 〈〈i qmsg : Ri〉o ||= P ′3

lift
opnet (λi. opaodv i 〈〈i qmsg) n ||= P ′4

liftoclosed (opnet (λi. opaodv i 〈〈i qmsg) n) ||= P ′5

transfer

Bourke: 23/25

Lifting and transfer

cnet-sos ocnet-sos

pnet-sos opnet-sos

node-sos onode-sos

parp-sos oparp-sos

seqp-sos oseqp-sos

closed (pnet (λi. paodv i 〈〈i qmsg) n) ||= P

opaodv i ||= P ′1

lift
opaodv i 〈〈i qmsg ||= P ′2

lift
〈i : opaodv i 〈〈i qmsg : Ri〉o ||= P ′3

lift
opnet (λi. opaodv i 〈〈i qmsg) n ||= P ′4

liftoclosed (opnet (λi. opaodv i 〈〈i qmsg) n) ||= P ′5

transfer

Bourke: 23/25

Lifting and transfer

cnet-sos ocnet-sos

pnet-sos opnet-sos

node-sos onode-sos

parp-sos oparp-sos

seqp-sos oseqp-sos

closed (pnet (λi. paodv i 〈〈i qmsg) n) ||= P

opaodv i ||= P ′1

lift
opaodv i 〈〈i qmsg ||= P ′2

lift
〈i : opaodv i 〈〈i qmsg : Ri〉o ||= P ′3

lift
opnet (λi. opaodv i 〈〈i qmsg) n ||= P ′4

liftoclosed (opnet (λi. opaodv i 〈〈i qmsg) n) ||= P ′5

transfer

Bourke: 23/25

Lifting and transfer

cnet-sos ocnet-sos

pnet-sos opnet-sos

node-sos onode-sos

parp-sos oparp-sos

seqp-sos oseqp-sos

closed (pnet (λi. paodv i 〈〈i qmsg) n) ||= P

opaodv i ||= P ′1

lift
opaodv i 〈〈i qmsg ||= P ′2

lift
〈i : opaodv i 〈〈i qmsg : Ri〉o ||= P ′3

lift
opnet (λi. opaodv i 〈〈i qmsg) n ||= P ′4

liftoclosed (opnet (λi. opaodv i 〈〈i qmsg) n) ||= P ′5

transfer

Bourke: 23/25

Lifting and transfer

cnet-sos ocnet-sos

pnet-sos opnet-sos

node-sos onode-sos

parp-sos oparp-sos

seqp-sos oseqp-sos

closed (pnet (λi. paodv i 〈〈i qmsg) n) ||= P

opaodv i ||= P ′1

lift
opaodv i 〈〈i qmsg ||= P ′2

lift
〈i : opaodv i 〈〈i qmsg : Ri〉o ||= P ′3

lift
opnet (λi. opaodv i 〈〈i qmsg) n ||= P ′4

liftoclosed (opnet (λi. opaodv i 〈〈i qmsg) n) ||= P ′5

transfer

Bourke: 23/25

Lifting and transfer

cnet-sos ocnet-sos

pnet-sos opnet-sos

node-sos onode-sos

parp-sos oparp-sos

seqp-sos oseqp-sos

closed (pnet (λi. paodv i 〈〈i qmsg) n) ||= P

opaodv i ||= P ′1

lift
opaodv i 〈〈i qmsg ||= P ′2

lift
〈i : opaodv i 〈〈i qmsg : Ri〉o ||= P ′3

lift
opnet (λi. opaodv i 〈〈i qmsg) n ||= P ′4

liftoclosed (opnet (λi. opaodv i 〈〈i qmsg) n) ||= P ′5

transfer

Bourke: 23/25

Transfer

s

s’

a =⇒

σ

σ ′

a

trans (np i)
trans (onp i)

I Instantiate with paodv/opaodv,
I and also with _ 〈〈 qmsg

Lift from processes to networks
I Induction ‘along’ oreachable.
I Induction ‘up’ net_terms.
I Need to discharge

‘assumptions’ in rules.

Bourke: 24/25

Transfer

s

s’

a =⇒

σ

σ ′

a

trans (np i)
trans (onp i)

I Instantiate with paodv/opaodv,
I and also with _ 〈〈 qmsg

Lift from processes to networks
I Induction ‘along’ oreachable.
I Induction ‘up’ net_terms.
I Need to discharge

‘assumptions’ in rules.

Bourke: 24/25

Transfer

s

s’

a =⇒

σ

σ ′

a

trans (np i)
trans (onp i)

I Instantiate with paodv/opaodv,
I and also with _ 〈〈 qmsg

Lift from processes to networks
I Induction ‘along’ oreachable.
I Induction ‘up’ net_terms.
I Need to discharge

‘assumptions’ in rules.

Bourke: 24/25

Conclusion

I Framework for specifying and verifying a class of reactive systems.
I Compositional technique for stating and lifting (inductive) invariants.
I Applied to AODV (RFC3561)—coming soon.

I Beneficial to focus on a concrete verification task.
I No real process algebra.

I More convenient than automaton transition tables.
I The layered structure is important.

I Takes advantage of developments in and around Isabelle
I PIDE, Isar, Locales,
I Parallel proofs (parallel_goals), Poly/ML,
I Sledgehammer, System on TPTP.

Bourke: 25/25

	Modelling (AWN)
	Proof
	Basic proof
	Open proof
	Lifting and transfer

	Conclusion
	Appendix

