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Running example: filtering lazy lists

Task: Given a codatatype

α llist = [ ] | α · α llist
finite and

infinite lists

define a recursive function

lfilter P [ ] = [ ]

lfilter P (x · xs) = (if P x then x · lfilter P xs else lfilter P xs)

and prove properties.

lfilter P (lfilter Q xs) = lfilter (λx . P x ∧ Q x) xs

Usual definition principles
• well-founded recursion

• guarded/primitive corecursion

guarded unguarded

lfilter is underspecified:

lfilter (≤ 0) (1 · [1, 1, 1, . . .]) = lfilter (≤ 0) [1, 1, 1, . . .]
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Beyond well-founded and guarded corecursion

lfilter P [ ] = [ ]
lfilter P (x · xs) = (if P x then x · lfilter P xs else lfilter P xs)

lfinite xs ∨ (∀n. ∃x ∈ lset (ldrop n xs). P x ∧ Q x) −→

lfilter P (lfilter Q xs) = lfilter (λx . P x ∧ Q x) xs

Previous approaches:

Partiality leave unspecified for infinite lists w/o satisfying elements

close to specification
properties need preconditions
no proof principles

Search function check whether there are more elements

︷ ︸︸ ︷
if ¬ find P xs then [ ] else

total function, no preconditions
additional lemmas about search function necessary
ad hoc solution
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Two views on lfilter

lfilter :: (α⇒ bool)⇒ α llist⇒ α llist

1. produces a list corecursively

• lfilter :: β⇒ α llist

• find chain-complete partial
order on α llist

• take the least fixpoint for lfilter

2. consumes a list recursively

• lfilter :: α llist⇒ β

• find topology on α llist

• define lfilter on finite lists
by well-founded recursion

• take the limit for infinite lists

proof principles

 domain theory

fixpoint induction
structural induction

 topology

convergence on closed sets
uniqueness of limits
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Proof principles pay off

Isabelle proofs of lfilter P (lfilter Q xs) = lfilter (λx . P x ∧ Q x) xs

Paulson’s Structural induction

Fixpoint induction

Continuous extension
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The producer view: least fixpoints

• prefix order v defined coinductively

• least upper bound
⊔

Y defined by primitive corecursion

(v,⊔) forms a chain-complete partial order (CCPO) with ⊥ = [ ]

•

•

•

• •

. . .

A
⊔

Av v v

v

v

v

•v w

• lift (v,⊔) point-wise to function space β⇒ α llist

Knaster-Tarski theorem:
If f on a ccpo is monotone, then f has a least fixpoint.

partial-function (llist) lfilter :: (α⇒ bool)⇒ α llist⇒ α llist where

lfilter P xs = (case xs of [ ]⇒ [ ]
| x · xs ⇒ if P x then x · lfilter P xs else lfilter P xs)

Light-weight domain theory

[ ] represents “undefined”, no additional values in α llist

full function space ⇒, no continuity restrictions

less automation

less expressive (no nested or higher-order recursion)
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The producer view: induction proofs

• structural induction

adm Q Q [ ] ∀x xs. lfinite xs ∧ Q xs −→ Q (x · xs)

Q xs

• fixpoint induction rule generated for lfilter

Induction is sound only
for admissible statements Q •

•

•

• •

. . .

v v v

v

v
A

⊔
A

Q





 Q ( )

proof automation via syntactic decomposition rules for admissibility

lemma

adm (λxs.

lfilter P (lfilter Q xs ) = lfilter (λx . P x ∧ Q x) xs

)

by(induction xs) simp all

continuous contextsatomic predicate
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The consumer view: continuous extensions

datatype α list = [] | α · α list 1. Define filter recursively
filter :: (α⇒ bool)⇒ α list⇒ α list on finite lists.

lfilter P xs = Lim (filter P) xs 2. Take the limit.

infinite

finite filter P

L
im

introduce CCPO topology

 define the open sets

S

⊔
A

•

•

•

• •

. . .

v v v

v

v

A
non-empty overlap

Properties of a CCPO topology

limits are unique

finite elements are discrete, i.e., open {xs}

}
not the Scott topology!
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The consumer view: proving

1. Prove that filter P is continuous!
follows from monotonicity of filter

2. Proof rule convergence on a closed set (specialised for α llist):

closed {xs |Q xs} ∀ys. lfinite ys ∧ ys v xs −→ Q ys

Q xs

lemma lfilter P (lfilter Q xs) = lfilter (λx . P x ∧ Q x) xs
by (rule converge closed[of xs]) (auto intro!: closed eq isCont lfilter )

decomposition rules
for closedness
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Summary

Comparison least fixpoint continuous extension

ccpo on result type on parameter type

monotonicity of the functional of the function

proof principles structural induction = convergence on a closed set
fixpoint induction

Available in the AFP entry Coinductive

Which codatatypes can be turned into useful ccpos?

extended naturals enat = 0 | eSuc enat

n-ary trees α tree = Leaf | Node α (α tree) (α tree)

}
finite
truncations

streams α stream = Stream α (α stream) no finite elements
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Two views on lfilter

lfilter :: (α⇒ bool)⇒ α llist⇒ α llist

1. produces a list corecursively

• lfilter :: β⇒ α llist

• find chain-complete partial
order on α llist

• take the least fixpoint for lfilter

2. consumes a list recursively

• lfilter :: α llist⇒ β

• find topology on α llist

• define lfilter on finite lists
by well-founded recursion

• take the limit for infinite lists

proof principles

 domain theory

fixpoint induction
structural induction

 topology

convergence on closed sets
uniqueness of limits
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Proof principles pay off

Isabelle proofs of lfilter P (lfilter Q xs) = lfilter (λx . P x ∧ Q x) xs

Paulson’s Structural induction

Fixpoint induction

Continuous extension
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The consumer view: continuous extensions

datatype α list = [] | α · α list 1. Define filter recursively
filter :: (α⇒ bool)⇒ α list⇒ α list on finite lists.

lfilter P xs = Lim (filter P) xs 2. Take the limit.

infinite

finite filter P

L
im

introduce CCPO topology

 define the open sets

open S

⊔
A

•

•

•

• •

. . .

v v v

v

v

A
non-empty overlap

limits are unique

finite lists are discrete, i.e., open {xs}
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not the Scott topology!
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The producer view: least fixpoints

• prefix order v defined coinductively

• least upper bound
⊔

Y defined by primitive corecursion

(v,⊔) forms a chain-complete partial order (CCPO) with ⊥ = [ ]

•

•

•

• •

. . .

A
⊔

Av v v

v

v

v

•v w

• lift (v,⊔) point-wise to function space β⇒ α llist

Knaster-Tarski theorem:
If f on a ccpo is monotone, then f has a least fixpoint.

partial-function (llist) lfilter :: (α⇒ bool)⇒ α llist⇒ α llist where

lfilter P xs = (case xs of [ ]⇒ [ ]
| x · xs ⇒ if P x then x · lfilter P xs else lfilter P xs)

Light-weight domain theory

[ ] represents “undefined”, no additional values in α llist

full function space ⇒, no continuity restrictions

less automation

less expressive (no nested or higher-order recursion)
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