Verified Efficient Implementation of Gabow's Strongly Connected Component Algorithm

Peter Lammich

TU München

July 2014

Motivation

- Verify algorithm that computes SCCs of a digraph
- Variants/Applications of algorithm
 - Enumerate SCCs
 - Emptiness check of Generalized Büchi-Automata
 - ...
- Re-use formalization between variants
- Generate efficiently executable code

Outline

Gabow's SCC Algorithm

2 Isabelle/HOL Formalization

3 Performance Evaluation

Outline

1 Gabow's SCC Algorithm

2 Isabelle/HOL Formalization

3 Performance Evaluation

Strongly Connected Components

• SCC is maximal set of mutually reachable nodes

Strongly Connected Components

• SCC is maximal set of mutually reachable nodes

Path-Based Algorithms

- Depth first search
- On back edge, collapse nodes of induced cycle
- Eventually, each node represents SCC

Gabow's Data Structure

- How to maintain collapsed nodes on stack?
- Use boundary stack
 - contains indexes of bounds between collapsed nodes
- Yields linear-time algorithm

А В

DFS stack: A B C Boundary stack: 0 2

DFS stack: A B C Boundary stack: 0

DFS stack: A B C D Boundary stack: 0 4

DFS stack: A B C Boundary stack: 0

DFS stack: A B C E Boundary stack: 0 4

DFS stack: A B C E F Boundary stack: 0 4 5

DFS stack: A B C E F Boundary stack: 0 4

DFS stack: A B C Boundary stack: 0

Outline

Gabow's SCC Algorithm

2 Isabelle/HOL Formalization

3 Performance Evaluation

Re-usable Formalization

- Goal: Formalize family of SCC-based algorithms
 - Enumerate SCCs
 - GBA emptiness check
 - ...

Re-usable Formalization

- Goal: Formalize family of SCC-based algorithms
 - Enumerate SCCs
 - GBA emptiness check
 - ...
- Approach: Formalize "skeleton" SCC algorithm first
 - Just the node-contracting DFS, no output
 - Theorems for VCs (invariant preservation, ...)
 - Stepwise refinement to executable code

Re-usable Formalization

- Goal: Formalize family of SCC-based algorithms
 - Enumerate SCCs
 - · GBA emptiness check
 - ...
- Approach: Formalize "skeleton" SCC algorithm first
 - Just the node-contracting DFS, no output
 - Theorems for VCs (invariant preservation, . . .)
 - Stepwise refinement to executable code
- Reuse this formalization for actual algorithms

Re-usable Formalization

- Goal: Formalize family of SCC-based algorithms
 - Enumerate SCCs
 - · GBA emptiness check
 - ...
- Approach: Formalize "skeleton" SCC algorithm first
 - Just the node-contracting DFS, no output
 - Theorems for VCs (invariant preservation, . . .)
 - Stepwise refinement to executable code
- Reuse this formalization for actual algorithms
- Utilize existing Isabelle technologies
 - Collection Framework, Refinement Framework, Autoref tool
 - Code generator, locales

Skeleton Specification

Skeleton Specification

Abstract Skeleton Algorithm

Skeleton Specification

Abstract Skeleton Algorithm

Gabow's Implementation

Skeleton Specification

Abstract Skeleton Algorithm

Gabow's Implementation

SML Code

Isabelle Refinement Framework

Nondeterministic monadic programs

```
skeleton \equiv do {}
  let D = \{\};
  r \leftarrow FOREACHi outer invar V0 (\lambda v0 D0. do {
    if v0∉D0 then do {
       let s = initial \ v0 \ D0:
       (p,D,pE) \leftarrow WHILEIT (invar v0 D0) (\lambda(p,D,pE). p \neq []) (\lambda(p,D,pE).
       do {
         (vo,(p,D,pE)) \leftarrow select edge(p,D,pE);
         case vo of
            Some v \Rightarrow
              if v \in \bigcupset p then RETURN (collapse v (p,D,pE))
              else if v\notin D then RETURN (push v (p,D,pE))
              else RETURN (p,D,pE)
         | None \Rightarrow RETURN (pop (p,D,pE))
       }) s;
       RETURN D
    } else RETURN D0
  }) D;
  RETURN r }
```

Isabelle Refinement Framework

- · Nondeterministic monadic programs
- Supports stepwise refinement
- Verification Condition Generator

Autoref-Tool and Collections Framework

- Automatic Refinement Tool (Autoref)
 - Parametricity-based approach to data refinement
 - Automatic synthesis of implementation from abstract program
- Isabelle Collection Framework
 - Efficient data structures (Array, Hash-Table, Bitvector, ...)
 - Generic Algorithm Library
 - Integrated with Autoref

```
schematic_lemma skeleton_code_aux:
  "(RETURN ?skeleton_tr,skeleton_impl) ∈ ⟨oGSi_rel⟩nres_rel"
  unfolding ... by autoref
export_code skeleton_tr in SML file "gabow.sml"
```

Re-use of Invariants

- Exploit locale mechanism to define extended invariants
- Set up VCG: Only preservation of extension needs to be proved

```
locale invar -- "Invariants of Skeleton"
locale cscc_invar_ext -- "Additional invariants"
locale cscc_invar = invar + cscc_invar_ext -- "Combined invariant"
lemma cscc_invarI:
    assumes "invar s"
    assumes "invar s => cscc_invar_ext (l,s)"
    shows "cscc_invar (l,s)"
```

Re-use of Refinements

- Use basic operations in extended algorithm
- Re-use refinements for basic operations

```
compute SCC \equiv ...
 | None \Rightarrow do {
     (* No more outgoing edges from current node on path *)
     ASSERT (pE \cap last p \times UNIV = {});
     let V = last p:
     let (p,D,pE) = pop (p,D,pE);
     let l = V#l;
     RETURN (l,p,D,pE)
lemma compute SCC impl refine: "compute SCC impl ≤ ↓Id compute SCC"
proof -
  show ?thesis
    unfolding compute SCC impl def compute SCC def
    apply (refine rcg ... pop refine ...)
    by (vc solve ...)
ged
```

Outline

Gabow's SCC Algorithm

2 Isabelle/HOL Formalization

3 Performance Evaluation

Benchmark against Java Reference Implementation

Conclusions

- Efficient, extensible formalization of Gabow's Algorithm
 - Performance comparable to Java implementation (×3...×4)
 - Variants: Enumerate SCCs, emptiness check for GBA
- Used by the CAVA fully verified LTL model checker [CAV '13]
- Example of verified algorithm design in Isabelle/HOL
 - Using Collection/Refinement/Autoref framework [ITP '10,'12,'13]
 - Refinement separates algorithmic ideas from implementation
 - Sharing of proofs between variants of the algorithm

Questions

Questions? Remarks?