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Running example: filtering lazy lists

Task: Given a codatatype « llist=[] | a- « llist

define a recursive function

[filter P ] =] guarded unguarded
Ilfilter P (x - xs) = (if P x then xB/filter P xs else Ifilter P xs)

and prove properties.
lfilter P ([filter Q xs) = Ifilter (Ax. P x A Q x) xs

Usual | jirer is underspecified:
el ter (< 0) (1-[1,1,1,..]) = fiter (< 0) [1,1,1,...
(£0)(1-] ) (<0) [ ]
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Beyond well-founded and guarded corecursion

[filter P[] =]
[filter P (x - xs) = (if P x then x - [filter P xs else Ifilter P xs)

if ~find P xs then [] else

lfilter P (Ifilter Q xs) = Ifilter (Ax. P x A Q x) xs

Previous approaches:

Partiality leave unspecified for infinite lists w/o satisfying elements
© close to specification
© properties need preconditions
© no proof principles

Search function check whether there are more elements
© total function, no preconditions

© additional lemmas about search function necessary
© ad hoc solution
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Two views on [filter

lfilter :: (o« = bool) = = o Illst

2. consumes a list recursively 1. produces a list corecursively
o [filter:: o llist=f3 o [filter:: = « llist
e find topology on « /list e find chain-complete partial

o define ffilter on finite lists order on a flist
by well-founded recursion e take the least fixpoint for [filter

e take the limit for infinite lists

proof principles

~> topology ~> domain theory
convergence on closed sets fixpoint induction
uniqueness of limits structural induction



Proof principles pay off
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The producer view: least fixpoints

e prefix order C defined coinductively
e least upper bound | |Y defined by primitive corecursion

(C,|]) forms a chain-complete partial order (CCPO) with L =[]

partial-function (llist) ffilter :: (oo = bool) = « llist = < llist where

lfilter P xs = (case xs of [] = []
| x - xs = if P x then x - Ifilter P xs else Ifilter P xs)

Light-weight domain theory
© [] represents “undefined”, no additional values in « /llist
@ full function space =, no continuity restrictions
© less automation

© less expressive (no nested or higher-order recursion)
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The producer view: induction proofs

e structural induction

adm Q Q] Vx xs. Ifinite xs A Q xs — Q (x - xs)
Q xs

e fixpoint induction rule generated for [filter

A
Induction is sound only
for admissible statements Q Q —Q (JA)

proof automation via syntactic decomposition rules for admissibility
EL [ ROV filter P (Ifilter Q) = Ifilter (Ax. P x A Q x) B
~

atomic predicate continuous contexts
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The consumer view: continuous extensions

datatype « list =[] | a- « list 1. Define filter recursively
filter :: (o = bool) = « list = « list

on finite lists.
lfilter P xs = Lim (filter P) xs

2. Take the limit.

Properties of a CCPO topology
@ limits are unique

- . . not the Scott topology!
© finite elements are discrete, i.e., open {xs}} PologY

A non-empty overlap ©P€/ S
introduce CCPO topology

~ define the open sets

\7
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The consumer view: proving

1. Prove that filter P is continuous!
follows from monotonicity of filter

2. Proof rule convergence on a closed set (specialised for « llist):
closed {xs | Q xs} Vys. Ifinite ys A ys C xs — Q ys
Q xs

lemma [filter P (Ifilter Q xs) = Ifilter (Ax. P x A @ x) xs
by (rule converge_closed[of _ xs]) (auto intro!:Ee[eSIRIRE @l T il [Td )

decomposition rules
for closedness
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Comparison least fixpoint continuous extension
ccpo on result type on parameter type
monotonicity of the functional of the function

proof principles structural induction = convergence on a closed set

fixpoint induction

Available in the AFP entry Coinductive

Which codatatypes can be turned into useful ccpos?

© extended naturals enat = 0 | eSuc enat

finite
© n-ary trees a tree = Leaf | Node o (« tree) (« tree) truncations
© streams « stream = Stream « (« stream) no finite elements



Two views on [filter

Ifilter :: (v = bool) = =
2. a list a list cori
o [filter:: o llist= 3 = a llist
o find topology on « llist e find chain-complete partial
o define ffilter on finite lists order on a llst
by well-founded recursion o take the least fixpoint for /filter
o take the limit for infinite lists
proof principles
~~ topology ~~ domain theory
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The consumer view: continuous extensions

datatype o list =[] | o~ o list 1. Define filter recursively

filter :: (v = bool) = a list = o list on finite lists.
Ifilter P xs = Lim (filter P) xs 2. Take the limit

A non-empty overlap OP€" S
introduce CCPO topology X

~~ define the open sets

Proof principles pay off

Isabelle proofs of  Ifilter P (Ifilter Q xs) = Ifilter (Ax. P x A Q x) xs

Paulson’s Structural induction

Continuous extension

The producer view: least fixpoints

o prefix order C defined coinductively
e least upper bound | |Y defined by primitive corecursion
(C. L) forms a chain-complete partial order (CCPO) with L =[]

partial-function (/ist) ffilter : (o= bool) = a llist = . /list where
filter P xs = (case xs of [] =[]
| x- x5 = if P x then x - lfilter P xs else lfilter P xs)

o lift (C, ) point-wise to function space 3 = «a llist

Knaster-Tarski theorem:
If £ on a ccpo is monotone, then f has a least fixpoint.




