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Recent series of papers presenting such decision
procedures verified in Coq, Isabelle or Matita:

Braibant & Pous 2010, Krauss & Nipkow 2011,
Coquand & Siles 2011, Asperti 2012,
Moreira et al. 2013

They all operate on regular expressions,
not automata

They all look different but related . ..
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This talk

e Unified framework

e Derivation of all previous procedures
as instances

e Verification in Isabelle
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Regular expressions

datatype o rexp = 0 |
1
Atom « |
arexp + a rexp |
arexp - arerp |
arerp ™

Semantics: L :: arexp — « lang
where o lang = « list set
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How to prove r = s

® Translate to DFAs A and B
® Compare A and B
 Standard algorithm:
Minimize A and B, check isomorphism.
« Easy alternative:
Check for all reachable states (p, q) of
A X B that p is final iff ¢ is final.



Framework parameters



Framework parameters

Type o



Framework parameters

Type o
Init mit s arexp — o



Framework parameters

Type o
Init mit s arexp — o
Transition d::a— 0 — o0



Framework parameters

Type o

Init mit s arexp — o
Transition d::a— 0 — 0
Final fin :: 0 — bool



Framework parameters

Type o

Init mit s arexp — o
Transition d::a— 0 — o0
Final fin :: 0 — bool

Language L :: 0 — alang



Framework parameters

Type o

Init mit s arexp — o
Transition d::a— 0 — o0
Final fin :: 0 — bool

Language L :: 0 — alang

Assumptions:



Framework parameters

Type o

Init mit s arexp — o
Transition d::a— 0 — o0
Final fin :: 0 — bool

Language L :: 0 — alang

Assumptions:

L(init(r)) = L(r)
LOxs)={w]|zwe L(s)}



Framework parameters

Type o

Init mit s arexp — o
Transition d::a— 0 — 0
Final fin :: 0 — bool

Language L :: 0 — alang

Assumptions:
L(init(r)) = L(r)
LOxs)={w]|zwe L(s)}
fin(s) & | € L(s)
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Equivalence checker

equ . arexp — a rexp — bool
equ r s = case closure (init(r), init(s)) of
Some([], -) = True
| - = False

Theorem
equr s = L(r) = L(s)
If the set of reachable states is finite:

Theorem
L(r)=L(s) = equrs



@ Derivatives of Regular Expressions



Derivatives (Brzozowski 1964)

d:a— arerp — arexrp



Derivatives (Brzozowski 1964)

d:a— arerp — arexrp

e d x r is the derivative of r wrt x



Derivatives (Brzozowski 1964)

d:a— arerp — arexrp

e d x r is the derivative of r wrt x
e dxr = "what is left after x has been read”



Derivatives (Brzozowski 1964)

d:a— arerp — arexrp

e d x r is the derivative of r wrt
e dxr = "what is left after z has been read”
e Example: d a (Atom(a)-r)=1-r



Derivatives (Brzozowski 1964)

d:a— arerp — arexrp

d x r is the derivative of r wrt z
d x r = “what is left after x has been read”
Example: d a (Atom(a)-r)=1-r
Semantics is left-quotient:
L(dzr)={w]|zwe L(r)}



dx(

0



drx () =
dxl =



dz0 = 0
dz 1 0
dx (Atomy) = if x =y then 1 else 0
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dx(0 = 0

dzl = 0
dx (Atomy) = if x =y then 1 else 0
dx(r+s) = daer+dzxs

dx (r-s) = ife(r)thendxr-s+dzxs
elsedzr-s
dx (r*) = dxr-r"
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Regular Expression ~» DFA

¢ 1-a* a \O-a*—l—loa*@a
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Finiteness

Let =47 be the equivalence induced by ACI of +

Theorem (Brzozowski 1964)
The set {fold dw r | w € ¥X*} /=407 is finite.

277.

How large? Brzozowski's proof yields O(2°" )
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Instantiation of framework

o = arerp
init(r) = r
dxr = normacr(dxr)
fin = ¢
L =1L

Finiteness:
e Not immediate from Brzozowski's theorem

e Open for stronger normalization functions
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Idea: build some of = into the data structure set:

D:a— arerp — arexp set
Dz(r+s) = DxrUDuxs

Dz (r-s) = ife(r)then Dxr®sUDxs
else Dxr©s

where {r,...,rm} ©s={ri-s,...,r, - s}
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Finiteness

Theorem (Antimirov 1996)

Starting from a regular expression r

at most ||, + 1 regular expressions are reachable
where ||, is the number of occurrences of atoms in 7.

— 2l"lar*1 sets of regular expressions reachable
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History

McNaughton & Yamada 1960, Glushkov 1961:
e Translation of regular expression to N/DFA
e Atoms in regular expression are indexed, eg
ap - az +as- by
o States are (sets of) indexed atoms, eg {a1, a3}

Functional implementation by
Fischer, Huch & Wilke [ICFP 2009]:

e Replace sets of positions
by marked regular expressions: Atom(bool, «)

e Only matching, not =, no proofs
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Example: (a-a+a-0b)*

{a a+a- b)]]
P

a[a+b}

\\(a a+a-b)|
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Instantiation of framework

o = bool x (bool x a) rexp
init(r) = (True, map (Aa. (False,a)) )
dx (m,r) = (False, read x (follow m r))
fin(m,r) =
)



Conceptually,
the marks in McNaugton/Glushkov/Fisher
are after the atoms
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Marked regular expressions ||

Asperti [ITP 2012]:
e Verified =-checker via marked rexp in Matita
e Says he has formalised McNaughton & Yamada

e ...but he invented his own variation:
Puts the mark before the atom
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(a-a+a-b)*

a

[(a-aJra-b)*}




Example: (a-a+a-0b)*

ﬂ(a-a—i—a-b)*,

‘i(a-aJra-b)*J




Instantiation of framework

Similar but a bit more complicated
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Before vs After

Transitions can be decomposed into two steps:
e Before: read; follow
o After: follow; read

Theorem
The before-automaton is a homorphic image of the
after-automaton.

Proof idea due to Helmut Seidl.
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Time (s)

4
2
0 | |

0 200 400 600 n

—a—Deriv. —+—Marked —e—Part.Deriv.

For randomly generated examples:

Deriv. > Part.Deriv. > Fischer, Asperti
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Extended regular expressions

Complement and intersection:
e Trivial for derivatives (Brzozowski)

e Harder for partial derivatives
(Champarnaud and Mignot)

e Unclear for marked regular expressions
. and projection:

o Traytel & N. [ICFP 13] extend derivatives
~ decision procedure for MSO on finite strings
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Summary

Equivalence-checkers for regular expressions
can be defined purely functionally
via (partial) derivatives
or marked regular expressions

Perfect proof assistant fodder ®)
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