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Motivation

A motivating example

Consider the following implication:

0 < x < y , u < v

=⇒
2u + exp(1 + x + x4) < 2v + exp(1 + y + y4)

This inference is not contained in linear arithmetic or real closed fields.

This inference is tight: symbolic or numeric approximations to exp are
not useful.

Backchaining using monotonicity properties suggests many equally
plausible subgoals.

But, the inference is completely straightforward.
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Motivation

A new method

We propose and implement a method based on this type of heuristically
guided forward reasoning. Our method:

Verifies inequalities on which other procedures fail.

Is amenable to producing proof terms.

Captures natural, human-like inferences.

Is not complete.

Is not guaranteed to terminate.

We envision it as a complement, not a replacement, to other verification
procedures.
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Motivation

A prototype implementation of the algorithm in Python, named Polya,
shows that the method compares favorably to other techniques.

The code is open-source and available online.
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Algorithm Structure

Background

Our system verifies inequalities between real variables using:

Operations + and ·
Multiplication and exponentiation by rational constants

Arbitrary function symbols

Relations < and =

As is common for resolution theorem proving, we establish a theorem by
negating the conclusion and deriving a contradiction.
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Algorithm Structure

Terms and normal forms

The term
3(3y + 5x + 4xy)2f (u + v)−1

is expressed canonically as

75 · ( x︸︷︷︸
t1

+
3

5
· y︸︷︷︸

t2

+
4

5
· xy︸︷︷︸
t3=t1t2

)2f ( u︸︷︷︸
t4

+ v︸︷︷︸
t5

)−1
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Algorithm Structure

Modules and database

Any comparison between canonical terms can be expressed as ti ./ 0 or
ti ./ c · tj , where ./ ∈ {=, 6=, <,≤, >,≥}. This is in the common
language of addition and multiplication.

A central database (the blackboard) stores term definitions and
comparisons of this form.

Modules use this information to learn and assert new comparisons.

The procedure has succeeded in verifying an implication when modules
assert contradictory information.
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Algorithm Structure

Polya: an outline

Blackboard
Stores definitions

and comparisons

Additive Module
Derives comparisons using

additive definitions

Multiplicative Module
Derives comparisons using

multiplicative definitions

Axiom Instantiation
Module

Derives comparisons using

universal axioms
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Individual Modules

Arithmetical modules

Two modules, for additive and multiplicative arithmetic, work together to
solve arithmetical problems.

Using the known atomic comparisons and definitions, the modules saturate
the blackboard with the strongest derivable atomic comparisons.

We use two techniques for this: Fourier-Motzkin variable elimination, and
a geometric projection method.
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Individual Modules

Fourier-Motzkin additive module

The Fourier-Motzkin algorithm is a quantifier elimination procedure for
〈R, 0,+, <〉.

Given additive equations {ti =
∑

j cj · tkj} and atomic comparisons
{ti ./ c · tj} and {ti ./ 0}:

Substitute the equations into the comparisons.

For each pair i , j , eliminate all variables except ti and tj .

Add the strictest remaining comparisons to the blackboard.
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Individual Modules

Fourier-Motzkin additive module

To find comparisons between t1 and t2, eliminate t3:

3t1 + 2t2 − t3 > 0

4t1 + t2 + t3 ≥ 0

2t1 − t2 − 2t3 ≥ 0

− 2t2 − t3 > 0

=⇒
7t1 + 3t2 > 0

10t1 + t2 ≥ 0

4t1 − t2 > 0

=⇒

t1 >−
3

7
t2

t1 ≥ −
1

10
t2

t1 >
1

4
t2
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Individual Modules

Fourier-Motzkin multiplicative module

By the map x 7→ ex , we see that 〈R, 0,+, <〉 ∼= 〈R+, 1, ·, <〉.

We can therefore use the same elimination procedure on multiplicative
terms, with some caveats:

Sign information is needed for all variables.

Constants become irrational under the transformation.

Deduced comparisons can have the form t3i < 2t2j .
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Individual Modules

Fourier-Motzkin arithmetical modules

The FM algorithm can require doubly-exponential time in the number of
variables.

In a problem with n subterms, one pass of the additive module requires
O(n2) instances of FM with up to n variables in each.

In practice, this approach works surprisingly well. But one can construct
examples where the complexity leads to significant slowdown.
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Individual Modules

Geometric additive module

An alternative approach uses geometric insights.

A homogeneous linear equality in n variables defines an
(n − 1)-dimensional hyperplane through the origin in Rn. An inequality
defines a half-space. A conjunction of inequalities defines a polyhedron.

By projecting this polyhedron to the ti tj plane, one can find the strongest
implied comparisons between ti and tj .

x

z

y

x

y
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Individual Modules

Geometric arithmetical modules

We use the computational geometry packages cdd and lrs for the
conversion from half-plane representation to vertex representation.

This approach scales better than the Fourier-Motzkin procedure.
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Individual Modules

Geometric multiplicative module

Translating this procedure to the multiplicative setting introduces a new
problem:

5t22 t
4
1 7→ log(5)︸ ︷︷ ︸

/∈Q

+2 log(t2) + 4 log(t1)

To avoid this, we introduce new variables

p2 = log(2), p3 = log(3), p5 = log(5), . . .

as necessary.
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Individual Modules

Axiom instantiation module

A highlight of our approach is its ability to prove theorems outside the
language of RCF.

An axiom instantiation module takes universally quantified axioms about
function symbols and selectively instantiates them with subterms from the
problem.

Using axiom: (∀x)(0 < f (x) < 1)

Prove: f (a)3 + f (b)3 > f (a)3 · f (b)3
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Individual Modules

Axiom instantiation module

Unification must happen modulo equalities:
t1 = t2 + t3

t4 = 2t3 − t5

t6 = f (t1 + t4)

,
v1 7→ t2 − t5

v2 7→ 3t3
=⇒ f (v1 + v2) ≡ t6

We combine a standard unification algorithm with a Gaussian elimination
procedure to find relevant substitutions.

Trigger terms can be specified by the user or picked by default. This lets
the module selectively add terms of interest to the blackboard.
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Examples and comparisons

Successes

Our implementation in Python successfully proves many theorems, some of
which are not proved by other systems.

0 < x < 1 =⇒ 1/(1− x) > 1/(1− x2) (1)

0 < u, u < v , 0 < z , z + 1 < w =⇒ (u + v + z)3 < (u + v + w)5 (2)

(∀x , y . x ≤ y → f (x) ≤ f (y)) , u < v , 1 < v , x ≤ y =⇒
u + f (x) ≤ v2 + f (y)

(3)

(∀x , y . f (x + y) = f (x)f (y)), f (a + b) > 2, f (c + d) > 2 =⇒
f (a + b + c + d) > 4

(4)
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Examples and comparisons

Limitations

Since our method is incomplete, it fails on a wide class of problems where
other methods succeed.

x > 0, y < z =⇒ xy < xz (5)

x2 + 2x + 1 ≥ 0 (6)
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Conclusion and future work

Future work

There are a number of directions for improvement:

Improved case-splitting and CDCL.

Backtracking and incrementality.

Proof-producing implementation.

Heuristically handle distribution.

More modules for more tasks.

Exponentials and logarithms
Minima and maxima
Arbitrary summations, products, integrals
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Conclusion and future work

Thank you!

Our code, a collection of 50 examples, and comparison data is available at:

https://github.com/avigad/polya
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