HOL with Definitions: Semantics, Soundness, and a Verified Implementation

Ramana Kumar¹ Rob Arthan² Magnus O. Myreen¹ Scott Owens³

¹Computer Laboratory, University of Cambridge

²School of EECS, Queen Mary, University of London

³School of Computing, University of Kent

Interactive Theorem Proving, 2014 Vienna Summer of Logic Produce a useful theorem proving system together with a proof that every theorem obtained by running the system (according to the semantics of the machine-code) is true according to the semantics of higher-order logic. Produce a useful theorem proving system together with a proof that every theorem obtained by running the system (according to the semantics of the machine-code) is true according to the semantics of higher-order logic.

Achieved: formal semantics for HOL, soundness of the inference system and principles of definition, verified high-level implementation

Remaining: interface to proved theorems (printing), verification of LCF architecture

Why Verify a Theorem Prover?

For Leverage

The theorem prover sits at centre of the trusted code base.

For Understanding

Formalisation clarifies details of the logic and the implementation.

As a Catalyst

Being medium-sized, with a clear specification, a verified theorem prover is a good testing ground for application-verification tools.

Verified HOL: The Approach

Verified HOL: The Approach

Outline

Motivation Verified Theorem Provers Previous Work and Context

Formalising all of HOL

Specification of Set Theory Basic HOL Semantics and Soundness Supporting a Context of Definitions Consistency of HOL's Axioms

(Towards) Verifying HOL Light Monadic Implementation in HOL Producing CakeML for Compilation

Harrison, IJCAR 2006:

Does not include rules for making definitions.

Myreen et al, ITP 2013:

Does not connect to the semantics.

This work:

This work (after the paper):

This work (in the paper):

This work (after the paper):

Outline

Motivation

Verified Theorem Provers Previous Work and Context

Formalising all of HOL

Specification of Set Theory

Basic HOL Semantics and Soundness Supporting a Context of Definitions Consistency of HOL's Axioms

(Towards) Verifying HOL Light Monadic Implementation in HOL Producing CakeML for Compilation Specifying the Semantic Domain

Basic Idea

is_set_theory (mem : $\mathcal{U} \rightarrow \mathcal{U} \rightarrow bool$)

Specifying Axioms

► Extensionality ∀x y. x = y ⇔ ∀a. mem a x ⇔ mem a y
► Separation ∀a x P. mem a (sep x P) ⇔ mem a x ∧ P a
► etc.

Compared to Defining the Universe

Harrison's Original Approach

Advantages of New Approach

- Avoid stratifying sets into levels, get extensionality.
- Isolate the assumption required for the axiom of infinity.

Derived Operations

Define Useful Sets

Empty set, Cartesian products, functions-as-graphs, etc.

Prove Interface Theorems

 $\vdash \text{ is_set_theory } mem \Rightarrow \\ \forall f \ x \ s \ t. \\ mem \ x \ s \ \land \ mem \ (f \ x) \ t \Rightarrow \\ \text{apply } mem \ (\text{abstract } mem \ s \ t \ f) \ x \ = \ f \ x \\ \end{pmatrix}$

A layer of such theorems, supported by the set theory axioms, is what supports the HOL soundness proof.

Outline

Motivation

Verified Theorem Provers Previous Work and Context

Formalising all of HOL

Specification of Set Theory Basic HOL Semantics and Soundness Supporting a Context of Definitions

(Towards) Verifying HOL Light Monadic Implementation in HOL Producing CakeML for Compilation

Formalising HOL Syntax

Define Types and Terms

Define Inference System

$$\begin{array}{c} {\rm theory_ok\ thy}\\ p\ {\rm has_type\ Bool}\\ \hline {\rm term_ok\ (sigof\ thy)\ p}\\ \hline {\rm (thy,[p])\ \Vdash\ p} \end{array} \ {\rm ASSUME} \ \begin{array}{c} {\rm theory_ok\ thy}\\ {\rm term_ok\ (sigof\ thy)\ t}\\ \hline {\rm (thy,[])\ \Vdash\ t\ ==\ t} \end{array} \ {\rm REFL} \end{array}$$

etc.

Semantics of Types and Terms

Types are Inhabited Sets

typesem $\delta \tau$ (Tyvar s) = τs typesem $\delta \tau$ (Tyapp *name args*) = δ *name* (map (typesem $\delta \tau$) *args*)

Terms are Elements of Their Types

termsem $mem \ \Theta \ (\delta, \gamma) \ (\tau, \sigma) \ (\mathsf{Abs} \ x \ ty \ b) =$ abstract $mem \ (\mathsf{typesem} \ \delta \ \tau \ ty) \ (\mathsf{typesem} \ \delta \ \tau \ (\mathsf{typeof} \ b))$ $(\lambda \ m. \ \mathsf{termsem} \ mem \ \Theta \ (\delta, \gamma) \ (\tau, ((x, ty) \ \mapsto \ m) \ \sigma) \ b)$ etc.

(In Stateless HOL, not shown, these need to be in mutual recursion and are rather more complicated.)

Soundness in a Fixed Context

Entailment

 $(thy, h) \models c$ holds if: every interpretation (δ, γ) that models thy also satisfies $h \models c$.

Soundness Theorem

$$\vdash \text{ is_set_theory } mem \Rightarrow \\ \forall thy \ h \ c. \ (thy, h) \Vdash c \Rightarrow (thy, h) \models c$$

Proved by induction on the inference system. (*mem* is used by the term semantics inside $(thy, h) \models c$.)

Outline

Motivation

Verified Theorem Provers Previous Work and Context

Formalising all of HOL

Specification of Set Theory Basic HOL Semantics and Soundness Supporting a Context of Definitions Consistency of HOL's Axioms

(Towards) Verifying HOL Light Monadic Implementation in HOL Producing CakeML for Compilation

Theory Updates

Signatures

- Sequents carry a context: $(thy, h) \Vdash c$.
- thy says which constants are defined and their arity/type.
- thy also carries the set of axioms.

Extension Principles

- Basic idea: extend the theory with new constants or axioms.
- The sound rules for doing so have many side-conditions (hence skipped in previous formalisations).
- Simply adding new type operators, constants, or axioms to the theory is also possible (the latter may not be sound).

Soundness of Updates

Each update

receives some input data, then

- introduces axioms,
- introduces constants or type operators, and,
- has side-conditions.

An update is sound if

- whenever there is a model of the theory before the update,
- and the side conditions hold, then
- there is a model of the theory after the update.

Mainly: the introduced axioms (which mention the introduced constants) are consistent.

Type Definition

Data and Side-Conditions

- ▶ TypeDefn name pred abs rep,
- $(thy, []) \Vdash$ Comb pred witness,
- ▶ *pred* is closed, and all names are fresh.

Introduced Constants and Axioms

- ► Type operator *name* with type variables in *pred* as arguments.
- Constants *abs* and *rep*, functions between the new type and subset of the type of *witness* where *pred* holds.
- Axioms asserting *abs* and *rep* form a bijection.

Soundness

(For full details: see code at https://cakeml.org.)

Constant Specification

Data and Side-Conditions

- ConstSpec $(\bar{x} = \bar{t}) prop$,
- $\blacktriangleright (thy, \bar{x} = \bar{t}) \Vdash prop,$
- FV $prop \subseteq \bar{x}, \bar{t}$ all closed, and all type variables in type,
- \bar{x} all distinct and fresh names.

For details, see Rob Arthan's talk tomorrow.

Introduced Constants and Axioms

- New constants \bar{c} for each \bar{x} .
- New axiom: $prop[\bar{c}/\bar{x}]$.

Soundness

Outline

Motivation

Verified Theorem Provers Previous Work and Context

Formalising all of HOL

Specification of Set Theory Basic HOL Semantics and Soundness Supporting a Context of Definitions Consistency of HOL's Axioms

(Towards) Verifying HOL Light Monadic Implementation in HOL Producing CakeML for Compilation

The Three Mathematical Axioms

The Axioms

- 1. Extensionality: $(\lambda x. f x) = f$
- 2. Choice: $P x \Rightarrow P((\varepsilon) P)$
- 3. Infinity: $\exists f$. ONE_ONE $f \land$ ONTO f

Formalised as Updates

Choice: NewAxiom (Implies (Comb (Var "P" ...) ...) ::: NewConst " ε " (Fun (Fun A Bool) A) :: *ctxt*

The same framework can handle user-supplied axioms.

Consistency, Avoiding Self-Consistency

Main Theorem

 $\vdash \text{ is_set_theory } mem \land (\exists inf. \mathsf{INFINITE} \{ a \mid mem \ a \ inf \}) \Rightarrow \forall ctxt.$

ctxt extends hol_ctxt \land

 $(\forall p. \text{NewAxiom } p \in ctxt \Rightarrow \text{NewAxiom } p \in \text{hol}_ctxt) \Rightarrow \exists p_1 \ p_2. \ (\text{thyof } ctxt, []) \Vdash p_1 \land \neg((\text{thyof } ctxt, []) \Vdash p_2)$

Explanation

Assuming we have a set-theory satisfying the axiom of infinity, every extension of HOL's initial theory context that does not introduce new axioms has both provable and unprovable sequents.

Outline

Motivation

Verified Theorem Provers Previous Work and Context

Formalising all of HOL

Specification of Set Theory Basic HOL Semantics and Soundness Supporting a Context of Definitions Consistency of HOL's Axioms

(Towards) Verifying HOL Light Monadic Implementation in HOL Producing CakeML for Compilation

Inference Rules

- Define theorem datatype:
 Sequent (h : hol_term list) (c : hol_term).
- ▶ For each clause of the $(thy, h) \Vdash c$ relation, define a monadic function that returns its conclusion.

► For example:

every (type_ok (tysof
$$thy$$
)) (map fst $tyin$)

$$(thy, h) \Vdash c$$
INST_twin a INST_TYPE

 $(thy, map (INST tyin) h) \Vdash INST tyin c$

becomes

Inference Rules

- Define theorem datatype:
 Sequent (h : hol_term list) (c : hol_term).
- For each clause of the $(thy, h) \Vdash c$ relation, define a monadic function that returns its conclusion.
- ► For example:

$$\begin{array}{c} \text{every (type_ok (tysof thy)) (map fst tyin)} \\ (thy,h) \Vdash c \\ \hline \hline (thy, \text{map (INST tyin) } h) \Vdash \text{ INST tyin } c \end{array} \text{ INST_TYPE} \end{array}$$

becomes

Principles of Definition

Monadic functions are in a state-exception monad. The state includes:

- the term and type constants,
- the axioms, and,
- a log of the definitions.

For each theory-extension principle, define a monadic function. This function:

- takes the data as input,
- checks the side-conditions, and,
- updates the references above.

Principles of Definition

Monadic functions are in a state-exception monad. The state includes:

- the term and type constants,
- the axioms, and,
- a log of the definitions.

For each theory-extension principle, define a monadic function. This function:

- takes the data as input,
- checks the side-conditions, and,
- updates the references above.

Verifying the Monadic Functions

Basic Idea

Prove: whenever a monadic function produces Sequent $h \ c$ in some good context thy on good arguments, then $(thy, h) \Vdash c$ holds.

Why Log Definitions?

- The semantics of theorem values is in context of the log.
- ► In real HOL Light the log is not stored (ephemeral).
- We could avoid the log in our state monad, at the expense of an existential quantifier on the verification theorems.

Outline

Motivation

Verified Theorem Provers Previous Work and Context

Formalising all of HOL

Specification of Set Theory Basic HOL Semantics and Soundness Supporting a Context of Definitions Consistency of HOL's Axioms

(Towards) Verifying HOL Light Monadic Implementation in HOL Producing CakeML for Compilation

Automatic Proof-Producing Translation

```
Shallow to Deep

INST_TYPE tyin (Sequent h c) =

bind (map (inst tyin) h)

(\lambda l. bind (inst tyin c) (\lambda x. return (Sequent l x)))

becomes

fun inst_type tyin (Sequent (h,c)) =

let val l = map (inst tyin) h

val x = inst tyin c

in Sequent (l,x) end
```

Certificate Theorem

Generated theorem relates above syntax via the operational semantics of CakeML to the monadic function INST_TYPE.

Proof Effort

Breakdown of Lines of Proof Script

Set-Theory Specification	319
HOL Syntax	347
Syntax Lemmas	1852
HOL Semantics	693
HOL Soundness & Consistency	2368
Monadic Kernel Functions	628
Kernel Verification	2644
Verified CakeML Production	1429
	10280

Builds on Existing Infrastructure Namely: HOL4 and CakeML

Summary

Achievements

- The semantics and soundness of all of HOL (including definitions and axioms) has now been formalised in HOL.
- We have produced an implementation of the HOL Light kernel in CakeML, and verified it against the above semantics.

Outlook

- Next step: package the verified kernel as a module in a verified theorem prover.
- Self-verifying theorem provers raise interesting opportunities for logical reflection.