Recursive Functions on Lazy Lists

via Domains and Topologies

Andreas Lochbihler Johannes Hoélzl
Institute of Information Security Institut fiir Informatik
ETH Zurich, Switzerland TU Miinchen, Germany

ITP 2014

Running example: filtering lazy lists

Task: Given a codatatype

define a recursive function

and prove properties.

Running example: filtering lazy lists

Task: Given a codatatype « llist=[] | a- « llist

define a recursive function
[filter P[] =]
lfilter P (x - xs) = (if P x then x - [filter P xs else Ifilter P xs)

and prove properties.
lfilter P ([filter Q xs) = Ifilter (Ax. P x A Q x) xs

Running example: filtering lazy lists

Task: Given a codatatype « llist=[] | a- « llist

define a recursive function
[filter P[] =]

lfilter P (x - xs) = (if P x then x - [filter P xs else Ifilter P xs)

and prove properties.
lfilter P ([filter Q xs) = Ifilter (Ax. P x A Q x) xs

Running example: filtering lazy lists

Task: Given a codatatype « llist=[] | a- « llist

define a recursive function
[filter P[] =]

lfilter P (x - xs) = (if P x then x - [filter P xs else Ifilter P xs)

and prove properties.
lfilter P ([filter Q xs) = Ifilter (Ax. P x A Q x) xs

Usual definition principles
e well-founded recursion
e guarded/primitive corecursion

Running example: filtering lazy lists

Task: Given a codatatype « llist=[] | a- « llist

define a recursive function
[filter P[] =]
lfilter P (x - xs) = (if P x then x - [filter P xs else Ifilter P xs)

and prove properties.
lfilter P ([filter Q xs) = Ifilter (Ax. P x A Q x) xs

Usual definition principles
——well-founded-recursion
e guarded/primitive corecursion

Running example: filtering lazy lists

Task: Given a codatatype « llist=[] | a- « llist

define a recursive function

[filter P] =] guarded
Ilfilter P (x - xs) = (if P x then xB/filter P xs else Ifilter P xs)

and prove properties.
lfilter P ([filter Q xs) = Ifilter (Ax. P x A Q x) xs

Usual definition principles
——well-founded-recursion
e guarded/primitive corecursion

Running example: filtering lazy lists

Task: Given a codatatype « llist=[] | a- « llist

define a recursive function

[filter P] =] guarded unguarded
Ilfilter P (x - xs) = (if P x then xB/filter P xs else Ifilter P xs)

and prove properties.
lfilter P ([filter Q xs) = Ifilter (Ax. P x A Q x) xs

Usual definition principles
——etfounded—recuision

e Lorimiti :

Running example: filtering lazy lists

Task: Given a codatatype « llist=[] | a- « llist

define a recursive function

[filter P] =] guarded unguarded
Ilfilter P (x - xs) = (if P x then xB/filter P xs else Ifilter P xs)

and prove properties.
lfilter P ([filter Q xs) = Ifilter (Ax. P x A Q x) xs

Usual | jirer is underspecified:
el ter (< 0) (1-[1,1,1,..]) = fiter (< 0) [1,1,1,...
(£0)(1-]) (<0) []

Beyond well-founded and guarded corecursion

[filter P[] =]
[filter P (x - xs) = (if P x then x - Ifilter P xs else Ifilter P xs)

lfilter P (Ifilter Q xs) = Ifilter (Ax. P x A Q x) xs

Previous approaches:

Beyond well-founded and guarded corecursion

[filter P[] =]
[filter P (x - xs) = (if P x then x - Ifilter P xs else Ifilter P xs)

lfinite xs V (Vn. 3x € Iset (Idrop n xs). P x A Q x) —
lfilter P (Ifilter Q xs) = Ifilter (Ax. P x A Q x) xs

Previous approaches:
Partiality leave unspecified for infinite lists w/o satisfying elements

© close to specification
© properties need preconditions
© no proof principles

Beyond well-founded and guarded corecursion

[filter P[] =]
[filter P (x - xs) = (if P x then x - [filter P xs else Ifilter P xs)

if ~find P xs then [] else

lfilter P (Ifilter Q xs) = Ifilter (Ax. P x A Q x) xs

Previous approaches:

Partiality leave unspecified for infinite lists w/o satisfying elements
© close to specification
© properties need preconditions
© no proof principles

Search function check whether there are more elements
© total function, no preconditions

© additional lemmas about search function necessary
© ad hoc solution

Two views on [filter

[filter :: (ac = bool) = a llist = « llist

Two views on [filter

[filter :: (ac = bool) = « llist = e llist
1. produces a list corecursively
o [filter:: 5= « llist

e find chain-complete partial
order on « llist

e take the least fixpoint for [filter

Two views on [filter

[filter :: (ac = bool) = « llist = e llist
1. produces a list corecursively
o [filter:: 5= « llist

e find chain-complete partial
order on « llist

e take the least fixpoint for [filter

proof principles
~> domain theory

fixpoint induction
structural induction

Two views on [filter

lfilter :: (o = bool) = = Illst
2. consumes a list recursively 1. produces a list corecursively
o [filter:: o llist=f3 o [filter:: = « llist
e find topology on « /list e find chain-complete partial
o define ffilter on finite lists order on a flist

by well-founded recursion e take the least fixpoint for [filter

e take the limit for infinite lists

proof principles
~> domain theory

fixpoint induction
structural induction

Two views on [filter

lfilter :: (o« = bool) = = o Illst

2. consumes a list recursively 1. produces a list corecursively
o [filter:: o llist=f3 o [filter:: = « llist
e find topology on « /list e find chain-complete partial

o define ffilter on finite lists order on a flist
by well-founded recursion e take the least fixpoint for [filter

e take the limit for infinite lists

proof principles

~> topology ~> domain theory
convergence on closed sets fixpoint induction
uniqueness of limits structural induction

Proof principles pay off

Isabelle proofs of [filter P (lfilter Q xs) = lfilter (Ax. P x A Q x) xs

Paulson’s Structural induction

Subsection {* Ninerous lennas required to prove eftext filter coni} 4 Lo st Lot
tion xs) 51 all

filter P (Lfilter 0 xs) = Uilter (i, P x 4 0) 38"
Teoma indfet cont Lem L formatl:

5 px <> (LU0) € findRel (%x. px &qx)*

=8
by (erite Yangeet induct, aute)
Venmas findRel conj = findRel conj lemna [0F refl]

Lemmn findfel ot con porain Lrule format]:
RN B
Lomat i
Donzin (finduel (3.
by Gorie Findnat anducts auie)

Leamn indfel con2 Lt formtls
RIERR TS

» (L) ¢ findrlhn. 5 sk -

LR et .

by (erute Findhe - indoct

s e e Fixpoint induction

oty Golast
on

filter P (Lfilter 0 xs) = Uilter (i, Px 4 0) xs”

have “ves. Ufilter P (filter @ xs) C Ufilter (b P x4 0 x) 257
by(rule Uiilter, fixp anduct) (suto o511t 1ist. solit)

S TR anac \hhu P (Uilter @ 21"
i3

Leoma findfet con Lteer [rue foraat
“(L1™7) & FindRal()

e b T e i
by Gerute Fhrane sneuie: e} aleateh S T T o xnon asr
Brthtast T aret oty
Lenma Lfiltar cong Le: 4
LR SR g 1, vesteer e
T ' e B AT P S0
. e
(o tac "L ¢ ponsin (faninel 3
U i Crinenet (x5 < 3 0000
e e Bubaek 10 bomninFingheL nanel)

o S e

Borsth findhel 511, Sarify)

Rt
s S i w1, i
it ere 13 BEert 5k 455 B 1 an sheretre st o i etent 1)
aopts tagmaon tac T Clans &
el 2 aopl oLget Lot 25 fhndRel cons 31
sy Csibahn tac T 1fikker 41 Lo 10 (VfiLter a 1'a)) € findael p%)
oty i . .
200 LAk oo fandnet cons 1itter) Continuous extension

Togna Usteer Uitter ' it P (it 915 = Uilter (01020

Lema Liteer com “Vfiteer p (1itter a1) = Uilter (e px La 0 10 by (rule tendsto closedlof xsD) (auto 1 Closed Cottact ea 1scant 1attar)
i © fin it cine o)
Tt tem tmee e Shseto o tisto Fun wenol)

done

The producer view: least fixpoints

e prefix order C defined coinductively
e least upper bound | |Y defined by primitive corecursion

(C,|]) forms a chain-complete partial order (CCPO) with L =[]

The producer view: least fixpoints

e prefix order C defined coinductively
e least upper bound | |Y defined by primitive corecursion

(C,|]) forms a chain-complete partial order (CCPO) with L =[]

LA

The producer view: least fixpoints

e prefix order C defined coinductively
e least upper bound | |Y defined by primitive corecursion

(C,|]) forms a chain-complete partial order (CCPO) with L =[]

LA

Ir1

The producer view: least fixpoints

e prefix order C defined coinductively
e least upper bound | |Y defined by primitive corecursion

(C,|]) forms a chain-complete partial order (CCPO) with L =[]

The producer view: least fixpoints

e prefix order C defined coinductively
e least upper bound | |Y defined by primitive corecursion

(C,|]) forms a chain-complete partial order (CCPO) with L =[]

The producer view: least fixpoints

e prefix order C defined coinductively
e least upper bound | |Y defined by primitive corecursion

(C,|]) forms a chain-complete partial order (CCPO) with L =[]

e lift (C,|]) point-wise to function space § = « llist

The producer view: least fixpoints

e prefix order C defined coinductively
e least upper bound | |Y defined by primitive corecursion

(C,|]) forms a chain-complete partial order (CCPO) with L =[]

e lift (C,|]) point-wise to function space § = « llist

Knaster-Tarski theorem:
If f on a ccpo is monotone, then f has a least fixpoint.

The producer view: least fixpoints

e prefix order C defined coinductively
e least upper bound | |Y defined by primitive corecursion

(C,|]) forms a chain-complete partial order (CCPO) with L =[]

partial-function (llist) ffilter :: (oo = bool) = « llist = < llist where

lfilter P xs = (case xs of [] = []
| x - xs = if P x then x - Ifilter P xs else Ifilter P xs)

e lift (C,|]) point-wise to function space § = « llist

Knaster-Tarski theorem:
If f on a ccpo is monotone, then f has a least fixpoint.

The producer view: least fixpoints

e prefix order C defined coinductively
e least upper bound | |Y defined by primitive corecursion

(C,|]) forms a chain-complete partial order (CCPO) with L =[]

partial-function (llist) ffilter :: (oo = bool) = « llist = < llist where

lfilter P xs = (case xs of [] = []
| x - xs = if P x then x - Ifilter P xs else Ifilter P xs)

Light-weight domain theory
© [] represents “undefined”, no additional values in « /llist
@ full function space =, no continuity restrictions
© less automation

© less expressive (no nested or higher-order recursion)

The producer view: induction proofs

e structural induction

adm Q Q] Vx xs. Ifinite xs A Q xs — Q (x - xs)
Q xs

e fixpoint induction rule generated for [filter

The producer view: induction proofs

e structural induction

adm Q Q] Vx xs. Ifinite xs A Q xs — Q (x - xs)
Q xs

e fixpoint induction rule generated for [filter

A
Induction is sound only
for admissible statements Q LIA

The producer view: induction proofs

e structural induction

adm Q Q] Vx xs. Ifinite xs A Q xs — Q (x - xs)
Q xs

e fixpoint induction rule generated for [filter

A
Induction is sound only
for admissible statements Q Q —Q (JA)

The producer view: induction proofs

e structural induction

adm Q Q] Vx xs. Ifinite xs A Q xs — Q (x - xs)
Q xs

e fixpoint induction rule generated for [filter

A
Induction is sound only
for admissible statements Q Q —Q (JA)

lemma ffilter P (Ifilter Q xs) = Ifilter (Ax. P x A Q@ x) xs
by(induction xs) simp_all

The producer view: induction proofs

e structural induction

adm Q Q] Vx xs. Ifinite xs A Q xs — Q (x - xs)
Q xs

e fixpoint induction rule generated for [filter

A
Induction is sound only
for admissible statements Q Q —Q (JA)

proof automation via syntactic decomposition rules for admissibility
adm (Axs. Ifilter P (Ifilter Q xs) = Ifilter (Ax. P x A Q x) xs)

The producer view: induction proofs

e structural induction

adm Q Q] Vx xs. Ifinite xs A Q xs — Q (x - xs)
Q xs

e fixpoint induction rule generated for [filter

A
Induction is sound only
for admissible statements Q Q —Q (JA)

proof automation via syntactic decomposition rules for admissibility
EL [ROV filter P (Ifilter Q) = Ifilter (Ax. P x A Q x) B
~

atomic predicate continuous contexts

The consumer view: continuous extensions

datatype « list =[] | a- « list 1. Define filter recursively
filter :: (o = bool) = « list = « list on finite lists.

The consumer view: continuous extensions

datatype « list =[] | a- « list 1. Define filter recursively
filter :: (o = bool) = « list = « list

on finite lists.
lfilter P xs = Lim (filter P) xs

2. Take the limit.

The consumer view: continuous extensions

datatype « list =[] | a- « list 1. Define filter recursively
filter :: (o = bool) = « list = « list

on finite lists.
lfilter P xs = Lim (filter P) xs

2. Take the limit.

S
A
introduce CCPO topology
~ define the open sets

The consumer view: continuous extensions

datatype « list =[] | a- « list 1. Define filter recursively
filter :: (o = bool) = « list = « list

on finite lists.
lfilter P xs = Lim (filter P) xs 2. Take the limit.

S

A non-empty overlap ©P€/ S
introduce CCPO topology

~ define the open sets

\7

The consumer view: continuous extensions

datatype « list =[] | a- « list 1. Define filter recursively
filter :: (o = bool) = « list = « list

on finite lists.
lfilter P xs = Lim (filter P) xs

2. Take the limit.

Properties of a CCPO topology
@ limits are unique

- . . not the Scott topology!
© finite elements are discrete, i.e., open {xs}} PologY

A non-empty overlap ©P€/ S
introduce CCPO topology

~ define the open sets

\7

The consumer view: proving

1. Prove that filter P is continuous!
follows from monotonicity of filter

2. Proof rule convergence on a closed set (specialised for « llist):
closed {xs | Q xs} Vys. Ifinite ys A ys C xs — Q ys
Q xs

lemma [filter P (Ifilter Q xs) = Ifilter (Ax. P x A Q x) xs
by (rule converge_closed[of _ xs]) (auto intro!: closed_eq isCont_lIfilter)

The consumer view: proving

1. Prove that filter P is continuous!
follows from monotonicity of filter

2. Proof rule convergence on a closed set (specialised for « llist):
closed {xs | Q xs} Vys. Ifinite ys A ys C xs — Q ys
Q xs

lemma [filter P (Ifilter Q xs) = Ifilter (Ax. P x A @ x) xs
by (rule converge_closed[of _ xs]) (auto intro!:Ee[eSIRIRE @l T il [Td)

decomposition rules
for closedness

Comparison least fixpoint continuous extension
ccpo on result type on parameter type
monotonicity of the functional of the function

proof principles structural induction = convergence on a closed set

fixpoint induction

Available in the AFP entry Coinductive

Comparison least fixpoint continuous extension
ccpo on result type on parameter type
monotonicity of the functional of the function

proof principles structural induction = convergence on a closed set

fixpoint induction

Available in the AFP entry Coinductive

Which codatatypes can be turned into useful ccpos?

© extended naturals enat = 0 | eSuc enat

finite
© n-ary trees a tree = Leaf | Node o (« tree) (« tree) truncations
© streams « stream = Stream « (« stream) no finite elements

Two views on [filter

Ifilter :: (v = bool) = =
2. a list a list cori
o [filter:: o llist= 3 = a llist
o find topology on « llist e find chain-complete partial
o define ffilter on finite lists order on a llst
by well-founded recursion o take the least fixpoint for /filter
o take the limit for infinite lists
proof principles
~~ topology ~~ domain theory

convergence on closed sets
uniqueness of limits

fixpoint induction
structural induction

The consumer view: continuous extensions

datatype o list =[] | o~ o list 1. Define filter recursively

filter :: (v = bool) = a list = o list on finite lists.
Ifilter P xs = Lim (filter P) xs 2. Take the limit

A non-empty overlap OP€" S
introduce CCPO topology X

~~ define the open sets

Proof principles pay off

Isabelle proofs of Ifilter P (Ifilter Q xs) = Ifilter (Ax. P x A Q x) xs

Paulson’s Structural induction

Continuous extension

The producer view: least fixpoints

o prefix order C defined coinductively
e least upper bound | |Y defined by primitive corecursion
(C. L) forms a chain-complete partial order (CCPO) with L =[]

partial-function (/ist) ffilter : (o= bool) = a llist = . /list where
filter P xs = (case xs of [] =[]
| x- x5 = if P x then x - lfilter P xs else lfilter P xs)

o lift (C,) point-wise to function space 3 = «a llist

Knaster-Tarski theorem:
If £ on a ccpo is monotone, then f has a least fixpoint.

