
Rough Diamond: An Extension of
Equivalence-based Rewriting

Matt Kaufmann (speaker) and
J Strother Moore

The University of Texas at Austin

July, 2014



Introduction Examples Conclusion

OUTLINE

Introduction

Examples

Conclusion

2/16



Introduction Examples Conclusion

OUTLINE

Introduction

Examples

Conclusion

3/16



Introduction Examples Conclusion

OVERVIEW

QUESTION: Out of hundreds of improvements made to ACL2
since its inception in 1989, why are we reporting on this one?

ANSWER: This one is a bit less specific to ACL2 than most.

I Previous work rewrites with equivalences, not just
equalities, and does so efficiently and automatically.

I Today we’ll discuss an extension of that work.

4/16



Introduction Examples Conclusion

OVERVIEW

QUESTION: Out of hundreds of improvements made to ACL2
since its inception in 1989, why are we reporting on this one?

ANSWER: This one is a bit less specific to ACL2 than most.

I Previous work rewrites with equivalences, not just
equalities, and does so efficiently and automatically.

I Today we’ll discuss an extension of that work.

4/16



Introduction Examples Conclusion

OVERVIEW

QUESTION: Out of hundreds of improvements made to ACL2
since its inception in 1989, why are we reporting on this one?

ANSWER: This one is a bit less specific to ACL2 than most.

I Previous work rewrites with equivalences, not just
equalities, and does so efficiently and automatically.

I Today we’ll discuss an extension of that work.

4/16



Introduction Examples Conclusion

OVERVIEW

QUESTION: Out of hundreds of improvements made to ACL2
since its inception in 1989, why are we reporting on this one?

ANSWER: This one is a bit less specific to ACL2 than most.

I Previous work rewrites with equivalences,

not just
equalities, and does so efficiently and automatically.

I Today we’ll discuss an extension of that work.

4/16



Introduction Examples Conclusion

OVERVIEW

QUESTION: Out of hundreds of improvements made to ACL2
since its inception in 1989, why are we reporting on this one?

ANSWER: This one is a bit less specific to ACL2 than most.

I Previous work rewrites with equivalences, not just
equalities,

and does so efficiently and automatically.

I Today we’ll discuss an extension of that work.

4/16



Introduction Examples Conclusion

OVERVIEW

QUESTION: Out of hundreds of improvements made to ACL2
since its inception in 1989, why are we reporting on this one?

ANSWER: This one is a bit less specific to ACL2 than most.

I Previous work rewrites with equivalences, not just
equalities, and does so efficiently and automatically.

I Today we’ll discuss an extension of that work.

4/16



Introduction Examples Conclusion

OVERVIEW

QUESTION: Out of hundreds of improvements made to ACL2
since its inception in 1989, why are we reporting on this one?

ANSWER: This one is a bit less specific to ACL2 than most.

I Previous work rewrites with equivalences, not just
equalities, and does so efficiently and automatically.

I Today we’ll discuss an extension of that work.

4/16



Introduction Examples Conclusion

ACL2 AND REWRITING

I ACL2:
A Computational Logic for Applicative Common Lisp

I Under continuous development since 1989
I In regular use in industry (AMD, Centaur Technology,

Intel, Oracle, and Rockwell Collins)
I Sophisticated system (> 14 MB of source) supporting

programming and proof
I Built-in automated induction, integrated decision

procedures for linear arithmetic and Boolean logic, and
many heuristics

I But the key proof technique is conditional rewriting:
Theorem. H→ L = R

suggests replacement of an instance L/s of L by a
corresponding instance R/s of R, if instance H/s is provable.

5/16



Introduction Examples Conclusion

ACL2 AND REWRITING

I ACL2:
A Computational Logic for Applicative Common Lisp

I Under continuous development since 1989

I In regular use in industry (AMD, Centaur Technology,
Intel, Oracle, and Rockwell Collins)

I Sophisticated system (> 14 MB of source) supporting
programming and proof

I Built-in automated induction, integrated decision
procedures for linear arithmetic and Boolean logic, and
many heuristics

I But the key proof technique is conditional rewriting:
Theorem. H→ L = R

suggests replacement of an instance L/s of L by a
corresponding instance R/s of R, if instance H/s is provable.

5/16



Introduction Examples Conclusion

ACL2 AND REWRITING

I ACL2:
A Computational Logic for Applicative Common Lisp

I Under continuous development since 1989
I In regular use in industry (AMD, Centaur Technology,

Intel, Oracle, and Rockwell Collins)

I Sophisticated system (> 14 MB of source) supporting
programming and proof

I Built-in automated induction, integrated decision
procedures for linear arithmetic and Boolean logic, and
many heuristics

I But the key proof technique is conditional rewriting:
Theorem. H→ L = R

suggests replacement of an instance L/s of L by a
corresponding instance R/s of R, if instance H/s is provable.

5/16



Introduction Examples Conclusion

ACL2 AND REWRITING

I ACL2:
A Computational Logic for Applicative Common Lisp

I Under continuous development since 1989
I In regular use in industry (AMD, Centaur Technology,

Intel, Oracle, and Rockwell Collins)
I Sophisticated system (> 14 MB of source) supporting

programming and proof

I Built-in automated induction, integrated decision
procedures for linear arithmetic and Boolean logic, and
many heuristics

I But the key proof technique is conditional rewriting:
Theorem. H→ L = R

suggests replacement of an instance L/s of L by a
corresponding instance R/s of R, if instance H/s is provable.

5/16



Introduction Examples Conclusion

ACL2 AND REWRITING

I ACL2:
A Computational Logic for Applicative Common Lisp

I Under continuous development since 1989
I In regular use in industry (AMD, Centaur Technology,

Intel, Oracle, and Rockwell Collins)
I Sophisticated system (> 14 MB of source) supporting

programming and proof
I Built-in automated induction, integrated decision

procedures for linear arithmetic and Boolean logic, and
many heuristics

I But the key proof technique is conditional rewriting:
Theorem. H→ L = R

suggests replacement of an instance L/s of L by a
corresponding instance R/s of R, if instance H/s is provable.

5/16



Introduction Examples Conclusion

ACL2 AND REWRITING

I ACL2:
A Computational Logic for Applicative Common Lisp

I Under continuous development since 1989
I In regular use in industry (AMD, Centaur Technology,

Intel, Oracle, and Rockwell Collins)
I Sophisticated system (> 14 MB of source) supporting

programming and proof
I Built-in automated induction, integrated decision

procedures for linear arithmetic and Boolean logic, and
many heuristics

I But the key proof technique is conditional rewriting:
Theorem. H→ L = R

suggests replacement of an instance L/s of L by a
corresponding instance R/s of R, if instance H/s is provable.

5/16



Introduction Examples Conclusion

EQUIVALENCE-BASED REWRITING

Question: Instead of
H→ L=R (or, L=R)
can we preserve mere equivalence instead?
H→ L∼R (or, L∼R)

Answer: depends on the context, i.e., the position in the
surrounding term. (Note: Not IF context, etc.)
Example. Let ∼ be bag-equivalence (two lists have the same
members) and consider this equivalence-based rewrite rule:

remove-duplicates(x) ∼ x

Bad: length(remove-duplicates(x)) = length(x).
Good: (a ∈ remove-duplicates(x)) = (a ∈ x).

6/16



Introduction Examples Conclusion

EQUIVALENCE-BASED REWRITING

Question: Instead of
H→ L=R (or, L=R)
can we preserve mere equivalence instead?
H→ L∼R (or, L∼R)
Answer: depends on the context, i.e., the position in the
surrounding term.

(Note: Not IF context, etc.)
Example. Let ∼ be bag-equivalence (two lists have the same
members) and consider this equivalence-based rewrite rule:

remove-duplicates(x) ∼ x

Bad: length(remove-duplicates(x)) = length(x).
Good: (a ∈ remove-duplicates(x)) = (a ∈ x).

6/16



Introduction Examples Conclusion

EQUIVALENCE-BASED REWRITING

Question: Instead of
H→ L=R (or, L=R)
can we preserve mere equivalence instead?
H→ L∼R (or, L∼R)
Answer: depends on the context, i.e., the position in the
surrounding term. (Note: Not IF context, etc.)

Example. Let ∼ be bag-equivalence (two lists have the same
members) and consider this equivalence-based rewrite rule:

remove-duplicates(x) ∼ x

Bad: length(remove-duplicates(x)) = length(x).
Good: (a ∈ remove-duplicates(x)) = (a ∈ x).

6/16



Introduction Examples Conclusion

EQUIVALENCE-BASED REWRITING

Question: Instead of
H→ L=R (or, L=R)
can we preserve mere equivalence instead?
H→ L∼R (or, L∼R)
Answer: depends on the context, i.e., the position in the
surrounding term. (Note: Not IF context, etc.)
Example. Let ∼ be bag-equivalence (two lists have the same
members) and consider this equivalence-based rewrite rule:

remove-duplicates(x) ∼ x

Bad: length(remove-duplicates(x)) = length(x).
Good: (a ∈ remove-duplicates(x)) = (a ∈ x).

6/16



Introduction Examples Conclusion

EQUIVALENCE-BASED REWRITING

Question: Instead of
H→ L=R (or, L=R)
can we preserve mere equivalence instead?
H→ L∼R (or, L∼R)
Answer: depends on the context, i.e., the position in the
surrounding term. (Note: Not IF context, etc.)
Example. Let ∼ be bag-equivalence (two lists have the same
members) and consider this equivalence-based rewrite rule:

remove-duplicates(x) ∼ x

Bad: length(remove-duplicates(x)) = length(x).

Good: (a ∈ remove-duplicates(x)) = (a ∈ x).

6/16



Introduction Examples Conclusion

EQUIVALENCE-BASED REWRITING

Question: Instead of
H→ L=R (or, L=R)
can we preserve mere equivalence instead?
H→ L∼R (or, L∼R)
Answer: depends on the context, i.e., the position in the
surrounding term. (Note: Not IF context, etc.)
Example. Let ∼ be bag-equivalence (two lists have the same
members) and consider this equivalence-based rewrite rule:

remove-duplicates(x) ∼ x

Bad: length(remove-duplicates(x)) = length(x).
Good: (a ∈ remove-duplicates(x)) = (a ∈ x).

6/16



Introduction Examples Conclusion

CONTRIBUTION
Previously:
Bishop Brock, Matt Kaufmann, and J Strother Moore. Rewriting
with Equivalence Relations in ACL2. Journal of Automated
Reasoning 40 (2008), pp. 293-306.

I Equivalence-based rewriting
I Automatic tracking of equivalence relations sufficient to

preserve in a given context
I Tracking is based on user-defined congruence rules
I > 1800 congruence rules in ACL2 Community Books

NEW:

Patterned congruence rules provide finer-grained specification of
contexts for preserving equivalence relations.

“Rough Diamond”: Patterned congruence rules are too new
(released 01/2014) to have seen widespread use.

7/16



Introduction Examples Conclusion

CONTRIBUTION
Previously:
Bishop Brock, Matt Kaufmann, and J Strother Moore. Rewriting
with Equivalence Relations in ACL2. Journal of Automated
Reasoning 40 (2008), pp. 293-306.

I Equivalence-based rewriting

I Automatic tracking of equivalence relations sufficient to
preserve in a given context

I Tracking is based on user-defined congruence rules
I > 1800 congruence rules in ACL2 Community Books

NEW:

Patterned congruence rules provide finer-grained specification of
contexts for preserving equivalence relations.

“Rough Diamond”: Patterned congruence rules are too new
(released 01/2014) to have seen widespread use.

7/16



Introduction Examples Conclusion

CONTRIBUTION
Previously:
Bishop Brock, Matt Kaufmann, and J Strother Moore. Rewriting
with Equivalence Relations in ACL2. Journal of Automated
Reasoning 40 (2008), pp. 293-306.

I Equivalence-based rewriting
I Automatic tracking of equivalence relations sufficient to

preserve in a given context

I Tracking is based on user-defined congruence rules
I > 1800 congruence rules in ACL2 Community Books

NEW:

Patterned congruence rules provide finer-grained specification of
contexts for preserving equivalence relations.

“Rough Diamond”: Patterned congruence rules are too new
(released 01/2014) to have seen widespread use.

7/16



Introduction Examples Conclusion

CONTRIBUTION
Previously:
Bishop Brock, Matt Kaufmann, and J Strother Moore. Rewriting
with Equivalence Relations in ACL2. Journal of Automated
Reasoning 40 (2008), pp. 293-306.

I Equivalence-based rewriting
I Automatic tracking of equivalence relations sufficient to

preserve in a given context
I Tracking is based on user-defined congruence rules

I > 1800 congruence rules in ACL2 Community Books

NEW:

Patterned congruence rules provide finer-grained specification of
contexts for preserving equivalence relations.

“Rough Diamond”: Patterned congruence rules are too new
(released 01/2014) to have seen widespread use.

7/16



Introduction Examples Conclusion

CONTRIBUTION
Previously:
Bishop Brock, Matt Kaufmann, and J Strother Moore. Rewriting
with Equivalence Relations in ACL2. Journal of Automated
Reasoning 40 (2008), pp. 293-306.

I Equivalence-based rewriting
I Automatic tracking of equivalence relations sufficient to

preserve in a given context
I Tracking is based on user-defined congruence rules
I > 1800 congruence rules in ACL2 Community Books

NEW:

Patterned congruence rules provide finer-grained specification of
contexts for preserving equivalence relations.

“Rough Diamond”: Patterned congruence rules are too new
(released 01/2014) to have seen widespread use.

7/16



Introduction Examples Conclusion

CONTRIBUTION
Previously:
Bishop Brock, Matt Kaufmann, and J Strother Moore. Rewriting
with Equivalence Relations in ACL2. Journal of Automated
Reasoning 40 (2008), pp. 293-306.

I Equivalence-based rewriting
I Automatic tracking of equivalence relations sufficient to

preserve in a given context
I Tracking is based on user-defined congruence rules
I > 1800 congruence rules in ACL2 Community Books

NEW:

Patterned congruence rules provide finer-grained specification of
contexts for preserving equivalence relations.

“Rough Diamond”: Patterned congruence rules are too new
(released 01/2014) to have seen widespread use.

7/16



Introduction Examples Conclusion

CONTRIBUTION
Previously:
Bishop Brock, Matt Kaufmann, and J Strother Moore. Rewriting
with Equivalence Relations in ACL2. Journal of Automated
Reasoning 40 (2008), pp. 293-306.

I Equivalence-based rewriting
I Automatic tracking of equivalence relations sufficient to

preserve in a given context
I Tracking is based on user-defined congruence rules
I > 1800 congruence rules in ACL2 Community Books

NEW:

Patterned congruence rules provide finer-grained specification of
contexts for preserving equivalence relations.

“Rough Diamond”: Patterned congruence rules are too new
(released 01/2014) to have seen widespread use.

7/16



Introduction Examples Conclusion

OUTLINE

Introduction

Examples

Conclusion

8/16



Introduction Examples Conclusion

EXAMPLES

This talk will present examples from the paper.

I Introduce some functions on trees.
I Review previous equivalence-based rewriting.
I Illustrate the new extension.

Our examples are based on binary trees.

9/16



Introduction Examples Conclusion

EXAMPLES

This talk will present examples from the paper.

I Introduce some functions on trees.

I Review previous equivalence-based rewriting.
I Illustrate the new extension.

Our examples are based on binary trees.

9/16



Introduction Examples Conclusion

EXAMPLES

This talk will present examples from the paper.

I Introduce some functions on trees.
I Review previous equivalence-based rewriting.

I Illustrate the new extension.

Our examples are based on binary trees.

9/16



Introduction Examples Conclusion

EXAMPLES

This talk will present examples from the paper.

I Introduce some functions on trees.
I Review previous equivalence-based rewriting.
I Illustrate the new extension.

Our examples are based on binary trees.

9/16



Introduction Examples Conclusion

EXAMPLES

This talk will present examples from the paper.

I Introduce some functions on trees.
I Review previous equivalence-based rewriting.
I Illustrate the new extension.

Our examples are based on binary trees.

9/16



Introduction Examples Conclusion

DEFINITIONS

See the paper for the recursive definitions of the following
notions.

I t1 ∼ t2:
Obtain t2 from t1 by a sequence of swaps of node children.

I mirror(tree):
Swap all left and right children.

I tree-product(tree):
Multiply the leaves of a tree.

10/16



Introduction Examples Conclusion

DEFINITIONS

See the paper for the recursive definitions of the following
notions.

I t1 ∼ t2:
Obtain t2 from t1 by a sequence of swaps of node children.

I mirror(tree):
Swap all left and right children.

I tree-product(tree):
Multiply the leaves of a tree.

10/16



Introduction Examples Conclusion

DEFINITIONS

See the paper for the recursive definitions of the following
notions.

I t1 ∼ t2:
Obtain t2 from t1 by a sequence of swaps of node children.

I mirror(tree):
Swap all left and right children.

I tree-product(tree):
Multiply the leaves of a tree.

10/16



Introduction Examples Conclusion

DEFINITIONS

See the paper for the recursive definitions of the following
notions.

I t1 ∼ t2:
Obtain t2 from t1 by a sequence of swaps of node children.

I mirror(tree):
Swap all left and right children.

I tree-product(tree):
Multiply the leaves of a tree.

10/16



Introduction Examples Conclusion

CONGRUENCE RULES AND REWRITING

Left-to-right rewrite rule that is legal in only some contexts:
mirror(x) ∼ x

Congruence Rule (inner equivalence ∼, outer equivalence =):
x ∼ y → tree-product(x) = tree-product(y)

Rewriting example:

tree-product(mirror(a))
Congruence rule makes it OK to preserve ∼:

tree-product(mirror(a)) =
So, we can rewrite with mirror(x) ∼ x:

tree-product(a)

Complexity: k1 + k2 instead of k1 ∗ k2 for:

I k1 functions like mirror;
I k2 functions like tree-product.

11/16



Introduction Examples Conclusion

CONGRUENCE RULES AND REWRITING

Left-to-right rewrite rule that is legal in only some contexts:
mirror(x) ∼ x

Congruence Rule (inner equivalence ∼, outer equivalence =):
x ∼ y → tree-product(x) = tree-product(y)

Rewriting example:

tree-product(mirror(a))
Congruence rule makes it OK to preserve ∼:

tree-product(mirror(a)) =
So, we can rewrite with mirror(x) ∼ x:

tree-product(a)

Complexity: k1 + k2 instead of k1 ∗ k2 for:

I k1 functions like mirror;
I k2 functions like tree-product.

11/16



Introduction Examples Conclusion

CONGRUENCE RULES AND REWRITING

Left-to-right rewrite rule that is legal in only some contexts:
mirror(x) ∼ x

Congruence Rule (inner equivalence ∼, outer equivalence =):
x ∼ y → tree-product(x) = tree-product(y)

Rewriting example:

tree-product(mirror(a))
Congruence rule makes it OK to preserve ∼:

tree-product(mirror(a)) =
So, we can rewrite with mirror(x) ∼ x:

tree-product(a)

Complexity: k1 + k2 instead of k1 ∗ k2 for:

I k1 functions like mirror;
I k2 functions like tree-product.

11/16



Introduction Examples Conclusion

CONGRUENCE RULES AND REWRITING

Left-to-right rewrite rule that is legal in only some contexts:
mirror(x) ∼ x

Congruence Rule (inner equivalence ∼, outer equivalence =):
x ∼ y → tree-product(x) = tree-product(y)

Rewriting example:

tree-product(mirror(a))

Congruence rule makes it OK to preserve ∼:
tree-product(mirror(a)) =

So, we can rewrite with mirror(x) ∼ x:
tree-product(a)

Complexity: k1 + k2 instead of k1 ∗ k2 for:

I k1 functions like mirror;
I k2 functions like tree-product.

11/16



Introduction Examples Conclusion

CONGRUENCE RULES AND REWRITING

Left-to-right rewrite rule that is legal in only some contexts:
mirror(x) ∼ x

Congruence Rule (inner equivalence ∼, outer equivalence =):
x ∼ y → tree-product(x) = tree-product(y)

Rewriting example:

tree-product(mirror(a))
Congruence rule makes it OK to preserve ∼:

tree-product(mirror(a)) =
So, we can rewrite with mirror(x) ∼ x:

tree-product(a)

Complexity: k1 + k2 instead of k1 ∗ k2 for:

I k1 functions like mirror;
I k2 functions like tree-product.

11/16



Introduction Examples Conclusion

CONGRUENCE RULES AND REWRITING

Left-to-right rewrite rule that is legal in only some contexts:
mirror(x) ∼ x

Congruence Rule (inner equivalence ∼, outer equivalence =):
x ∼ y → tree-product(x) = tree-product(y)

Rewriting example:

tree-product(mirror(a))
Congruence rule makes it OK to preserve ∼:

tree-product(mirror(a))

=
So, we can rewrite with mirror(x) ∼ x:

tree-product(a)

Complexity: k1 + k2 instead of k1 ∗ k2 for:

I k1 functions like mirror;
I k2 functions like tree-product.

11/16



Introduction Examples Conclusion

CONGRUENCE RULES AND REWRITING

Left-to-right rewrite rule that is legal in only some contexts:
mirror(x) ∼ x

Congruence Rule (inner equivalence ∼, outer equivalence =):
x ∼ y → tree-product(x) = tree-product(y)

Rewriting example:

tree-product(mirror(a))
Congruence rule makes it OK to preserve ∼:

tree-product(mirror(a)) =

So, we can rewrite with mirror(x) ∼ x:
tree-product(a)

Complexity: k1 + k2 instead of k1 ∗ k2 for:

I k1 functions like mirror;
I k2 functions like tree-product.

11/16



Introduction Examples Conclusion

CONGRUENCE RULES AND REWRITING

Left-to-right rewrite rule that is legal in only some contexts:
mirror(x) ∼ x

Congruence Rule (inner equivalence ∼, outer equivalence =):
x ∼ y → tree-product(x) = tree-product(y)

Rewriting example:

tree-product(mirror(a))
Congruence rule makes it OK to preserve ∼:

tree-product(mirror(a)) =
So, we can rewrite with mirror(x) ∼ x:

tree-product(a)

Complexity: k1 + k2 instead of k1 ∗ k2 for:

I k1 functions like mirror;
I k2 functions like tree-product.

11/16



Introduction Examples Conclusion

CONGRUENCE RULES AND REWRITING

Left-to-right rewrite rule that is legal in only some contexts:
mirror(x) ∼ x

Congruence Rule (inner equivalence ∼, outer equivalence =):
x ∼ y → tree-product(x) = tree-product(y)

Rewriting example:

tree-product(mirror(a))
Congruence rule makes it OK to preserve ∼:

tree-product(mirror(a)) =
So, we can rewrite with mirror(x) ∼ x:

tree-product(a)

Complexity: k1 + k2 instead of k1 ∗ k2 for:

I k1 functions like mirror;
I k2 functions like tree-product.

11/16



Introduction Examples Conclusion

CONGRUENCE RULES AND REWRITING

Left-to-right rewrite rule that is legal in only some contexts:
mirror(x) ∼ x

Congruence Rule (inner equivalence ∼, outer equivalence =):
x ∼ y → tree-product(x) = tree-product(y)

Rewriting example:

tree-product(mirror(a))
Congruence rule makes it OK to preserve ∼:

tree-product(mirror(a)) =
So, we can rewrite with mirror(x) ∼ x:

tree-product(a)

Complexity: k1 + k2 instead of k1 ∗ k2 for:

I k1 functions like mirror;
I k2 functions like tree-product.

11/16



Introduction Examples Conclusion

PATTERNED CONGRUENCE RULES

Consider a function tree-data that returns two values (as is
common in ACL2 programming), with this patterned congruence
rule:

x ∼ y → first(tree-data(x)) =
first(tree-data(y))

NOTE: Classic congruence rules specified the context as an
argument position of a single function symbol, e.g.:

x ∼ y → tree-product(x) = tree-product(y)

Compare with this patterned congruence rule:

x ∼1 y → f (3, h(u, x), g(u)) ∼2 f (3, h(u, y), g(u))

12/16



Introduction Examples Conclusion

PATTERNED CONGRUENCE RULES

Consider a function tree-data that returns two values (as is
common in ACL2 programming), with this patterned congruence
rule:

x ∼ y → first(tree-data(x)) =
first(tree-data(y))

NOTE: Classic congruence rules specified the context as an
argument position of a single function symbol, e.g.:

x ∼ y → tree-product(x) = tree-product(y)

Compare with this patterned congruence rule:

x ∼1 y → f (3, h(u, x), g(u)) ∼2 f (3, h(u, y), g(u))

12/16



Introduction Examples Conclusion

PATTERNED CONGRUENCE RULES

Consider a function tree-data that returns two values (as is
common in ACL2 programming), with this patterned congruence
rule:

x ∼ y → first(tree-data(x)) =
first(tree-data(y))

NOTE: Classic congruence rules specified the context as an
argument position of a single function symbol, e.g.:

x ∼ y → tree-product(x) = tree-product(y)

Compare with this patterned congruence rule:

x ∼1 y → f (3, h(u, x), g(u)) ∼2 f (3, h(u, y), g(u))

12/16



Introduction Examples Conclusion

PATTERNED CONGRUENCE RULES (CONTINUED)

Rewrite rule, unchanged from first example:

mirror(x) ∼ x

Our patterned congruence rule, again:

x ∼ y→
first(tree-data(x)) = first(tree-data(y))

Modified rewriting example:

first(tree-data(mirror(a)))
Patterned congruence rule provides context:

first(tree-data(mirror(a))) =
So, we can rewrite with mirror(x) ∼ x:

first(tree-data(a))

(Same complexity argument as before: k1 + k2, not k1 ∗ k2)

13/16



Introduction Examples Conclusion

PATTERNED CONGRUENCE RULES (CONTINUED)

Rewrite rule, unchanged from first example:

mirror(x) ∼ x

Our patterned congruence rule, again:

x ∼ y→
first(tree-data(x)) = first(tree-data(y))

Modified rewriting example:

first(tree-data(mirror(a)))
Patterned congruence rule provides context:

first(tree-data(mirror(a))) =
So, we can rewrite with mirror(x) ∼ x:

first(tree-data(a))

(Same complexity argument as before: k1 + k2, not k1 ∗ k2)

13/16



Introduction Examples Conclusion

PATTERNED CONGRUENCE RULES (CONTINUED)

Rewrite rule, unchanged from first example:

mirror(x) ∼ x

Our patterned congruence rule, again:

x ∼ y→
first(tree-data(x)) = first(tree-data(y))

Modified rewriting example:

first(tree-data(mirror(a)))
Patterned congruence rule provides context:

first(tree-data(mirror(a))) =
So, we can rewrite with mirror(x) ∼ x:

first(tree-data(a))

(Same complexity argument as before: k1 + k2, not k1 ∗ k2)

13/16



Introduction Examples Conclusion

PATTERNED CONGRUENCE RULES (CONTINUED)

Rewrite rule, unchanged from first example:

mirror(x) ∼ x

Our patterned congruence rule, again:

x ∼ y→
first(tree-data(x)) = first(tree-data(y))

Modified rewriting example:

first(tree-data(mirror(a)))

Patterned congruence rule provides context:
first(tree-data(mirror(a))) =

So, we can rewrite with mirror(x) ∼ x:
first(tree-data(a))

(Same complexity argument as before: k1 + k2, not k1 ∗ k2)

13/16



Introduction Examples Conclusion

PATTERNED CONGRUENCE RULES (CONTINUED)

Rewrite rule, unchanged from first example:

mirror(x) ∼ x

Our patterned congruence rule, again:

x ∼ y→
first(tree-data(x)) = first(tree-data(y))

Modified rewriting example:

first(tree-data(mirror(a)))
Patterned congruence rule provides context:

first(tree-data(mirror(a))) =
So, we can rewrite with mirror(x) ∼ x:

first(tree-data(a))

(Same complexity argument as before: k1 + k2, not k1 ∗ k2)

13/16



Introduction Examples Conclusion

PATTERNED CONGRUENCE RULES (CONTINUED)

Rewrite rule, unchanged from first example:

mirror(x) ∼ x

Our patterned congruence rule, again:

x ∼ y→
first(tree-data(x)) = first(tree-data(y))

Modified rewriting example:

first(tree-data(mirror(a)))
Patterned congruence rule provides context:

first(tree-data(mirror(a)))

=
So, we can rewrite with mirror(x) ∼ x:

first(tree-data(a))

(Same complexity argument as before: k1 + k2, not k1 ∗ k2)

13/16



Introduction Examples Conclusion

PATTERNED CONGRUENCE RULES (CONTINUED)

Rewrite rule, unchanged from first example:

mirror(x) ∼ x

Our patterned congruence rule, again:

x ∼ y→
first(tree-data(x)) = first(tree-data(y))

Modified rewriting example:

first(tree-data(mirror(a)))
Patterned congruence rule provides context:

first(tree-data(mirror(a))) =

So, we can rewrite with mirror(x) ∼ x:
first(tree-data(a))

(Same complexity argument as before: k1 + k2, not k1 ∗ k2)

13/16



Introduction Examples Conclusion

PATTERNED CONGRUENCE RULES (CONTINUED)

Rewrite rule, unchanged from first example:

mirror(x) ∼ x

Our patterned congruence rule, again:

x ∼ y→
first(tree-data(x)) = first(tree-data(y))

Modified rewriting example:

first(tree-data(mirror(a)))
Patterned congruence rule provides context:

first(tree-data(mirror(a))) =
So, we can rewrite with mirror(x) ∼ x:

first(tree-data(a))

(Same complexity argument as before: k1 + k2, not k1 ∗ k2)

13/16



Introduction Examples Conclusion

PATTERNED CONGRUENCE RULES (CONTINUED)

Rewrite rule, unchanged from first example:

mirror(x) ∼ x

Our patterned congruence rule, again:

x ∼ y→
first(tree-data(x)) = first(tree-data(y))

Modified rewriting example:

first(tree-data(mirror(a)))
Patterned congruence rule provides context:

first(tree-data(mirror(a))) =
So, we can rewrite with mirror(x) ∼ x:

first(tree-data(a))

(Same complexity argument as before: k1 + k2, not k1 ∗ k2)

13/16



Introduction Examples Conclusion

PATTERNED CONGRUENCE RULES (CONTINUED)

Rewrite rule, unchanged from first example:

mirror(x) ∼ x

Our patterned congruence rule, again:

x ∼ y→
first(tree-data(x)) = first(tree-data(y))

Modified rewriting example:

first(tree-data(mirror(a)))
Patterned congruence rule provides context:

first(tree-data(mirror(a))) =
So, we can rewrite with mirror(x) ∼ x:

first(tree-data(a))

(Same complexity argument as before: k1 + k2, not k1 ∗ k2)

13/16



Introduction Examples Conclusion

OUTLINE

Introduction

Examples

Conclusion

14/16



Introduction Examples Conclusion

CONCLUSION

Not covered in this talk:

I General form of patterned congruence rules
I Theory, e.g., how patterned congruence rules induce

equivalence relations
I Algorithm for tracking equivalence relations to maintain

The algorithm was challenging to implement, as the ACL2
rewriter has:

I 47 mutually recursive functions, which call many other
functions;

I 18 arguments in top-level rewrite function; and
I structured arguments; one has 18 fields.

See a 400-line comment in the ACL2 source code.

15/16



Introduction Examples Conclusion

CONCLUSION

Not covered in this talk:

I General form of patterned congruence rules

I Theory, e.g., how patterned congruence rules induce
equivalence relations

I Algorithm for tracking equivalence relations to maintain

The algorithm was challenging to implement, as the ACL2
rewriter has:

I 47 mutually recursive functions, which call many other
functions;

I 18 arguments in top-level rewrite function; and
I structured arguments; one has 18 fields.

See a 400-line comment in the ACL2 source code.

15/16



Introduction Examples Conclusion

CONCLUSION

Not covered in this talk:

I General form of patterned congruence rules
I Theory, e.g., how patterned congruence rules induce

equivalence relations

I Algorithm for tracking equivalence relations to maintain

The algorithm was challenging to implement, as the ACL2
rewriter has:

I 47 mutually recursive functions, which call many other
functions;

I 18 arguments in top-level rewrite function; and
I structured arguments; one has 18 fields.

See a 400-line comment in the ACL2 source code.

15/16



Introduction Examples Conclusion

CONCLUSION

Not covered in this talk:

I General form of patterned congruence rules
I Theory, e.g., how patterned congruence rules induce

equivalence relations
I Algorithm for tracking equivalence relations to maintain

The algorithm was challenging to implement, as the ACL2
rewriter has:

I 47 mutually recursive functions, which call many other
functions;

I 18 arguments in top-level rewrite function; and
I structured arguments; one has 18 fields.

See a 400-line comment in the ACL2 source code.

15/16



Introduction Examples Conclusion

CONCLUSION

Not covered in this talk:

I General form of patterned congruence rules
I Theory, e.g., how patterned congruence rules induce

equivalence relations
I Algorithm for tracking equivalence relations to maintain

The algorithm was challenging to implement, as the ACL2
rewriter has:

I 47 mutually recursive functions, which call many other
functions;

I 18 arguments in top-level rewrite function; and
I structured arguments; one has 18 fields.

See a 400-line comment in the ACL2 source code.

15/16



Introduction Examples Conclusion

CONCLUSION

Not covered in this talk:

I General form of patterned congruence rules
I Theory, e.g., how patterned congruence rules induce

equivalence relations
I Algorithm for tracking equivalence relations to maintain

The algorithm was challenging to implement, as the ACL2
rewriter has:

I 47 mutually recursive functions, which call many other
functions;

I 18 arguments in top-level rewrite function; and
I structured arguments; one has 18 fields.

See a 400-line comment in the ACL2 source code.

15/16



Introduction Examples Conclusion

CONCLUSION

Not covered in this talk:

I General form of patterned congruence rules
I Theory, e.g., how patterned congruence rules induce

equivalence relations
I Algorithm for tracking equivalence relations to maintain

The algorithm was challenging to implement, as the ACL2
rewriter has:

I 47 mutually recursive functions, which call many other
functions;

I 18 arguments in top-level rewrite function; and

I structured arguments; one has 18 fields.

See a 400-line comment in the ACL2 source code.

15/16



Introduction Examples Conclusion

CONCLUSION

Not covered in this talk:

I General form of patterned congruence rules
I Theory, e.g., how patterned congruence rules induce

equivalence relations
I Algorithm for tracking equivalence relations to maintain

The algorithm was challenging to implement, as the ACL2
rewriter has:

I 47 mutually recursive functions, which call many other
functions;

I 18 arguments in top-level rewrite function; and
I structured arguments; one has 18 fields.

See a 400-line comment in the ACL2 source code.

15/16



Introduction Examples Conclusion

CONCLUSION (CONTINUED)

But we think this work will find use, especially since many
ACL2 functions return multiple values.

— so we believe that the effort was worthwhile!

As with many recent ACL2 enhancements, this was driven by a
request from an industrial user. Quoting Sol Swords:

Those are pretty simple examples, but I think they show one
very useful application of patterned congruences, which is
that you can have some structured object that has different
congruences on different fields accessed/updated by
nth/update-nth or g/s.

Thank you for your attention.

16/16



Introduction Examples Conclusion

CONCLUSION (CONTINUED)

But we think this work will find use, especially since many
ACL2 functions return multiple values.
— so we believe that the effort was worthwhile!

As with many recent ACL2 enhancements, this was driven by a
request from an industrial user. Quoting Sol Swords:

Those are pretty simple examples, but I think they show one
very useful application of patterned congruences, which is
that you can have some structured object that has different
congruences on different fields accessed/updated by
nth/update-nth or g/s.

Thank you for your attention.

16/16



Introduction Examples Conclusion

CONCLUSION (CONTINUED)

But we think this work will find use, especially since many
ACL2 functions return multiple values.
— so we believe that the effort was worthwhile!

As with many recent ACL2 enhancements, this was driven by a
request from an industrial user. Quoting Sol Swords:

Those are pretty simple examples, but I think they show one
very useful application of patterned congruences, which is
that you can have some structured object that has different
congruences on different fields accessed/updated by
nth/update-nth or g/s.

Thank you for your attention.

16/16



Introduction Examples Conclusion

CONCLUSION (CONTINUED)

But we think this work will find use, especially since many
ACL2 functions return multiple values.
— so we believe that the effort was worthwhile!

As with many recent ACL2 enhancements, this was driven by a
request from an industrial user. Quoting Sol Swords:

Those are pretty simple examples, but I think they show one
very useful application of patterned congruences, which is
that you can have some structured object that has different
congruences on different fields accessed/updated by
nth/update-nth or g/s.

Thank you for your attention.

16/16


	Introduction
	Examples
	Conclusion

