
1

Formal C semantics:
CompCert and the C standard

Robbert Krebbers1 Xavier Leroy2 Freek Wiedijk1

1ICIS, Radboud University Nijmegen, The Netherlands

2Inria Paris-Rocquencourt, France

July 17, 2014 @ ITP, Vienna, Austria



2

Underspecification in C

I Unspecified behavior: two or more behaviors are allowed
For example: order of evaluation in expressions

Non-determinism

I Implementation defined behavior: like unspecified
behavior, but the compiler has to document its choice
For example: size and endianness of integers

Parametrization

I Undefined behavior: the standard imposes no requirements
at all, the program is even allowed to crash
For example: dereferencing a NULL or dangling pointer, signed
integer overflow, . . .

No semantics/crash state



2

Underspecification in C

I Unspecified behavior: two or more behaviors are allowed
For example: order of evaluation in expressions
Non-determinism

I Implementation defined behavior: like unspecified
behavior, but the compiler has to document its choice
For example: size and endianness of integers
Parametrization

I Undefined behavior: the standard imposes no requirements
at all, the program is even allowed to crash
For example: dereferencing a NULL or dangling pointer, signed
integer overflow, . . .
No semantics/crash state



3

Pros and cons of underspecification

Pros for optimizing compilers:

I More optimizations are possible

I High run-time efficiency

I Easy to support multiple architectures

Cons for programmers/formal methods people:

I Portability and maintenance problems

I Hard to formally reason about



4

Approaches to underspecification

CompCert (Leroy et al.)

I Main goal: verified optimizing compiler in

I Specific choices for unspecified/impl-defined behavior
For example: 32-bits ints

I Describes some undefined behavior
For example: dereferencing NULL, integer overflow defined

I Compiler correctness proof only for programs without
undefined behavior

Formalin (Krebbers & Wiedijk)

I Main goal: compiler independent separation logic in

I Describes some implementation-defined behavior
For example: no legacy architectures with 0’s complement

I Aims to describe all unspecified and undefined behavior



5

Defined behaviors in C11, Formalin and CompCert C

C11

Formalin

CompCert C

comparing
with end-of-array

pointers

byte-wise
pointer copy

subtle
casts

subtle
type

punning

integer overflow

aliasing violations

sequence point
violations

use of dangling block
scope pointers

arithmetic on
pointer bytes

This talk: add to CompCert so we get Formalin ⊆ CompCert



5

Defined behaviors in C11, Formalin and CompCert C

C11

Formalin

CompCert C

comparing
with end-of-array

pointers

byte-wise
pointer copy

subtle
casts

subtle
type

punning

integer overflow

aliasing violations

sequence point
violations

use of dangling block
scope pointers

arithmetic on
pointer bytes

This talk: add to CompCert so we get Formalin ⊆ CompCert



6

Comparing with end-of-array pointers (problem)
Useful:

void inc_array(int *p, int n) {

int *end = p + n;

while (p < end) (*p++)++;

}

x0 x1 xn−1

end
Bizarre:

int x, y;

if (&x + 1 == &y) printf("x and y are adjacent\n");

&x &y

Both undefined behavior in CompCert (1.12 and before)



6

Comparing with end-of-array pointers (problem)
Useful:

void inc_array(int *p, int n) {

int *end = p + n;

while (p < end) (*p++)++;

}

x0 x1 xn−1

p end

Bizarre:

int x, y;

if (&x + 1 == &y) printf("x and y are adjacent\n");

&x &y

Both undefined behavior in CompCert (1.12 and before)



6

Comparing with end-of-array pointers (problem)
Useful:

void inc_array(int *p, int n) {

int *end = p + n;

while (p < end) (*p++)++;

}

x0 + 1 x1 xn−1

p end

Bizarre:

int x, y;

if (&x + 1 == &y) printf("x and y are adjacent\n");

&x &y

Both undefined behavior in CompCert (1.12 and before)



6

Comparing with end-of-array pointers (problem)
Useful:

void inc_array(int *p, int n) {

int *end = p + n;

while (p < end) (*p++)++;

}

x0 + 1 x1 + 1 xn−1

p end

Bizarre:

int x, y;

if (&x + 1 == &y) printf("x and y are adjacent\n");

&x &y

Both undefined behavior in CompCert (1.12 and before)



6

Comparing with end-of-array pointers (problem)
Useful:

void inc_array(int *p, int n) {

int *end = p + n;

while (p < end) (*p++)++;

}

x0 + 1 x1 + 1 xn−1

p end

Bizarre:

int x, y;

if (&x + 1 == &y) printf("x and y are adjacent\n");

&x &y

Both undefined behavior in CompCert (1.12 and before)



6

Comparing with end-of-array pointers (problem)
Useful:

void inc_array(int *p, int n) {

int *end = p + n;

while (p < end) (*p++)++;

}

x0 + 1 x1 + 1 xn−1 + 1

p end

Bizarre:

int x, y;

if (&x + 1 == &y) printf("x and y are adjacent\n");

&x &y

Both undefined behavior in CompCert (1.12 and before)



6

Comparing with end-of-array pointers (problem)
Useful:

void inc_array(int *p, int n) {

int *end = p + n;

while (p < end) (*p++)++;

}

x0 + 1 x1 + 1 xn−1 + 1

p end
Bizarre:

int x, y;

if (&x + 1 == &y) printf("x and y are adjacent\n");

&x &y

Both undefined behavior in CompCert (1.12 and before)



6

Comparing with end-of-array pointers (problem)
Useful:

void inc_array(int *p, int n) {

int *end = p + n;

while (p < end) (*p++)++;

}

x0 + 1 x1 + 1 xn−1 + 1

p end
Bizarre:

int x, y;

if (&x + 1 == &y) printf("x and y are adjacent\n");

&x &y

Both undefined behavior in CompCert (1.12 and before)



6

Comparing with end-of-array pointers (problem)
Useful:

void inc_array(int *p, int n) {

int *end = p + n;

while (p < end) (*p++)++;

}

x0 + 1 x1 + 1 xn−1 + 1

p end
Bizarre:

int x, y;

if (&x + 1 == &y) printf("x and y are adjacent\n");

&x &x + 1 &y

Both undefined behavior in CompCert (1.12 and before)



6

Comparing with end-of-array pointers (problem)
Useful:

void inc_array(int *p, int n) {

int *end = p + n;

while (p < end) (*p++)++;

}

x0 + 1 x1 + 1 xn−1 + 1

p end
Bizarre:

int x, y;

if (&x + 1 == &y) printf("x and y are adjacent\n");

&x &x + 1 &y

== ?

Both undefined behavior in CompCert (1.12 and before)



6

Comparing with end-of-array pointers (problem)
Useful:

void inc_array(int *p, int n) {

int *end = p + n;

while (p < end) (*p++)++;

}

x0 + 1 x1 + 1 xn−1 + 1

p end
Bizarre:

int x, y;

if (&x + 1 == &y) printf("x and y are adjacent\n");

&x &x + 1 &y

== ?

Both undefined behavior in CompCert (1.12 and before)



7

Comparing with end-of-array pointers (solution)

Solution: Comparison of pointers is defined if:

I Same block: both should within block bounds

X ×

I Different block: both should be strictly within block bounds

X ×

Stable under compilation and gives a semantics to common
programming practice with end-of-array pointers



7

Comparing with end-of-array pointers (solution)

Solution: Comparison of pointers is defined if:

I Same block: both should within block bounds

X ×

I Different block: both should be strictly within block bounds

X ×

Stable under compilation and gives a semantics to common
programming practice with end-of-array pointers



7

Comparing with end-of-array pointers (solution)

Solution: Comparison of pointers is defined if:

I Same block: both should within block bounds

X ×

I Different block: both should be strictly within block bounds

X ×

Stable under compilation and gives a semantics to common
programming practice with end-of-array pointers



8

Byte-wise copying of objects (problem)

struct { short x; short *r; } s1 = {10, &s.x}, s2;

unsigned char *p = &s1, *q = &s2;

unsigned char *end = p + size_of(s1);

while (p < end) *p++ = *q++;

s1: 0x0a 0x00 (bs1 , 0)0 (bs1 , 0)1 (bs1 , 0)2 (bs1 , 0)3

end

s2:



8

Byte-wise copying of objects (problem)

struct { short x; short *r; } s1 = {10, &s.x}, s2;

unsigned char *p = &s1, *q = &s2;

unsigned char *end = p + size_of(s1);

while (p < end) *p++ = *q++;

s1: 0x0a 0x00 (bs1 , 0)0 (bs1 , 0)1 (bs1 , 0)2 (bs1 , 0)3

p end

s2:

q



8

Byte-wise copying of objects (problem)

struct { short x; short *r; } s1 = {10, &s.x}, s2;

unsigned char *p = &s1, *q = &s2;

unsigned char *end = p + size_of(s1);

while (p < end) *p++ = *q++;

s1: 0x0a 0x00 (bs1 , 0)0 (bs1 , 0)1 (bs1 , 0)2 (bs1 , 0)3

p end

s2: 0x0a

q



8

Byte-wise copying of objects (problem)

struct { short x; short *r; } s1 = {10, &s.x}, s2;

unsigned char *p = &s1, *q = &s2;

unsigned char *end = p + size_of(s1);

while (p < end) *p++ = *q++;

s1: 0x0a 0x00 (bs1 , 0)0 (bs1 , 0)1 (bs1 , 0)2 (bs1 , 0)3

p end

s2: 0x0a 0x00

q

Previously undefined, need to allow copying indeterminate bytes



8

Byte-wise copying of objects (problem)

struct { short x; short *r; } s1 = {10, &s.x}, s2;

unsigned char *p = &s1, *q = &s2;

unsigned char *end = p + size_of(s1);

while (p < end) *p++ = *q++;

s1: 0x0a 0x00 (bs1 , 0)0 (bs1 , 0)1 (bs1 , 0)2 (bs1 , 0)3

p end

s2: 0x0a 0x00

q

Previously undefined, need to allow copying indeterminate bytes



8

Byte-wise copying of objects (problem)

struct { short x; short *r; } s1 = {10, &s.x}, s2;

unsigned char *p = &s1, *q = &s2;

unsigned char *end = p + size_of(s1);

while (p < end) *p++ = *q++;

s1: 0x0a 0x00 (bs1 , 0)0 (bs1 , 0)1 (bs1 , 0)2 (bs1 , 0)3

p end

s2: 0x0a 0x00

q

Previously undefined, need to allow copying symbolic pointer bytes



8

Byte-wise copying of objects (problem)

struct { short x; short *r; } s1 = {10, &s.x}, s2;

unsigned char *p = &s1, *q = &s2;

unsigned char *end = p + size_of(s1);

while (p < end) *p++ = *q++;

s1: 0x0a 0x00 (bs1 , 0)0 (bs1 , 0)1 (bs1 , 0)2 (bs1 , 0)3

p end

s2: 0x0a 0x00 (bs1 , 0)0

q

Previously undefined, need to allow copying symbolic pointer bytes



8

Byte-wise copying of objects (problem)

struct { short x; short *r; } s1 = {10, &s.x}, s2;

unsigned char *p = &s1, *q = &s2;

unsigned char *end = p + size_of(s1);

while (p < end) *p++ = *q++;

s1: 0x0a 0x00 (bs1 , 0)0 (bs1 , 0)1 (bs1 , 0)2 (bs1 , 0)3

p end

s2: 0x0a 0x00 (bs1 , 0)0 (bs1 , 0)1

q

Previously undefined, need to allow copying symbolic pointer bytes



8

Byte-wise copying of objects (problem)

struct { short x; short *r; } s1 = {10, &s.x}, s2;

unsigned char *p = &s1, *q = &s2;

unsigned char *end = p + size_of(s1);

while (p < end) *p++ = *q++;

s1: 0x0a 0x00 (bs1 , 0)0 (bs1 , 0)1 (bs1 , 0)2 (bs1 , 0)3

p end

s2: 0x0a 0x00 (bs1 , 0)0 (bs1 , 0)1 (bs1 , 0)2

q

Previously undefined, need to allow copying symbolic pointer bytes



8

Byte-wise copying of objects (problem)

struct { short x; short *r; } s1 = {10, &s.x}, s2;

unsigned char *p = &s1, *q = &s2;

unsigned char *end = p + size_of(s1);

while (p < end) *p++ = *q++;

s1: 0x0a 0x00 (bs1 , 0)0 (bs1 , 0)1 (bs1 , 0)2 (bs1 , 0)3

p end

s2: 0x0a 0x00 (bs1 , 0)0 (bs1 , 0)1 (bs1 , 0)2 (bs1 , 0)3

q

Previously undefined, need to allow copying symbolic pointer bytes



9

Byte-wise copying of objects (solution)

Solution: extend values with pointer fragment values

Inductive val: Type :=

| Vundef: val

| Vint: int -> val

| Vlong: int64 -> val

| Vfloat: float -> val

| Vptr: block -> int -> val

| Vptrfrag: block -> int -> nat -> val.

Subtleties:

I Dealing with arithmetic on pointer fragments

I Dealing with implicit casts (at assignments)

I More values possible, need to extend static analysis



10

Conclusion and future work

I Semantics to useful behaviors that were previously undefined
I Comparing with end-of-array pointers
I Byte-wise pointer copy

I CompCert proofs adapted for these extensions
I Small changes to the semantics
I Involves proofs of many compilation passes

I Needed for cross validation of CompCert and Formalin

I Call-by-reference passing of struct values future work



11

Questions

Sources: http://github.com/robbertkrebbers

http://github.com/robbertkrebbers

