
Verified Decision Procedures for
Equivalence of Regular Expressions

Tobias Nipkow & Dmitriy Traytel

Fakultät für Informatik
Technische Universität München

Background

Recent series of papers presenting such decision
procedures verified in Coq, Isabelle or Matita:

Braibant & Pous 2010, Krauss & Nipkow 2011,
Coquand & Siles 2011, Asperti 2012,
Moreira et al. 2013

They all operate on regular expressions,
not automata

They all look different but related . . .

Background

Recent series of papers presenting such decision
procedures verified in Coq, Isabelle or Matita:

Braibant & Pous 2010, Krauss & Nipkow 2011,
Coquand & Siles 2011, Asperti 2012,
Moreira et al. 2013

They all operate on regular expressions,
not automata

They all look different but related . . .

Background

Recent series of papers presenting such decision
procedures verified in Coq, Isabelle or Matita:

Braibant & Pous 2010, Krauss & Nipkow 2011,
Coquand & Siles 2011, Asperti 2012,
Moreira et al. 2013

They all operate on regular expressions,
not automata

They all look different but related . . .

Background

Recent series of papers presenting such decision
procedures verified in Coq, Isabelle or Matita:

Braibant & Pous 2010, Krauss & Nipkow 2011,
Coquand & Siles 2011, Asperti 2012,
Moreira et al. 2013

They all operate on regular expressions,
not automata

They all look different but related . . .

This talk

• Unified framework

• Derivation of all previous procedures
as instances

• Verification in Isabelle

This talk

• Unified framework

• Derivation of all previous procedures
as instances

• Verification in Isabelle

This talk

• Unified framework

• Derivation of all previous procedures
as instances

• Verification in Isabelle

1 The Unified Framework

2 Derivatives of Regular Expressions

3 Partial Derivatives of Regular Expressions

4 Marked regular expressions

5 Empirical Comparison

Regular expressions

datatype α rexp = 0 |
1 |
Atom α |
α rexp + α rexp |
α rexp · α rexp |
α rexp ∗

Semantics: L :: α rexp→ α lang
where α lang = α list set

Regular expressions

datatype α rexp = 0 |
1 |
Atom α |
α rexp + α rexp |
α rexp · α rexp |
α rexp ∗

Semantics: L :: α rexp→ α lang
where α lang = α list set

How to prove r ≡ s

1 Translate to DFAs A and B
2 Compare A and B

• Standard algorithm:
Minimize A and B, check isomorphism.

• Easy alternative:
Check for all reachable states (p, q) of
A×B that p is final iff q is final.

How to prove r ≡ s

1 Translate to DFAs A and B

2 Compare A and B

• Standard algorithm:
Minimize A and B, check isomorphism.

• Easy alternative:
Check for all reachable states (p, q) of
A×B that p is final iff q is final.

How to prove r ≡ s

1 Translate to DFAs A and B
2 Compare A and B

• Standard algorithm:
Minimize A and B, check isomorphism.

• Easy alternative:
Check for all reachable states (p, q) of
A×B that p is final iff q is final.

How to prove r ≡ s

1 Translate to DFAs A and B
2 Compare A and B

• Standard algorithm:
Minimize A and B, check isomorphism.

• Easy alternative:
Check for all reachable states (p, q) of
A×B that p is final iff q is final.

How to prove r ≡ s

1 Translate to DFAs A and B
2 Compare A and B

• Standard algorithm:
Minimize A and B, check isomorphism.

• Easy alternative:
Check for all reachable states (p, q) of
A×B that p is final iff q is final.

Framework parameters

Type σ
Init init :: α rexp→ σ
Transition δ :: α→ σ → σ
Final fin :: σ → bool
Language L :: σ → α lang

Assumptions:

L(init(r)) = L(r)

L(δ x s) = {w | xw ∈ L(s)}
fin(s)⇔ [] ∈ L(s)

Framework parameters

Type σ

Init init :: α rexp→ σ
Transition δ :: α→ σ → σ
Final fin :: σ → bool
Language L :: σ → α lang

Assumptions:

L(init(r)) = L(r)

L(δ x s) = {w | xw ∈ L(s)}
fin(s)⇔ [] ∈ L(s)

Framework parameters

Type σ
Init init :: α rexp→ σ

Transition δ :: α→ σ → σ
Final fin :: σ → bool
Language L :: σ → α lang

Assumptions:

L(init(r)) = L(r)

L(δ x s) = {w | xw ∈ L(s)}
fin(s)⇔ [] ∈ L(s)

Framework parameters

Type σ
Init init :: α rexp→ σ
Transition δ :: α→ σ → σ

Final fin :: σ → bool
Language L :: σ → α lang

Assumptions:

L(init(r)) = L(r)

L(δ x s) = {w | xw ∈ L(s)}
fin(s)⇔ [] ∈ L(s)

Framework parameters

Type σ
Init init :: α rexp→ σ
Transition δ :: α→ σ → σ
Final fin :: σ → bool

Language L :: σ → α lang

Assumptions:

L(init(r)) = L(r)

L(δ x s) = {w | xw ∈ L(s)}
fin(s)⇔ [] ∈ L(s)

Framework parameters

Type σ
Init init :: α rexp→ σ
Transition δ :: α→ σ → σ
Final fin :: σ → bool
Language L :: σ → α lang

Assumptions:

L(init(r)) = L(r)

L(δ x s) = {w | xw ∈ L(s)}
fin(s)⇔ [] ∈ L(s)

Framework parameters

Type σ
Init init :: α rexp→ σ
Transition δ :: α→ σ → σ
Final fin :: σ → bool
Language L :: σ → α lang

Assumptions:

L(init(r)) = L(r)

L(δ x s) = {w | xw ∈ L(s)}
fin(s)⇔ [] ∈ L(s)

Framework parameters

Type σ
Init init :: α rexp→ σ
Transition δ :: α→ σ → σ
Final fin :: σ → bool
Language L :: σ → α lang

Assumptions:

L(init(r)) = L(r)

L(δ x s) = {w | xw ∈ L(s)}

fin(s)⇔ [] ∈ L(s)

Framework parameters

Type σ
Init init :: α rexp→ σ
Transition δ :: α→ σ → σ
Final fin :: σ → bool
Language L :: σ → α lang

Assumptions:

L(init(r)) = L(r)

L(δ x s) = {w | xw ∈ L(s)}
fin(s)⇔ [] ∈ L(s)

Equivalence checker

eqv :: α rexp→ α rexp→ bool
eqv r s = case closure (init(r), init(s)) of

Some([],)⇒ True
| ⇒ False

Theorem
eqv r s =⇒ L(r) = L(s)

If the set of reachable states is finite:

Theorem
L(r) = L(s) =⇒ eqv r s

Equivalence checker

eqv :: α rexp→ α rexp→ bool

eqv r s = case closure (init(r), init(s)) of
Some([],)⇒ True
| ⇒ False

Theorem
eqv r s =⇒ L(r) = L(s)

If the set of reachable states is finite:

Theorem
L(r) = L(s) =⇒ eqv r s

Equivalence checker

eqv :: α rexp→ α rexp→ bool
eqv r s = case closure (init(r), init(s)) of

Some([],)⇒ True
| ⇒ False

Theorem
eqv r s =⇒ L(r) = L(s)

If the set of reachable states is finite:

Theorem
L(r) = L(s) =⇒ eqv r s

Equivalence checker

eqv :: α rexp→ α rexp→ bool
eqv r s = case closure (init(r), init(s)) of

Some([],)⇒ True
| ⇒ False

Theorem
eqv r s =⇒ L(r) = L(s)

If the set of reachable states is finite:

Theorem
L(r) = L(s) =⇒ eqv r s

Equivalence checker

eqv :: α rexp→ α rexp→ bool
eqv r s = case closure (init(r), init(s)) of

Some([],)⇒ True
| ⇒ False

Theorem
eqv r s =⇒ L(r) = L(s)

If the set of reachable states is finite:

Theorem
L(r) = L(s) =⇒ eqv r s

1 The Unified Framework

2 Derivatives of Regular Expressions

3 Partial Derivatives of Regular Expressions

4 Marked regular expressions

5 Empirical Comparison

Derivatives (Brzozowski 1964)

d :: α→ α rexp→ α rexp

• d x r is the derivative of r wrt x

• d x r = “what is left after x has been read”

• Example: d a (Atom(a) · r) = 1 · r
• Semantics is left-quotient:

L(d x r) = {w | xw ∈ L(r)}

Derivatives (Brzozowski 1964)

d :: α→ α rexp→ α rexp

• d x r is the derivative of r wrt x

• d x r = “what is left after x has been read”

• Example: d a (Atom(a) · r) = 1 · r
• Semantics is left-quotient:

L(d x r) = {w | xw ∈ L(r)}

Derivatives (Brzozowski 1964)

d :: α→ α rexp→ α rexp

• d x r is the derivative of r wrt x

• d x r = “what is left after x has been read”

• Example: d a (Atom(a) · r) = 1 · r
• Semantics is left-quotient:

L(d x r) = {w | xw ∈ L(r)}

Derivatives (Brzozowski 1964)

d :: α→ α rexp→ α rexp

• d x r is the derivative of r wrt x

• d x r = “what is left after x has been read”

• Example: d a (Atom(a) · r) = 1 · r

• Semantics is left-quotient:

L(d x r) = {w | xw ∈ L(r)}

Derivatives (Brzozowski 1964)

d :: α→ α rexp→ α rexp

• d x r is the derivative of r wrt x

• d x r = “what is left after x has been read”

• Example: d a (Atom(a) · r) = 1 · r
• Semantics is left-quotient:

L(d x r) = {w | xw ∈ L(r)}

d x 0 = 0

d x 1 = 0

d x (Atom y) = if x = y then 1 else 0

d x (r + s) = d x r + d x s

d x (r · s) = if ε(r) then d x r · s+ d x s

else d x r · s
d x (r∗) = d x r · r∗

d x 0 = 0

d x 1 = 0

d x (Atom y) = if x = y then 1 else 0

d x (r + s) = d x r + d x s

d x (r · s) = if ε(r) then d x r · s+ d x s

else d x r · s
d x (r∗) = d x r · r∗

d x 0 = 0

d x 1 = 0

d x (Atom y) = if x = y then 1 else 0

d x (r + s) = d x r + d x s

d x (r · s) = if ε(r) then d x r · s+ d x s

else d x r · s
d x (r∗) = d x r · r∗

d x 0 = 0

d x 1 = 0

d x (Atom y) = if x = y then 1 else 0

d x (r + s) = d x r + d x s

d x (r · s) = if ε(r) then d x r · s+ d x s

else d x r · s
d x (r∗) = d x r · r∗

d x 0 = 0

d x 1 = 0

d x (Atom y) = if x = y then 1 else 0

d x (r + s) = d x r + d x s

d x (r · s) = if ε(r) then d x r · s+ d x s

else d x r · s

d x (r∗) = d x r · r∗

d x 0 = 0

d x 1 = 0

d x (Atom y) = if x = y then 1 else 0

d x (r + s) = d x r + d x s

d x (r · s) = if ε(r) then d x r · s+ d x s

else d x r · s
d x (r∗) = d x r · r∗

Regular Expression ; DFA

a · a∗

1 · a∗
a

0 · a∗ + 1 · a∗a
a

Regular Expression ; DFA

a · a∗ 1 · a∗
a

0 · a∗ + 1 · a∗a
a

Regular Expression ; DFA

a · a∗ 1 · a∗
a

0 · a∗ + 1 · a∗a

a

Regular Expression ; DFA

a · a∗ 1 · a∗
a

0 · a∗ + 1 · a∗a
a

Finiteness

Let ≡ACI be the equivalence induced by ACI of +

Theorem (Brzozowski 1964)
The set {fold d w r | w ∈ Σ∗}/≡ACI is finite.

How large? Brzozowski’s proof yields O(2...2n
)

Finiteness

Let ≡ACI be the equivalence induced by ACI of +

Theorem (Brzozowski 1964)
The set {fold d w r | w ∈ Σ∗}/≡ACI is finite.

How large? Brzozowski’s proof yields O(2...2n
)

Finiteness

Let ≡ACI be the equivalence induced by ACI of +

Theorem (Brzozowski 1964)
The set {fold d w r | w ∈ Σ∗}/≡ACI is finite.

How large? Brzozowski’s proof yields O(2...2n
)

Finiteness

Let ≡ACI be the equivalence induced by ACI of +

Theorem (Brzozowski 1964)
The set {fold d w r | w ∈ Σ∗}/≡ACI is finite.

How large?

Brzozowski’s proof yields O(2...2n
)

Finiteness

Let ≡ACI be the equivalence induced by ACI of +

Theorem (Brzozowski 1964)
The set {fold d w r | w ∈ Σ∗}/≡ACI is finite.

How large? Brzozowski’s proof yields O(2...2n
)

Instantiation of framework

σ = α rexp

init(r) = r

δ x r = normACI(d x r)

fin = ε

L = L

Finiteness:

• Not immediate from Brzozowski’s theorem

• Open for stronger normalization functions

Instantiation of framework

σ = α rexp

init(r) = r

δ x r = normACI(d x r)

fin = ε

L = L

Finiteness:

• Not immediate from Brzozowski’s theorem

• Open for stronger normalization functions

Instantiation of framework

σ = α rexp

init(r) = r

δ x r = normACI(d x r)

fin = ε

L = L

Finiteness:

• Not immediate from Brzozowski’s theorem

• Open for stronger normalization functions

Instantiation of framework

σ = α rexp

init(r) = r

δ x r = normACI(d x r)

fin = ε

L = L

Finiteness:

• Not immediate from Brzozowski’s theorem

• Open for stronger normalization functions

Instantiation of framework

σ = α rexp

init(r) = r

δ x r = normACI(d x r)

fin = ε

L = L

Finiteness:

• Not immediate from Brzozowski’s theorem

• Open for stronger normalization functions

Instantiation of framework

σ = α rexp

init(r) = r

δ x r = normACI(d x r)

fin = ε

L = L

Finiteness:

• Not immediate from Brzozowski’s theorem

• Open for stronger normalization functions

Instantiation of framework

σ = α rexp

init(r) = r

δ x r = normACI(d x r)

fin = ε

L = L

Finiteness:

• Not immediate from Brzozowski’s theorem

• Open for stronger normalization functions

Instantiation of framework

σ = α rexp

init(r) = r

δ x r = normACI(d x r)

fin = ε

L = L

Finiteness:

• Not immediate from Brzozowski’s theorem

• Open for stronger normalization functions

Instantiation of framework

σ = α rexp

init(r) = r

δ x r = normACI(d x r)

fin = ε

L = L

Finiteness:

• Not immediate from Brzozowski’s theorem

• Open for stronger normalization functions

1 The Unified Framework

2 Derivatives of Regular Expressions

3 Partial Derivatives of Regular Expressions

4 Marked regular expressions

5 Empirical Comparison

Antimirov 1996

Idea: build some of ≡ into the data structure set:

d : α→ α rexp→ α rexp

set

d x (r + s) = d x r + d x s

d x (r · s) = if ε(r) then d x r · s+ d x s

else d x r · s

...

where {r1, . . . , rn} � s = {r1 · s, . . . , rn · s}

Antimirov 1996

Idea: build some of ≡ into the data structure set:

d : α→ α rexp→ α rexp

set

d x (r + s) = d x r + d x s

d x (r · s) = if ε(r) then d x r · s+ d x s

else d x r · s

...

where {r1, . . . , rn} � s = {r1 · s, . . . , rn · s}

Antimirov 1996

Idea: build some of ≡ into the data structure set:

d : α→ α rexp→ α rexp

set

d x (r + s) = d x r + d x s

d x (r · s) = if ε(r) then d x r · s+ d x s

else d x r · s

...

where {r1, . . . , rn} � s = {r1 · s, . . . , rn · s}

Antimirov 1996

Idea: build some of ≡ into the data structure set:

D : α→ α rexp→ α rexp set

d x (r + s) = d x r + d x s

d x (r · s) = if ε(r) then d x r · s+ d x s

else d x r · s

...

where {r1, . . . , rn} � s = {r1 · s, . . . , rn · s}

Antimirov 1996

Idea: build some of ≡ into the data structure set:

D : α→ α rexp→ α rexp set

d x (r + s) = d x r + d x s

d x (r · s) = if ε(r) then d x r · s+ d x s

else d x r · s

...

where {r1, . . . , rn} � s = {r1 · s, . . . , rn · s}

Antimirov 1996

Idea: build some of ≡ into the data structure set:

D : α→ α rexp→ α rexp set

D x (r + s) = D x r ∪D x s

d x (r · s) = if ε(r) then d x r · s+ d x s

else d x r · s

...

where {r1, . . . , rn} � s = {r1 · s, . . . , rn · s}

Antimirov 1996

Idea: build some of ≡ into the data structure set:

D : α→ α rexp→ α rexp set

D x (r + s) = D x r ∪D x s

d x (r · s) = if ε(r) then d x r · s+ d x s

else d x r · s

...

where {r1, . . . , rn} � s = {r1 · s, . . . , rn · s}

Antimirov 1996

Idea: build some of ≡ into the data structure set:

D : α→ α rexp→ α rexp set

D x (r + s) = D x r ∪D x s

D x (r · s) = if ε(r) then D x r � s ∪D x s

else D x r � s

...

where {r1, . . . , rn} � s = {r1 · s, . . . , rn · s}

Antimirov 1996

Idea: build some of ≡ into the data structure set:

D : α→ α rexp→ α rexp set

D x (r + s) = D x r ∪D x s

D x (r · s) = if ε(r) then D x r � s ∪D x s

else D x r � s

...

where {r1, . . . , rn} � s = {r1 · s, . . . , rn · s}

Antimirov 1996

Idea: build some of ≡ into the data structure set:

D : α→ α rexp→ α rexp set

D x (r + s) = D x r ∪D x s

D x (r · s) = if ε(r) then D x r � s ∪D x s

else D x r � s
...

where {r1, . . . , rn} � s = {r1 · s, . . . , rn · s}

Instantiation of framework

σ = α rexp set

init(r) = {r}

δ x R =
⋃
r∈R

D x r

fin(R) = ∃r ∈ R. ε(r)

L(R) =
⋃
r∈R

L(r)

Instantiation of framework

σ = α rexp set

init(r) = {r}

δ x R =
⋃
r∈R

D x r

fin(R) = ∃r ∈ R. ε(r)

L(R) =
⋃
r∈R

L(r)

Instantiation of framework

σ = α rexp set

init(r) = {r}

δ x R =
⋃
r∈R

D x r

fin(R) = ∃r ∈ R. ε(r)

L(R) =
⋃
r∈R

L(r)

Instantiation of framework

σ = α rexp set

init(r) = {r}

δ x R =
⋃
r∈R

D x r

fin(R) = ∃r ∈ R. ε(r)

L(R) =
⋃
r∈R

L(r)

Instantiation of framework

σ = α rexp set

init(r) = {r}

δ x R =
⋃
r∈R

D x r

fin(R) = ∃r ∈ R. ε(r)

L(R) =
⋃
r∈R

L(r)

Instantiation of framework

σ = α rexp set

init(r) = {r}

δ x R =
⋃
r∈R

D x r

fin(R) = ∃r ∈ R. ε(r)

L(R) =
⋃
r∈R

L(r)

Finiteness

Theorem (Antimirov 1996)
Starting from a regular expression r

at most |r|at + 1 regular expressions are reachable
where |r|at is the number of occurrences of atoms in r.

=⇒ 2|r|at+1 sets of regular expressions reachable

Finiteness

Theorem (Antimirov 1996)
Starting from a regular expression r
at most |r|at + 1 regular expressions are reachable

where |r|at is the number of occurrences of atoms in r.

=⇒ 2|r|at+1 sets of regular expressions reachable

Finiteness

Theorem (Antimirov 1996)
Starting from a regular expression r
at most |r|at + 1 regular expressions are reachable
where |r|at is the number of occurrences of atoms in r.

=⇒ 2|r|at+1 sets of regular expressions reachable

Finiteness

Theorem (Antimirov 1996)
Starting from a regular expression r
at most |r|at + 1 regular expressions are reachable
where |r|at is the number of occurrences of atoms in r.

=⇒ 2|r|at+1 sets of regular expressions reachable

1 The Unified Framework

2 Derivatives of Regular Expressions

3 Partial Derivatives of Regular Expressions

4 Marked regular expressions

5 Empirical Comparison

History

McNaughton & Yamada 1960, Glushkov 1961:

• Translation of regular expression to N/DFA

• Atoms in regular expression are indexed, eg
a1 · a2 + a3 · b1

• States are (sets of) indexed atoms, eg {a1, a3}

Functional implementation by
Fischer, Huch & Wilke [ICFP 2009]:

• Replace sets of positions
by marked regular expressions: Atom(bool, α)

• Only matching, not ≡, no proofs

History

McNaughton & Yamada 1960, Glushkov 1961:

• Translation of regular expression to N/DFA

• Atoms in regular expression are indexed, eg
a1 · a2 + a3 · b1

• States are (sets of) indexed atoms, eg {a1, a3}

Functional implementation by
Fischer, Huch & Wilke [ICFP 2009]:

• Replace sets of positions
by marked regular expressions: Atom(bool, α)

• Only matching, not ≡, no proofs

History

McNaughton & Yamada 1960, Glushkov 1961:

• Translation of regular expression to N/DFA

• Atoms in regular expression are indexed, eg
a1 · a2 + a3 · b1

• States are (sets of) indexed atoms, eg {a1, a3}

Functional implementation by
Fischer, Huch & Wilke [ICFP 2009]:

• Replace sets of positions
by marked regular expressions: Atom(bool, α)

• Only matching, not ≡, no proofs

History

McNaughton & Yamada 1960, Glushkov 1961:

• Translation of regular expression to N/DFA

• Atoms in regular expression are indexed, eg
a1 · a2 + a3 · b1

• States are (sets of) indexed atoms, eg {a1, a3}

Functional implementation by
Fischer, Huch & Wilke [ICFP 2009]:

• Replace sets of positions
by marked regular expressions: Atom(bool, α)

• Only matching, not ≡, no proofs

History

McNaughton & Yamada 1960, Glushkov 1961:

• Translation of regular expression to N/DFA

• Atoms in regular expression are indexed, eg
a1 · a2 + a3 · b1

• States are (sets of) indexed atoms, eg {a1, a3}

Functional implementation by
Fischer, Huch & Wilke [ICFP 2009]:

• Replace sets of positions
by marked regular expressions: Atom(bool, α)

• Only matching, not ≡, no proofs

History

McNaughton & Yamada 1960, Glushkov 1961:

• Translation of regular expression to N/DFA

• Atoms in regular expression are indexed, eg
a1 · a2 + a3 · b1

• States are (sets of) indexed atoms, eg {a1, a3}

Functional implementation by
Fischer, Huch & Wilke [ICFP 2009]:

• Replace sets of positions
by marked regular expressions: Atom(bool, α)

• Only matching, not ≡, no proofs

Example: (a · a + a · b)∗

(a · a+ a · b)∗a

(a · a+ a · b)∗
a

a

(a · a+ a · b)∗
b

a

Example: (a · a + a · b)∗

q0

(a · a+ a · b)∗a

(a · a+ a · b)∗
a

a

(a · a+ a · b)∗
b

a

Example: (a · a + a · b)∗

q0 (a · a+ a · b)∗a

(a · a+ a · b)∗
a

a

(a · a+ a · b)∗
b

a

Example: (a · a + a · b)∗

q0 (a · a+ a · b)∗a

(a · a+ a · b)∗
a

a

(a · a+ a · b)∗
b

a

Example: (a · a + a · b)∗

q0 (a · a+ a · b)∗a

(a · a+ a · b)∗
a

a

(a · a+ a · b)∗
b

a

Example: (a · a + a · b)∗

q0 (a · a+ a · b)∗a

(a · a+ a · b)∗
a

a

(a · a+ a · b)∗
b

a

Example: (a · a + a · b)∗

q0 (a · a+ a · b)∗a

(a · a+ a · b)∗
a

a

(a · a+ a · b)∗
b

a

Instantiation of framework

σ = bool × (bool × α) rexp

init(r) = (True, map (λa. (False, a)) r)

δ x (m, r) = (False, read x (follow m r))

fin(m, r) = . . .

L(m, r) = . . .

Instantiation of framework

σ = bool × (bool × α) rexp

init(r) = (True, map (λa. (False, a)) r)

δ x (m, r) = (False, read x (follow m r))

fin(m, r) = . . .

L(m, r) = . . .

Instantiation of framework

σ = bool × (bool × α) rexp

init(r) = (True, map (λa. (False, a)) r)

δ x (m, r) = (False, read x (follow m r))

fin(m, r) = . . .

L(m, r) = . . .

Instantiation of framework

σ = bool × (bool × α) rexp

init(r) = (True, map (λa. (False, a)) r)

δ x (m, r) = (False, read x (follow m r))

fin(m, r) = . . .

L(m, r) = . . .

Instantiation of framework

σ = bool × (bool × α) rexp

init(r) = (True, map (λa. (False, a)) r)

δ x (m, r) = (False, read x (follow m r))

fin(m, r) = . . .

L(m, r) = . . .

Conceptually,

the marks in McNaugton/Glushkov/Fisher

are after the atoms

Marked regular expressions II

Asperti [ITP 2012]:

• Verified ≡-checker via marked rexp in Matita

• Says he has formalised McNaughton & Yamada

• . . . but he invented his own variation:
Puts the mark before the atom

Marked regular expressions II

Asperti [ITP 2012]:

• Verified ≡-checker via marked rexp in Matita

• Says he has formalised McNaughton & Yamada

• . . . but he invented his own variation:
Puts the mark before the atom

Marked regular expressions II

Asperti [ITP 2012]:

• Verified ≡-checker via marked rexp in Matita

• Says he has formalised McNaughton & Yamada

• . . . but he invented his own variation:

Puts the mark before the atom

Marked regular expressions II

Asperti [ITP 2012]:

• Verified ≡-checker via marked rexp in Matita

• Says he has formalised McNaughton & Yamada

• . . . but he invented his own variation:
Puts the mark before the atom

Example: (a · a + a · b)∗

(a · a+ a · b)∗
a

a, b

Example: (a · a + a · b)∗

(a · a+ a · b)∗

(a · a+ a · b)∗
a

a, b

Example: (a · a + a · b)∗

(a · a+ a · b)∗ (a · a+ a · b)∗
a

a, b

Example: (a · a + a · b)∗

(a · a+ a · b)∗ (a · a+ a · b)∗
a

a, b

Instantiation of framework

Similar but a bit more complicated

Before vs After

Transitions can be decomposed into two steps:

• Before: read; follow

• After: follow ; read

Theorem
The before-automaton is a homorphic image of the
after-automaton.

Proof idea due to Helmut Seidl.

Before vs After

Transitions can be decomposed into two steps:

• Before: read; follow

• After: follow ; read

Theorem
The before-automaton is a homorphic image of the
after-automaton.

Proof idea due to Helmut Seidl.

Before vs After

Transitions can be decomposed into two steps:

• Before: read; follow

• After: follow ; read

Theorem
The before-automaton is a homorphic image of the
after-automaton.

Proof idea due to Helmut Seidl.

Before vs After

Transitions can be decomposed into two steps:

• Before: read; follow

• After: follow ; read

Theorem
The before-automaton is a homorphic image of the
after-automaton.

Proof idea due to Helmut Seidl.

Before vs After

Transitions can be decomposed into two steps:

• Before: read; follow

• After: follow ; read

Theorem
The before-automaton is a homorphic image of the
after-automaton.

Proof idea due to Helmut Seidl.

1 The Unified Framework

2 Derivatives of Regular Expressions

3 Partial Derivatives of Regular Expressions

4 Marked regular expressions

5 Empirical Comparison

0 200 400 600
0

2

4

6

8

n

T
im

e
(s

)

(a0 + · · ·+ an−1) · (an)∗ ≡ a∗

Deriv. Marked Part.Deriv.

For randomly generated examples:

Deriv.� Part.Deriv.� Fischer,Asperti

0 200 400 600
0

2

4

6

8

n

T
im

e
(s

)

(a0 + · · ·+ an−1) · (an)∗ ≡ a∗

Deriv. Marked Part.Deriv.

For randomly generated examples:

Deriv.� Part.Deriv.� Fischer,Asperti

Extended regular expressions

Complement and intersection:

• Trivial for derivatives (Brzozowski)

• Harder for partial derivatives
(Champarnaud and Mignot)

• Unclear for marked regular expressions

. . . and projection:

• Traytel & N. [ICFP 13] extend derivatives
; decision procedure for MSO on finite strings

Extended regular expressions

Complement and intersection:

• Trivial for derivatives (Brzozowski)

• Harder for partial derivatives
(Champarnaud and Mignot)

• Unclear for marked regular expressions

. . . and projection:

• Traytel & N. [ICFP 13] extend derivatives
; decision procedure for MSO on finite strings

Extended regular expressions

Complement and intersection:

• Trivial for derivatives (Brzozowski)

• Harder for partial derivatives
(Champarnaud and Mignot)

• Unclear for marked regular expressions

. . . and projection:

• Traytel & N. [ICFP 13] extend derivatives
; decision procedure for MSO on finite strings

Extended regular expressions

Complement and intersection:

• Trivial for derivatives (Brzozowski)

• Harder for partial derivatives
(Champarnaud and Mignot)

• Unclear for marked regular expressions

. . . and projection:

• Traytel & N. [ICFP 13] extend derivatives
; decision procedure for MSO on finite strings

Extended regular expressions

Complement and intersection:

• Trivial for derivatives (Brzozowski)

• Harder for partial derivatives
(Champarnaud and Mignot)

• Unclear for marked regular expressions

. . . and projection:

• Traytel & N. [ICFP 13] extend derivatives
; decision procedure for MSO on finite strings

Extended regular expressions

Complement and intersection:

• Trivial for derivatives (Brzozowski)

• Harder for partial derivatives
(Champarnaud and Mignot)

• Unclear for marked regular expressions

. . . and projection:

• Traytel & N. [ICFP 13] extend derivatives
; decision procedure for MSO on finite strings

Extended regular expressions

Complement and intersection:

• Trivial for derivatives (Brzozowski)

• Harder for partial derivatives
(Champarnaud and Mignot)

• Unclear for marked regular expressions

. . . and projection:

• Traytel & N. [ICFP 13] extend derivatives

; decision procedure for MSO on finite strings

Extended regular expressions

Complement and intersection:

• Trivial for derivatives (Brzozowski)

• Harder for partial derivatives
(Champarnaud and Mignot)

• Unclear for marked regular expressions

. . . and projection:

• Traytel & N. [ICFP 13] extend derivatives
; decision procedure for MSO on finite strings

Summary

Equivalence-checkers for regular expressions
can be defined purely functionally

via (partial) derivatives
or marked regular expressions

Perfect proof assistant fodder ,

Summary

Equivalence-checkers for regular expressions
can be defined purely functionally

via (partial) derivatives
or marked regular expressions

Perfect proof assistant fodder ,

Summary

Equivalence-checkers for regular expressions
can be defined purely functionally

via (partial) derivatives
or marked regular expressions

Perfect proof assistant fodder ,

	The Unified Framework

