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Finiteness

Let ≡ACI be the equivalence induced by ACI of +

Theorem (Brzozowski 1964)
The set {fold d w r | w ∈ Σ∗}/≡ACI is finite.

How large? Brzozowski’s proof yields O(2...2n
)
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Instantiation of framework
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Instantiation of framework

Similar but a bit more complicated
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