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Motivation

Verify algorithm that computes SCCs of a digraph
Variants/Applications of algorithm

e Enumerate SCCs
e Emptiness check of Generalized Blchi-Automata

Re-use formalization between variants

Generate efficiently executable code



Outline

@ Gabow’s SCC Algorithm

@ Isabelle/HOL Formalization

@® Performance Evaluation



Outline

@ Gabow’s SCC Algorithm



Strongly Connected Components
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Path-Based Algorithms

e Depth first search
¢ On back edge, collapse nodes of induced cycle
e Eventually, each node represents SCC
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Gabow’s Data Structure

e How to maintain collapsed nodes on stack?
o Use boundary stack
e contains indexes of bounds between collapsed nodes

¢ Yields linear-time algorithm



Gabow’s Data Structure Example

DFS stack:
Boundary stack:
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Gabow’s Data Structure Example

8
(8)
DFS stack:

e Boundary stack:
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Re-usable Formalization

Goal: Formalize family of SCC-based algorithms
e Enumerate SCCs
e GBA emptiness check
° ...
Approach: Formalize “skeleton” SCC algorithm first
e Just the node-contracting DFS, no output
e Theorems for VCs (invariant preservation, . ..)
o Stepwise refinement to executable code
Reuse this formalization for actual algorithms
Utilize existing Isabelle technologies

e Collection Framework, Refinement Framework, Autoref tool
e Code generator, locales



Design of the Formalization

Skeleton Specification



Design of the Formalization

Skeleton Specification

C

Abstract Skeleton Algorithm



Design of the Formalization

Skeleton Specification

C

Abstract Skeleton Algorithm

cC

Gabow’s Implementation



Design of the Formalization

Skeleton Specification

C

Abstract Skeleton Algorithm

cC

Gabow’s Implementation

C

SML Code




Design of the Formalization

Skeleton Specification

C

Abstract Skeleton Algorithm

cC

Gabow’s Implementation

C

SML Code

Actual Spec



Design of the Formalization

Skeleton Specification

C <

Actual Spec

re-use

Abstract Skeleton Algorithm

cC

Gabow’s Implementation

C

SML Code

C

Actual Algo



Design of the Formalization

Skeleton Specification Actual Spec
C< C
I re-use ' -

Abstract Skeleton Algorithm Actual Algo
C< C
- re-use I -

Gabow’s Implementation Actual Impl

C

SML Code



Design of the Formalization

Skeleton Specification

Actual Spec
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I re-use ' -
Abstract Skeleton Algorithm Actual Algo
C< C
- re-use I -
Gabow’s Implementation Actual Impl
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Isabelle Refinement Framework

¢ Nondeterministic monadic programs

skeleton = do {
let D = {};
r «— FOREACHi outer invar VO (Av0 DO. do {
if vOgDO then do {
let s = initial vO DO;
(p,D,pE) « WHILEIT (invar vO DO@) (A(p,D,pE). p # [1) (A(p,D,pE).
do {
(vo,(p,D,pE)) < select edge (p,D,pE);
case vo of
Some v =
if v € [Jset p then RETURN (collapse v (p,D,pE))
else if v¢D then RETURN (push v (p,D,pE))
else RETURN (p,D,pE)
| None = RETURN (pop (p,D,pE))
1) s
RETURN D
} else RETURN DO
}) D;
RETURN r }



Isabelle Refinement Framework

¢ Nondeterministic monadic programs
e Supports stepwise refinement
¢ Verification Condition Generator

lemma "skeleton impl < |JoGS rel skeleton"
unfolding skeleton impl def skeleton def
by (refine rcg skeleton refines)
(vc_solve (nopre) solve: asm rl I to outer
simp: skeleton refine simps)



Autoref-Tool and Collections Framework

¢ Automatic Refinement Tool (Autoref)

e Parametricity-based approach to data refinement

e Automatic synthesis of implementation from abstract program
e Isabelle Collection Framework

o Efficient data structures (Array, Hash-Table, Bitvector, .. .)

e Generic Algorithm Library

e Integrated with Autoref

schematic lemma skeleton code aux:
"(RETURN ?skeleton tr,skeleton impl) € (0GSi rel)nres rel"
unfolding ... by autoref

export code skeleton tr in SML file "gabow.sml"



Re-use of Invariants

o Exploit locale mechanism to define extended invariants
e Set up VCG: Only preservation of extension needs to be proved

locale invar -- "Invariants of Skeleton"
locale cscc_invar ext -- "Additional invariants"
locale cscc_invar = invar + cscc_invar_ext -- "Combined invariant"

lemma cscc invarl:
assumes "invar s"
assumes "invar s = cscc _invar ext (1,s)"
shows "cscc invar (1,s)"



Re-use of Refinements

¢ Use basic operations in extended algorithm
¢ Re-use refinements for basic operations

compute SCC = ...

| None = do {
(* No more outgoing edges from current node on path *)

ASSERT (pE N last p x UNIV = {});

let V = last p;

let (p,D,pE) = pop (p:D:pE),

let 1 = V#1;

RETURN (1,p,D,pE)

)

lemma compute SCC impl refine: "compute SCC impl < [ Id compute SCC"
proof -

show ?thesis
unfolding compute SCC impl def compute SCC def

apply (refine rcg ... pop _refine ...)
by (vc _solve ...)
ged
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Benchmark against Java Reference Implementation
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Conclusions

o Efficient, extensible formalization of Gabow’s Algorithm
e Performance comparable to Java implementation (x3... x4)
e Variants: Enumerate SCCs, emptiness check for GBA
e Used by the CAVA fully verified LTL model checker [CAV ‘13]
o Example of verified algorithm design in Isabelle/HOL

¢ Using Collection/Refinement/Autoref framework [ITP '10,12,13]
¢ Refinement separates algorithmic ideas from implementation
e Sharing of proofs between variants of the algorithm
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