Verified Decision Procedures for
Equivalence of Regular Expressions

Tobias Nipkow & Dmitriy Traytel

Fakultat fiir Informatik
Technische Universitat Miinchen

Background

Recent series of papers presenting such decision
procedures verified in Coq, Isabelle or Matita:

Background

Recent series of papers presenting such decision
procedures verified in Coq, Isabelle or Matita:

Braibant & Pous 2010, Krauss & Nipkow 2011,
Coquand & Siles 2011, Asperti 2012,
Moreira et al. 2013

Background

Recent series of papers presenting such decision
procedures verified in Coq, Isabelle or Matita:

Braibant & Pous 2010, Krauss & Nipkow 2011,
Coquand & Siles 2011, Asperti 2012,
Moreira et al. 2013

They all operate on regular expressions,
not automata

Background

Recent series of papers presenting such decision
procedures verified in Coq, Isabelle or Matita:

Braibant & Pous 2010, Krauss & Nipkow 2011,
Coquand & Siles 2011, Asperti 2012,
Moreira et al. 2013

They all operate on regular expressions,
not automata

They all look different but related . ..

This talk

e Unified framework

This talk

e Unified framework

e Derivation of all previous procedures
as instances

This talk

e Unified framework

e Derivation of all previous procedures
as instances

e Verification in Isabelle

@ The Unified Framework

Regular expressions

datatype o rexp = 0 |
1
Atom « |
arexp + a rexp |
arexp - arerp |
arerp ™

Regular expressions

datatype o rexp = 0 |
1
Atom « |
arexp + a rexp |
arexp - arerp |
arerp ™

Semantics: L :: arexp — « lang
where o lang = « list set

How to prove r = s

How to prove r = s

o Translate to DFAs A and B

How to prove r = s

® Translate to DFAs A and B
® Compare A and B

How to prove r = s

® Translate to DFAs A and B
® Compare A and B

 Standard algorithm:
Minimize A and B, check isomorphism.

How to prove r = s

® Translate to DFAs A and B
® Compare A and B
 Standard algorithm:
Minimize A and B, check isomorphism.
« Easy alternative:
Check for all reachable states (p, q) of
A X B that p is final iff ¢ is final.

Framework parameters

Framework parameters

Type o

Framework parameters

Type o
Init mit s arexp — o

Framework parameters

Type o
Init mit s arexp — o
Transition d::a— 0 — o0

Framework parameters

Type o

Init mit s arexp — o
Transition d::a— 0 — 0
Final fin :: 0 — bool

Framework parameters

Type o

Init mit s arexp — o
Transition d::a— 0 — o0
Final fin :: 0 — bool

Language L :: 0 — alang

Framework parameters

Type o

Init mit s arexp — o
Transition d::a— 0 — o0
Final fin :: 0 — bool

Language L :: 0 — alang

Assumptions:

Framework parameters

Type o

Init mit s arexp — o
Transition d::a— 0 — o0
Final fin :: 0 — bool

Language L :: 0 — alang

Assumptions:

L(init(r)) = L(r)
LOxs)={w]|zwe L(s)}

Framework parameters

Type o

Init mit s arexp — o
Transition d::a— 0 — 0
Final fin :: 0 — bool

Language L :: 0 — alang

Assumptions:
L(init(r)) = L(r)
LOxs)={w]|zwe L(s)}
fin(s) & | € L(s)

Equivalence checker

Equivalence checker

equ . arexp — a rexp — bool

Equivalence checker

equ . arexp — a rexp — bool
equ r s = case closure (init(r), init(s)) of
Some([], -) = True
| - = False

Equivalence checker

equ . arexp — a rexp — bool
equ r s = case closure (init(r), init(s)) of
Some([], -) = True
| - = False

Theorem
equr s = L(r) = L(s)

Equivalence checker

equ . arexp — a rexp — bool
equ r s = case closure (init(r), init(s)) of
Some([], -) = True
| - = False

Theorem
equr s = L(r) = L(s)
If the set of reachable states is finite:

Theorem
L(r)=L(s) = equrs

@ Derivatives of Regular Expressions

Derivatives (Brzozowski 1964)

d:a— arerp — arexrp

Derivatives (Brzozowski 1964)

d:a— arerp — arexrp

e d x r is the derivative of r wrt x

Derivatives (Brzozowski 1964)

d:a— arerp — arexrp

e d x r is the derivative of r wrt x
e dxr = "what is left after x has been read”

Derivatives (Brzozowski 1964)

d:a— arerp — arexrp

e d x r is the derivative of r wrt
e dxr = "what is left after z has been read”
e Example: d a (Atom(a)-r)=1-r

Derivatives (Brzozowski 1964)

d:a— arerp — arexrp

d x r is the derivative of r wrt z
d x r = “what is left after x has been read”
Example: d a (Atom(a)-r)=1-r
Semantics is left-quotient:
L(dzr)={w]|zwe L(r)}

dx(

0

drx () =
dxl =

dz0 = 0
dz 1 0
dx (Atomy) = if x =y then 1 else 0

dz0 = 0
dz 1 0
d x (Atom y) if z =y then 1 else 0
dx(r+s) = daer+dzxs

dx(0 = 0

dzl = 0
dx (Atomy) = if x =y then 1 else 0
dx(r+s) = daer+dzxs

dx (r-s) = ife(r)thendxr-s+dzxs
elsedxr-s

dx(0 = 0

dzl = 0
dx (Atomy) = if x =y then 1 else 0
dx(r+s) = daer+dzxs

dx (r-s) = ife(r)thendxr-s+dzxs
elsedzr-s
dx (r*) = dxr-r"

Regular Expression ~» DFA

Regular Expression ~» DFA

Regular Expression ~» DFA

¢ 1-a* a 0-a*+1-a*

Regular Expression ~» DFA

¢ 1-a* a \O-a*—l—loa*@a

Finiteness

Finiteness

Let =47 be the equivalence induced by ACI of +

Finiteness

Let =47 be the equivalence induced by ACI of +

Theorem (Brzozowski 1964)
The set {fold dw r | w € ¥X*} /=407 is finite.

Finiteness

Let =47 be the equivalence induced by ACI of +

Theorem (Brzozowski 1964)
The set {fold dw r | w € ¥X*} /=407 is finite.

How large?

Finiteness

Let =47 be the equivalence induced by ACI of +

Theorem (Brzozowski 1964)
The set {fold dw r | w € ¥X*} /=407 is finite.

277.

How large? Brzozowski's proof yields O(2°")

Instantiation of framework

Instantiation of framework

o = arexp

Instantiation of framework

o = arerp
init(r) = r

Instantiation of framework

o = arerp
init(r) = r
dxr = normacr(dxr)

Instantiation of framework

o = arerp
init(r) = r
dxr = normacr(dxr)

fin = ¢

Instantiation of framework

o = arerp
init(r) = r
dxr = normacr(dxr)
fin = ¢

L =L

Instantiation of framework

o = arerp
init(r) = r
dxr = normacr(dxr)
fin = ¢
L =1L

Finiteness:

Instantiation of framework

o = arerp
init(r) = r
dxr = normacr(dxr)
fin = ¢
L =1L

Finiteness:

e Not immediate from Brzozowski's theorem

Instantiation of framework

o = arerp
init(r) = r
dxr = normacr(dxr)
fin = ¢
L =1L

Finiteness:
e Not immediate from Brzozowski's theorem

e Open for stronger normalization functions

© Partial Derivatives of Regular Expressions

Antimirov 1996

Antimirov 1996

Idea: build some of = into the data structure set:

Antimirov 1996

Idea: build some of = into the data structure set:

d:a— arexp — arexp

Antimirov 1996

Idea: build some of = into the data structure set:

D:a— arerp — arexp set

Antimirov 1996

Idea: build some of = into the data structure set:

D:a— arerp — arexp set

dx (r+s) = der+dxs

Antimirov 1996

Idea: build some of = into the data structure set:

D:a— arerp — arexp set

Dz(r+s) = DxrUDus

Antimirov 1996

Idea: build some of = into the data structure set:

D:a— arerp — arexp set

Dzx(r+s) = DxrUDzxs
dx(r-s) = ife(r)thendzxr-s+duxs
elsedzr-s

Antimirov 1996

Idea: build some of = into the data structure set:

D:a— arerp — arexp set

Dx(r+s) = DxrUDuxs
Dz (r-s) = ife(r)then Dxr®sUDxs
else Dxr©s

Antimirov 1996

Idea: build some of = into the data structure set:

D:a — arerp — arexp set
Dx(r+s) = DxrUDuxs

Dz (r-s) = ife(r)then Dxr®sUDxs
else Dxr©s

where {ry,...,m} ©s={r1-s,...,r, s}

Antimirov 1996

Idea: build some of = into the data structure set:

D:a— arerp — arexp set
Dz(r+s) = DxrUDuxs

Dz (r-s) = ife(r)then Dxr®sUDxs
else Dxr©s

where {r,...,rm} ©s={ri-s,...,r, - s}

Instantiation of framework

Instantiation of framework

o = «arexp set

Instantiation of framework

o = «arexp set

init(r) = {r}

Instantiation of framework

o = «arexp set
init(r) = {r}
drx R = U Dxr

Instantiation of framework

o = «arexp set
init(r) = {r}
drx R = U Dxr

Instantiation of framework

o rexp set

Finiteness

Theorem (Antimirov 1996)
Starting from a regular expression r

Finiteness

Theorem (Antimirov 1996)
Starting from a regular expression r
at most ||, + 1 regular expressions are reachable

Finiteness

Theorem (Antimirov 1996)

Starting from a regular expression r

at most ||, + 1 regular expressions are reachable
where ||, is the number of occurrences of atoms in 7.

Finiteness

Theorem (Antimirov 1996)

Starting from a regular expression r

at most ||, + 1 regular expressions are reachable
where ||, is the number of occurrences of atoms in 7.

— 2l"lar*1 sets of regular expressions reachable

O Marked regular expressions

History
McNaughton & Yamada 1960, Glushkov 1961:

History

McNaughton & Yamada 1960, Glushkov 1961:
e Translation of regular expression to N/DFA

History

McNaughton & Yamada 1960, Glushkov 1961:
e Translation of regular expression to N/DFA

e Atoms in regular expression are indexed, eg
ap - az +as- by

History

McNaughton & Yamada 1960, Glushkov 1961:
e Translation of regular expression to N/DFA
e Atoms in regular expression are indexed, eg
ap - az +as- by
o States are (sets of) indexed atoms, eg {a1, a3}

History

McNaughton & Yamada 1960, Glushkov 1961:
e Translation of regular expression to N/DFA
e Atoms in regular expression are indexed, eg
ap - az +as- by
o States are (sets of) indexed atoms, eg {a1, a3}

Functional implementation by
Fischer, Huch & Wilke [ICFP 2009]:

e Replace sets of positions
by marked regular expressions: Atom(bool, «)

History

McNaughton & Yamada 1960, Glushkov 1961:
e Translation of regular expression to N/DFA
e Atoms in regular expression are indexed, eg
ap - az +as- by
o States are (sets of) indexed atoms, eg {a1, a3}

Functional implementation by
Fischer, Huch & Wilke [ICFP 2009]:

e Replace sets of positions
by marked regular expressions: Atom(bool, «)

e Only matching, not =, no proofs

Example: (a-a+a-b)*

Example: (a-a+a-0b)*

Example: (a-a+a-0b)*

a [(a-a%—a-b)*}

Example: (a-a+a-0b)*

@ [(a-am.b)*}

Example: (a-a+a-0b)*

‘(a-a+a-b)*“

S

@ [(a-am.b)*}

Example: (a-a+a-0b)*

(a-ata-b)
-

Example: (a-a+a-0b)*

{a a+a- b)]]
P

a[a+b}

\\(a a+a-b)|

Instantiation of framework

Instantiation of framework

o = bool x (bool x a) rexp

Instantiation of framework

o = bool x (bool x a) rexp

init(r) = (True, map (Aa. (False,a)) r)

Instantiation of framework

o = bool x (bool x a) rexp
init(r) = (True, map (Aa. (False,a)) r)

dx (m,r) = (False, read x (follow m r))

Instantiation of framework

o = bool x (bool x a) rexp
init(r) = (True, map (Aa. (False,a)))
dx (m,r) = (False, read x (follow m r))
fin(m,r) =
)

Conceptually,
the marks in McNaugton/Glushkov/Fisher
are after the atoms

Marked regular expressions ||

Asperti [ITP 2012]:
e Verified =-checker via marked rexp in Matita

Marked regular expressions ||

Asperti [ITP 2012]:
e Verified =-checker via marked rexp in Matita
e Says he has formalised McNaughton & Yamada

Marked regular expressions ||

Asperti [ITP 2012]:
e Verified =-checker via marked rexp in Matita
e Says he has formalised McNaughton & Yamada
e ...but he invented his own variation:

Marked regular expressions ||

Asperti [ITP 2012]:
e Verified =-checker via marked rexp in Matita
e Says he has formalised McNaughton & Yamada

e ...but he invented his own variation:
Puts the mark before the atom

Example: (a-a+a-b)*

Example: (a-a+a-0b)*

(a-a+a-b)*

Example: (a-a+a-0b)*

(a-a+a-b)*

a

[(a-aJra-b)*}

Example: (a-a+a-0b)*

ﬂ(a-a—i—a-b)*,

‘i(a-aJra-b)*J

Instantiation of framework

Similar but a bit more complicated

Before vs After

Before vs After

Transitions can be decomposed into two steps:
e Before: read; follow

Before vs After

Transitions can be decomposed into two steps:
e Before: read; follow
o After: follow; read

Before vs After

Transitions can be decomposed into two steps:
e Before: read; follow
o After: follow; read

Theorem
The before-automaton is a homorphic image of the
after-automaton.

Before vs After

Transitions can be decomposed into two steps:
e Before: read; follow
o After: follow; read

Theorem
The before-automaton is a homorphic image of the
after-automaton.

Proof idea due to Helmut Seidl.

@ Empirical Comparison

Time (s)

4
2
0

| |
0 200 400 600 n

—a—Deriv. —+—Marked —e—Part.Deriv.

Time (s)

4
2
0 | |

0 200 400 600 n

—a—Deriv. —+—Marked —e—Part.Deriv.

For randomly generated examples:

Deriv. > Part.Deriv. > Fischer, Asperti

Extended regular expressions

Extended regular expressions

Complement and intersection:

Extended regular expressions

Complement and intersection:
e Trivial for derivatives (Brzozowski)

Extended regular expressions

Complement and intersection:
e Trivial for derivatives (Brzozowski)

e Harder for partial derivatives
(Champarnaud and Mignot)

Extended regular expressions

Complement and intersection:
e Trivial for derivatives (Brzozowski)

e Harder for partial derivatives
(Champarnaud and Mignot)

e Unclear for marked regular expressions

Extended regular expressions

Complement and intersection:
e Trivial for derivatives (Brzozowski)

e Harder for partial derivatives
(Champarnaud and Mignot)

e Unclear for marked regular expressions
. and projection:

Extended regular expressions

Complement and intersection:
e Trivial for derivatives (Brzozowski)

e Harder for partial derivatives
(Champarnaud and Mignot)

e Unclear for marked regular expressions
. and projection:
o Traytel & N. [ICFP 13] extend derivatives

Extended regular expressions

Complement and intersection:
e Trivial for derivatives (Brzozowski)

e Harder for partial derivatives
(Champarnaud and Mignot)

e Unclear for marked regular expressions
. and projection:

o Traytel & N. [ICFP 13] extend derivatives
~ decision procedure for MSO on finite strings

Summary

Equivalence-checkers for regular expressions
can be defined purely functionally

Summary

Equivalence-checkers for regular expressions
can be defined purely functionally
via (partial) derivatives
or marked regular expressions

Summary

Equivalence-checkers for regular expressions
can be defined purely functionally
via (partial) derivatives
or marked regular expressions

Perfect proof assistant fodder ®)

	The Unified Framework

